To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that every $\Sigma ^0_2$ Gale-Stewart game can be won via a winning strategy $\tau $ which is $\Delta _1$-definable over $L_{\delta }$, the $\delta $th stage of Gödel’s constructible universe, where $\delta = \delta _{\sigma ^1_1}$, strengthening a theorem of Solovay from the 1970s. Moreover, the bound is sharp in the sense that there is a $\Sigma ^0_2$ game with no strategy $\tau $ which is witnessed to be winning by an element of $L_{\delta }$.
Let $\Gamma $ be a compact Polish group of finite topological dimension. For a countably infinite subset $S\subseteq \Gamma $, a domatic$\aleph _0$-partition (for its Schreier graph on $\Gamma $) is a partial function $f:\Gamma \rightharpoonup \mathbb {N}$ such that for every $x\in \Gamma $, one has $f[S\cdot x]=\mathbb {N}$. We show that a continuous domatic $\aleph _0$-partition exists, if and only if a Baire measurable domatic $\aleph _0$-partition exists, if and only if the topological closure of S is uncountable. A Haar measurable domatic $\aleph _0$-partition exists for all choices of S. We also investigate domatic partitions in the general descriptive graph combinatorial setting.
The consistency of the theory $\mathsf {ZF} + \mathsf {AD}_{\mathbb {R}} + {}$‘every set of reals is universally Baire’ is proved relative to $\mathsf {ZFC} + {}$‘there is a cardinal that is a limit of Woodin cardinals and of strong cardinals’. The proof is based on the derived model construction, which was used by Woodin to show that the theory $\mathsf {ZF} + \mathsf {AD}_{\mathbb {R}} + {}$‘every set of reals is Suslin’ is consistent relative to $\mathsf {ZFC} + {}$‘there is a cardinal $\lambda $ that is a limit of Woodin cardinals and of $\mathord {<}\lambda $-strong cardinals’. The $\Sigma ^2_1$ reflection property of our model is proved using genericity iterations as in Neeman [18] and Steel [22].
We study the descriptive complexity of sets of points defined by restricting the statistical behaviour of their orbits in dynamical systems on Polish spaces. Particular examples of such sets are the sets of generic points of invariant Borel probability measures, but we also consider much more general sets (for example, $\alpha $-Birkhoff regular sets and the irregular set appearing in the multifractal analysis of ergodic averages of a continuous real-valued function). We show that many of these sets are Borel in general, and all these are Borel when we assume that our space is compact. We provide examples of these sets being non-Borel, properly placed at the first level of the projective hierarchy (they are complete analytic or co-analytic). This proves that the compactness assumption is, in some cases, necessary to obtain Borelness. When these sets are Borel, we measure their descriptive complexity using the Borel hierarchy. We show that the sets of interest are located at most at the third level of the hierarchy. We also use a modified version of the specification property to show that these sets are properly located at the third level of the hierarchy for many dynamical systems. To demonstrate that the specification property is a sufficient, but not necessary, condition for maximal descriptive complexity of a set of generic points, we provide an example of a compact minimal system with an invariant measure whose set of generic points is $\boldsymbol {\Pi }^0_3$-complete.
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call a proper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.
In this paper we first consider hyperfinite Borel equivalence relations with a pair of Borel $\mathbb {Z}$-orderings. We define a notion of compatibility between such pairs, and prove a dichotomy theorem which characterizes exactly when a pair of Borel $\mathbb {Z}$-orderings are compatible with each other. We show that, if a pair of Borel $\mathbb {Z}$-orderings are incompatible, then a canonical incompatible pair of Borel $\mathbb {Z}$-orderings of $E_0$ can be Borel embedded into the given pair. We then consider hyperfinite-over-finite equivalence relations, which are countable Borel equivalence relations admitting Borel $\mathbb {Z}^2$-orderings. We show that if a hyperfinite-over-hyperfinite equivalence relation E admits a Borel $\mathbb {Z}^2$-ordering which is self-compatible, then E is hyperfinite.
We argue that some of Brouwer’s assumptions, rejected by Bishop, should be considered and studied as possible axioms. We show that Brouwer’s Continuity Principle enables one to prove an intuitionistic Borel Hierarchy Theorem. We also explain that Brouwer’s Fan Theorem is useful for a development of the theory of measure and integral different from the one worked out by Bishop. We show that Brouwer’s bar theorem not only proves the Fan Theorem but also a stronger statement that we call the Almost-fan Theorem. The Almost-fan Theorem implies intuitionistic versions of Ramsey’s Theorem and the Bolzano-Weierstrass Theorem.
In this work, we investigate various combinatorial properties of Borel ideals on countable sets. We extend a theorem presented in [13] and identify an $F_\sigma $ tall ideal in which player II has a winning strategy in the Cut and Choose Game, thereby addressing a question posed by J. Zapletal. Additionally, we explore the Ramsey properties of ideals, demonstrating that the random graph ideal is critical for the Ramsey property when considering more than two colors. The previously known result for two colors is extended to any finite number of colors. Furthermore, we comment on the Solecki ideal and identify an $F_\sigma $ tall K-uniform ideal that is not equivalent to $\mathcal {ED}_{\text {fin}}$, thereby addressing a question from M. Hrušák’s work [10].
We prove a full measurable version of Vizing’s theorem for bounded degree Borel graphs, that is, we show that every Borel graph $\mathcal {G}$ of degree uniformly bounded by $\Delta \in \mathbb {N}$ defined on a standard probability space $(X,\mu )$ admits a $\mu $-measurable proper edge coloring with $(\Delta +1)$-many colors. This answers a question of Marks [Question 4.9, J. Amer. Math. Soc. 29 (2016)] also stated in Kechris and Marks as a part of [Problem 6.13, survey (2020)], and extends the result of the author and Pikhurko [Adv. Math. 374, (2020)], who derived the same conclusion under the additional assumption that the measure $\mu $ is $\mathcal {G}$-invariant.
We investigate natural variations of behaviourally correct learning and explanatory learning—two learning paradigms studied in algorithmic learning theory—that allow us to “learn” equivalence relations on Polish spaces. We give a characterization of the learnable equivalence relations in terms of their Borel complexity and show that the behaviourally correct and explanatory learnable equivalence relations coincide both in uniform and non-uniform versions of learnability and provide a characterization of the learnable equivalence relations in terms of their Borel complexity. We also show that the set of uniformly learnable equivalence relations is $\boldsymbol {\Pi }^1_1$-complete in the codes and study the learnability of several equivalence relations arising naturally in logic as a case study.
Given a Polish group G, let $E(G)$ be the right coset equivalence relation $G^\omega /c(G)$, where $c(G)$ is the group of all convergent sequences in G. We first established two results:
(1) Let $G,H$ be two Polish groups. If H is TSI but G is not, then $E(G)\not \le _BE(H)$.
(2) Let G be a Polish group. Then the following are equivalent: (a) G is TSI non-archimedean; (b)$E(G)\leq _B E_0^\omega $; and (c) $E(G)\leq _B {\mathbb {R}}^\omega /c_0$. In particular, $E(G)\sim _B E_0^\omega $ iff G is TSI uncountable non-archimedean.
A critical theorem presented in this article is as follows: Let G be a TSI Polish group, and let H be a closed subgroup of the product of a sequence of TSI strongly NSS Polish groups. If $E(G)\le _BE(H)$, then there exists a continuous homomorphism $S:G_0\rightarrow H$ such that $\ker (S)$ is non-archimedean, where $G_0$ is the connected component of the identity of G. The converse holds if G is connected, $S(G)$ is closed in H, and the interval $[0,1]$ can be embedded into H.
As its applications, we prove several Rigid theorems for TSI Lie groups, locally compact Polish groups, separable Banach spaces, and separable Fréchet spaces, respectively.
This is a continuation of the paper [J. Symb. Log. 87 (2022), 1065–1092]. For an ideal $\mathcal {I}$ on $\omega $ we denote $\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$ and write $f\leq _{\mathcal {I}} g$ if $\{n\in \omega :f(n)>g(n)\}\in \mathcal {I}$, where $f,g\in \omega ^{\omega }$.
We study the cardinal numbers $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))$ describing the smallest sizes of subsets of $\mathcal {D}_{\mathcal {I}}$ that are unbounded from below with respect to $\leq _{\mathcal {I}}$.
In particular, we examine the relationships of $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))$ with the dominating number $\mathfrak {d}$. We show that, consistently, $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))>\mathfrak {d}$ for some ideal $\mathcal {I}$, however $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))\leq \mathfrak {d}$ for all analytic ideals $\mathcal {I}$. Moreover, we give example of a Borel ideal with $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal {I}}))=\operatorname {\mathrm {add}}(\mathcal {M})$.
In this article, we propose a new classification of $\Sigma ^0_2$ formulas under the realizability interpretation of many-one reducibility (i.e., Levin reducibility). For example, $\mathsf {Fin}$, the decision of being eventually zero for sequences, is many-one/Levin complete among $\Sigma ^0_2$ formulas of the form $\exists n\forall m\geq n.\varphi (m,x)$, where $\varphi $ is decidable. The decision of boundedness for sequences $\mathsf {BddSeq}$ and for width of posets $\mathsf {FinWidth}$ are many-one/Levin complete among $\Sigma ^0_2$ formulas of the form $\exists n\forall m\geq n\forall k.\varphi (m,k,x)$, where $\varphi $ is decidable. However, unlike the classical many-one reducibility, none of the above is $\Sigma ^0_2$-complete. The decision of non-density of linear orders $\mathsf {NonDense}$ is truly $\Sigma ^0_2$-complete.
This paper continues the program connecting reverse mathematics and computable analysis via the framework of Weihrauch reducibility. In particular, we consider problems related to perfect subsets of Polish spaces, studying the perfect set theorem, the Cantor–Bendixson theorem, and various problems arising from them. In the framework of reverse mathematics, these theorems are equivalent, respectively, to $\mathsf {ATR}_0$ and $\boldsymbol {\Pi }^1_1{-}\mathsf{CA}_0$, the two strongest subsystems of second order arithmetic among the so-called big five. As far as we know, this is the first systematic study of problems at the level of $\boldsymbol {\Pi }^1_1{-}\mathsf{CA}_0$ in the Weihrauch lattice. We show that the strength of some of the problems we study depends on the topological properties of the Polish space under consideration, while others have the same strength once the space is rich enough.
The generic multiverse was introduced in [74] and [81] to explicate the portion of mathematics which is immune to our independence techniques. It consists, roughly speaking, of all universes of sets obtainable from a given universe by forcing extension. Usuba recently showed that the generic multiverse contains a unique definable universe, assuming strong large cardinal hypotheses. On the basis of this theorem, a non-pluralist about set theory could dismiss the generic multiverse as irrelevant to what set theory is really about, namely that unique definable universe. Whatever one’s attitude towards the generic multiverse, we argue that certain impure proofs ensure its ongoing relevance to the foundations of set theory. The proofs use forcing-fragile theories and absoluteness to prove ${\mathrm {ZFC}}$ theorems about simple “concrete” objects.
We study possible Scott sentence complexities of linear orderings using two approaches. First, we investigate the effect of the Friedman–Stanley embedding on Scott sentence complexity and show that it only preserves $\Pi ^{\mathrm {in}}_{\alpha }$ complexities. We then take a more direct approach and exhibit linear orderings of all Scott sentence complexities except $\Sigma ^{\mathrm {in}}_{3}$ and $\Sigma ^{\mathrm {in}}_{\lambda +1}$ for $\lambda $ a limit ordinal. We show that the former cannot be the Scott sentence complexity of a linear ordering. In the process we develop new techniques which appear to be helpful to calculate the Scott sentence complexities of structures.
We study generic properties of topological groups in the sense of Baire category.
First, we investigate countably infinite groups. We extend a classical result of B. H. Neumann, H. Simmons and A. Macintyre on algebraically closed groups and the word problem. Recently, I. Goldbring, S. Kunnawalkam Elayavalli, and Y. Lodha proved that every isomorphism class is meager among countably infinite groups. In contrast, it follows from the work of W. Hodges on model-theoretic forcing that there exists a comeager isomorphism class among countably infinite abelian groups. We present a new elementary proof of this result.
Then, we turn to compact metrizable abelian groups. We use Pontryagin duality to show that there is a comeager isomorphism class among compact metrizable abelian groups. We discuss its connections to the countably infinite case.
Finally, we study compact metrizable groups. We prove that the generic compact metrizable group is neither connected nor totally disconnected; also it is neither torsion-free nor a torsion group.
We characterize Borel line graphs in terms of 10 forbidden induced subgraphs, namely the nine finite graphs from the classical result of Beineke together with a 10th infinite graph associated with the equivalence relation $\mathbb {E}_0$ on the Cantor space. As a corollary, we prove a partial converse to the Feldman–Moore theorem, which allows us to characterize all locally countable Borel line graphs in terms of their Borel chromatic numbers.