To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A first-order expansion of $(\mathbb {R},+,<)$ is dp-minimal if and only if it is o-minimal. We prove analogous results for algebraic closures of finite fields, p-adic fields, ordered abelian groups with only finitely many convex subgroups (in particular archimedean ordered abelian groups), and abelian groups equipped with archimedean cyclic group orders. The latter allows us to describe unary definable sets in dp-minimal expansions of $(\mathbb {Z},+,S)$, where S is a cyclic group order. Along the way we describe unary definable sets in dp-minimal expansions of ordered abelian groups. In the last section we give a canonical correspondence between dp-minimal expansions of $(\mathbb {Q},+,<)$ and o-minimal expansions ${\mathscr R}$ of $(\mathbb {R},+,<)$ such that $({\mathscr R},\mathbb {Q})$ is a “dense pair.”.
Pre-H-fields are ordered valued differential fields satisfying some basic axioms coming from transseries and Hardy fields. We study pre-H-fields that are differential-Hensel–Liouville closed, that is, differential-henselian, real closed, and closed under exponential integration, establishing an Ax–Kochen/Ershov theorem for such structures: the theory of a differential-Hensel–Liouville closed pre-H-field is determined by the theory of its ordered differential residue field; this result fails if the assumption of closure under exponential integration is dropped. In a two-sorted setting with one sort for a differential-Hensel–Liouville closed pre-H-field and one sort for its ordered differential residue field, we eliminate quantifiers from the pre-H-field sort, from which we deduce that the ordered differential residue field is purely stably embedded and if it has NIP, then so does the two-sorted structure. Similarly, the one-sorted theory of differential-Hensel–Liouville closed pre-H-fields with closed ordered differential residue field has quantifier elimination, is the model completion of the theory of pre-H-fields with gap $0$, and is complete, distal, and locally o-minimal.
We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.
Let $\mathrm {R}$ be a real closed field. Given a closed and bounded semialgebraic set $A \subset \mathrm {R}^n$ and semialgebraic continuous functions $f,g:A \rightarrow \mathrm {R}$ such that $f^{-1}(0) \subset g^{-1}(0)$, there exist an integer $N> 0$ and $c \in \mathrm {R}$ such that the inequality (Łojasiewicz inequality) $|g(x)|^N \le c \cdot |f(x)|$ holds for all $x \in A$. In this paper, we consider the case when A is defined by a quantifier-free formula with atoms of the form $P = 0, P>0, P \in \mathcal {P}$ for some finite subset of polynomials $\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$, and the graphs of $f,g$ are also defined by quantifier-free formulas with atoms of the form $Q = 0, Q>0, Q \in \mathcal {Q}$, for some finite set $\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$. We prove that the Łojasiewicz exponent in this case is bounded by $(8 d)^{2(n+7)}$. Our bound depends on d and n but is independent of the combinatorial parameters, namely the cardinalities of $\mathcal {P}$ and $\mathcal {Q}$. The previous best-known upper bound in this generality appeared in P. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991) and depended on the sum of degrees of the polynomials defining $A,f,g$ and thus implicitly on the cardinalities of $\mathcal {P}$ and $\mathcal {Q}$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)).
We enrich the class of power-constructible functions, introduced in [CCRS23], to a class $\mathcal {C}^{\mathcal {M,F}}$ of algebras of functions which contains all complex powers of subanalytic functions and their parametric Mellin and Fourier transforms, and which is stable under parametric integration. By describing a set of generators of a special prepared form, we deduce information on the asymptotics and on the loci of integrability of the functions of $\mathcal {C}^{\mathcal {M,F}}$. We furthermore identify a subclass $\mathcal {C}^{\mathbb {C},\mathcal {F}}$ of $\mathcal {C}^{\mathcal {M,F}}$, which is the smallest class containing all power-constructible functions and stable under parametric Fourier transforms and right-composition with subanalytic maps. This class is also stable under parametric integration, under taking pointwise and $\text {L}^p$-limits and under parametric Fourier-Plancherel transforms. Finally, we give a full asymptotic expansion in the power-logarithmic scale, uniformly in the parameters, for functions in $\mathcal {C}^{\mathbb {C},\mathcal {F}}$.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.
Let $\sigma _q \,:\,{{\mathbb{R}}^q} \to{\textbf{S}}^q\setminus N_q$ be the inverse of the stereographic projection with center the north pole $N_q$. Let $W_i$ be a closed subset of ${\mathbb{R}}^{q_i}$, for $i=1,2$. Let $\Phi \,:\,W_1 \to W_2$ be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism $\sigma _{q_2}\circ \Phi \circ \sigma _{q_1}^{-1}$ is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at $N_{q_1}$ with value $N_{q_2}$ whenever $W_1$ is unbounded.
As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.
Let $\Omega $ be a complex lattice which does not have complex multiplication and $\wp =\wp _\Omega $ the Weierstrass $\wp $-function associated with it. Let $D\subseteq \mathbb {C}$ be a disc and $I\subseteq \mathbb {R}$ be a bounded closed interval such that $I\cap \Omega =\varnothing $. Let $f:D\rightarrow \mathbb {C}$ be a function definable in $(\overline {\mathbb {R}},\wp |_I)$. We show that if f is holomorphic on D then f is definable in $\overline {\mathbb {R}}$. The proof of this result is an adaptation of the proof of Bianconi for the $\mathbb {R}_{\exp }$ case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular j-function using similar methods.
We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory $T_{\partial }$, the model companion of an o-minimal ${\mathcal {L}}$-theory T expanded by a generic derivation $\partial $ as in Fornasiero and Kaplan (2021, Journal of Mathematical Logic 21, 2150007).
We generalize Buium’s notion of an algebraic D-group to ${\mathcal {L}}$-definable D-groups, namely $(G,s)$, where G is an ${\mathcal {L}}$-definable group in a model of T, and $s:G\to \tau (G)$ is an ${\mathcal {L}}$-definable group section. Our main theorem says that every definable group of finite dimension in a model of $T_\partial $ is definably isomorphic to a group of the form
Orthogonality in model theory captures the idea of absence of non-trivial interactions between definable sets. We introduce a somewhat opposite notion of cohesiveness, capturing the idea of interaction among all parts of a given definable set. A cohesive set is indecomposable, in the sense that if it is internal to the product of two orthogonal sets, then it is internal to one of the two. We prove that a definable group in an o-minimal structure is a product of cohesive orthogonal subsets. If the group has dimension one, or it is definably simple, then it is itself cohesive. As an application, we show that an abelian group definable in the disjoint union of finitely many o-minimal structures is a quotient, by a discrete normal subgroup, of a direct product of locally definable groups in the single structures.
We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb {R}_{\mathcal {G}}$ and the reduct of $\mathbb {R}_{\text {an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the gamma function on $(0,\infty )$ and the zeta function on $(1,\infty )$.
In this paper we study elimination of imaginaries in some classes of pure ordered abelian groups. For the class of ordered abelian groups with bounded regular rank (equivalently with finite spines) we obtain weak elimination of imaginaries once we add sorts for the quotient groups $\Gamma /\Delta $ for each definable convex subgroup $\Delta $, and sorts for the quotient groups $\Gamma /(\Delta + \ell \Gamma )$ where $\Delta $ is a definable convex subgroup and $\ell \in \mathbb {N}_{\geq 2}$. We refer to these sorts as the quotient sorts. For the dp-minimal case we obtain a complete elimination of imaginaries if we also add constants to distinguish the cosets of $\ell \Gamma $ in $\Gamma $, where $\ell \in \mathbb {N}_{\geq 2}$.
O-minimal geometry generalizes both semialgebraic and subanalytic geometries, and has been very successful in solving special cases of some problems in arithmetic geometry, such as André–Oort conjecture. Among the many tools developed in an o-minimal setting are cohomology theories for abstract-definable continuous manifolds such as singular cohomology, sheaf cohomology and Čech cohomology, which have been used for instance to prove Pillay’s conjecture concerning definably compact groups. In the present thesis we elaborate an o-minimal de Rham cohomology theory for abstract-definable $C^{\infty }$ manifolds in an o-minimal expansion of the real field which admits smooth cell decomposition and defines the exponential function. We can specify the o-minimal cohomology groups and attain some properties such as the existence of Mayer–Vietoris sequence and the invariance under abstract-definable $C^{\infty }$ diffeomorphisms. However, in order to obtain the invariance of our o-minimal cohomology under abstract-definable homotopy we must work in a tame context that defines sufficiently many primitives and assume the validity of a statement related to Bröcker’s question.
We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group $\Gamma _{\infty }$, where $\Gamma $ denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of $\Gamma _{\infty }$. In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
Every discrete definable subset of a closed asymptotic couple with ordered scalar field ${\boldsymbol {k}}$ is shown to be contained in a finite-dimensional ${\boldsymbol {k}}$-linear subspace of that couple. It follows that the differential-valued field $\mathbb {T}$ of transseries induces more structure on its value group than what is definable in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic couple is construed as a two-sorted structure with $\mathbb {R}$ as the underlying set for the second sort.
Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for a t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value group.
The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction tend to have an algebraic character that allows model constructions by closing a model under the relevant algebraic operations.
Let${\mathbb M}$ be an affine variety equipped with a foliation, both defined over a number field ${\mathbb K}$. For an algebraic $V\subset {\mathbb M}$ over ${\mathbb K}$, write $\delta _{V}$ for the maximum of the degree and log-height of V. Write $\Sigma _{V}$ for the points where the leaves intersect V improperly. Fix a compact subset ${\mathcal B}$ of a leaf ${\mathcal L}$. We prove effective bounds on the geometry of the intersection ${\mathcal B}\cap V$. In particular, when $\operatorname {codim} V=\dim {\mathcal L}$ we prove that $\#({\mathcal B}\cap V)$ is bounded by a polynomial in $\delta _{V}$ and $\log \operatorname {dist}^{-1}({\mathcal B},\Sigma _{V})$. Using these bounds we prove a result on the interpolation of algebraic points in images of ${\mathcal B}\cap V$ by an algebraic map $\Phi $. For instance, under suitable conditions we show that $\Phi ({\mathcal B}\cap V)$ contains at most $\operatorname {poly}(g,h)$ algebraic points of log-height h and degree g.
We deduce several results in Diophantine geometry. Following Masser and Zannier, we prove that given a pair of sections $P,Q$ of a nonisotrivial family of squares of elliptic curves that do not satisfy a constant relation, whenever $P,Q$ are simultaneously torsion their order of torsion is bounded effectively by a polynomial in $\delta _{P},\delta _{Q}$; in particular, the set of such simultaneous torsion points is effectively computable in polynomial time. Following Pila, we prove that given $V\subset {\mathbb C}^{n}$, there is an (ineffective) upper bound, polynomial in $\delta _{V}$, for the degrees and discriminants of maximal special subvarieties; in particular, it follows that the André–Oort conjecture for powers of the modular curve is decidable in polynomial time (by an algorithm depending on a universal, ineffective Siegel constant). Following Schmidt, we show that our counting result implies a Galois-orbit lower bound for torsion points on elliptic curves of the type previously obtained using transcendence methods by David.
We initiate an investigation of structures on the set of real numbers having the property that path components of definable sets are definable. All o-minimal structures on $(\mathbb {R},<)$ have the property, as do all expansions of $(\mathbb {R},+,\cdot ,\mathbb {N})$. Our main analytic-geometric result is that any such expansion of $(\mathbb {R},<,+)$ by Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of $(\mathbb N,+,\cdot )$. We also show that any given expansion of $(\mathbb {R}, <, +,\mathbb {N})$ by subsets of $\mathbb {N}^n$ (n allowed to vary) has the property if and only if it defines all arithmetic sets. Variations arise by considering connected components or quasicomponents instead of path components.
Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices has a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation to obtain theories that do have a model completion.