Hostname: page-component-7dd5485656-frp75 Total loading time: 0 Render date: 2025-10-30T04:46:46.248Z Has data issue: true hasContentIssue true

When nutrition interacts with osteoblast function: molecular mechanisms of polyphenols

Published online by Cambridge University Press:  26 February 2009

Anna Trzeciakiewicz
Affiliation:
INRA Clermont-Ferrand/Theix, Human Nutrition Unit UMR1019, St Genès ChampanelleF-63122, France
Véronique Habauzit
Affiliation:
INRA Clermont-Ferrand/Theix, Human Nutrition Unit UMR1019, St Genès ChampanelleF-63122, France
Marie-Noëlle Horcajada*
Affiliation:
INRA Clermont-Ferrand/Theix, Human Nutrition Unit UMR1019, St Genès ChampanelleF-63122, France
*
*Corresponding author: Dr M. N. Horcajada, fax +33 4 73 62 46 38, email horcajad@clermont.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent research has provided insights into dietary components that may optimise bone health and stimulate bone formation. Fruit and vegetable intake, as well as grains and other plant-derived food, have been linked to decreased risk of major chronic diseases including osteoporosis. This effect has been partially attributed to the polyphenols found in these foods. Thus, it has been suggested that these compounds may provide desirable bone health benefits through an action on bone cell metabolism. The present review will focus on how some polyphenols can modulate osteoblast function and reports which cellular signalling pathways are potentially implicated. However, to date, despite numerous investigations, few studies have provided clear evidence that phenolic compounds can act on osteoblasts. Polyphenols cited in the present review seem to be able to modulate the expression of transcription factors such as runt-related transcription factor-2 (Runx2) and Osterix, NF-κB and activator protein-1 (AP-1). It appears that polyphenols may act on cellular signalling such as mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP), oestrogen receptor and osteoprotegerin/receptor activator of NF-κB ligand (OPG/RANKL) and thus may affect osteoblast functions. However, it is also important to take in account the possible interaction of these compounds on osteoclast metabolism to better understand the positive correlation reported between the consumption of fruit and vegetables and bone mass.

Information

Type
Review Article
Copyright
Copyright © The Author 2009

References

1Pettifor, JM, Prentice, A & Cleaton-Jones, P (2003) The skeletal system. In Nutrition and Metabolism, pp. 247283 [Gibney, MJ, Macdonald, IA and Roche, HM, editors]. Oxford: Blackwell Publishing.Google Scholar
2Sommerfeldt, DW & Rubin, CT (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10, Suppl. 2, S86S95.Google ScholarPubMed
3Simon, LS (2005) Osteoporosis. Clin Geriatr Med 21, 603629, viii.CrossRefGoogle ScholarPubMed
4Suzuki, A, Sekiguchi, S, Asano, S, et al. . (2008) Pharmacological topics of bone metabolism: recent advances in pharmacological management of osteoporosis. J Pharmacol Sci 106, 530535.CrossRefGoogle ScholarPubMed
5Mundy, GR (2006) Nutritional modulators of bone remodeling during aging. Am J Clin Nutr 83, S427S430.CrossRefGoogle ScholarPubMed
6New, SA (1999) Bone health: the role of micronutrients. Br Med Bull 55, 619633.CrossRefGoogle ScholarPubMed
7Ilich, JZ & Kerstetter, JE (2000) Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 19, 715737.CrossRefGoogle Scholar
8Heaney, RP (2007) Bone health. Am J Clin Nutr 85, 300S303S.CrossRefGoogle ScholarPubMed
9Habauzit, V & Horcajada, MN (2008) Phenolic phytochemicals and bone. Phytochem Rev 7, 313344.CrossRefGoogle Scholar
10Marie, PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473, 98105.CrossRefGoogle ScholarPubMed
11Bringhurst, FR, Demay, MB, Krane, SM, et al. . (2005) Bone and mineral metabolism in health and disease. In Harrison's Principles of Internal Medicine, pp. 22382249 [Kasper, DL, Braunwald, E and Fauci, AS, editors]. New York: McGraw-Hill.Google Scholar
12Katagiri, T & Takahashi, N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8, 147159.CrossRefGoogle ScholarPubMed
13Strewler, GJ (2001) Local and systemic control of the osteoblast. J Clin Invest 107, 271272.CrossRefGoogle ScholarPubMed
14Baylink, DJ, Finkelman, RD & Mohan, S (1993) Growth factors to stimulate bone formation. J Bone Miner Res 8, Suppl. 2, S565S572.CrossRefGoogle ScholarPubMed
15Kalajzic, I, Staal, A, Yang, WP, et al. . (2005) Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 280, 2461824626.CrossRefGoogle ScholarPubMed
16Yamaguchi, A, Komori, T & Suda, T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21, 393411.CrossRefGoogle ScholarPubMed
17Westendorf, JJ, Kahler, RA & Schroeder, TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341, 1939.CrossRefGoogle ScholarPubMed
18Niu, TH & Rosen, CJ (2005) The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene 361, 3856.CrossRefGoogle ScholarPubMed
19Huang, W, Yang, S, Shao, J, et al. . (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12, 30683092.CrossRefGoogle ScholarPubMed
20Stein, GS & Lian, JB (1993) Molecular mechanisms mediating proliferation differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14, 424442.CrossRefGoogle ScholarPubMed
21Ehrlich, PJ & Lanyon, LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13, 688700.CrossRefGoogle ScholarPubMed
22Burger, EH, Klein-Nulend, J & Smit, TH (2003) Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon – a proposal. J Biomech 36, 14531459.CrossRefGoogle Scholar
23Ash, P, Loutit, JF & Townsend, KM (1980) Osteoclasts derived from haematopoietic stem cells. Nature 283, 669670.CrossRefGoogle ScholarPubMed
24Felix, R, Cecchini, MG & Fleisch, H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127, 25922594.CrossRefGoogle ScholarPubMed
25Kodama, H, Yamasaki, A, Nose, M, et al. . (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173, 269272.CrossRefGoogle ScholarPubMed
26Kodama, H, Nose, M, Niida, S, et al. . (1991) Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J Exp Med 173, 12911294.CrossRefGoogle ScholarPubMed
27Sambrook, P & Cooper, C (2006) Osteoporosis. Lancet 367, 20102018.CrossRefGoogle ScholarPubMed
28Scalbert, A, Manach, C, Morand, C, et al. . (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45, 287306.CrossRefGoogle ScholarPubMed
29Manach, C, Williamson, G, Morand, C, et al. . (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81, 230S242S.CrossRefGoogle ScholarPubMed
30Kroon, PA, Clifford, MN, Crozier, A, et al. . (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80, 1521.CrossRefGoogle ScholarPubMed
31Manach, C, Scalbert, A, Morand, C, et al. . (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.CrossRefGoogle ScholarPubMed
32Williamson, G, Barron, D, Shimoi, K, et al. . (2005) In vitro biological properties of flavonoid conjugates found in vivo. Free Radic Res 39, 457469.CrossRefGoogle ScholarPubMed
33Serra, H, Mendes, T, Bronze, MR, et al. . (2008) Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Bioorg Med Chem 16, 40094018.CrossRefGoogle ScholarPubMed
34O'Leary, KA, Day, AJ, Needs, PW, et al. . (2001) Flavonoid glucuronides are substrates for human liver β-glucuronidase. FEBS Lett 503, 103106.CrossRefGoogle ScholarPubMed
35Khlebnikov, AI, Schepetkin, IA, Domina, NG, et al. . (2007) Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 15, 17491770.CrossRefGoogle ScholarPubMed
36Loke, WM, Proudfoot, JM, McKinley, AJ, et al. . (2008) Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J Agric Food Chem 56, 36093615.CrossRefGoogle ScholarPubMed
37Tribolo, S, Lodib, F, Connor, C, et al. . (2008) Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 197, 5056.CrossRefGoogle ScholarPubMed
38Suri, S, Taylor, MA, Verity, A, et al. . (2008) A comparative study of the effects of quercetin and its glucuronide and sulfate metabolites on human neutrophil function in vitro. Biochem Pharmacol 76, 645653.CrossRefGoogle ScholarPubMed
39Schroeter, H, Boyd, C, Spencer, JP, et al. . (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23, 861880.CrossRefGoogle ScholarPubMed
40Williams, RJ, Spencer, JP & Rice-Evans, C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36, 838849.CrossRefGoogle ScholarPubMed
41Spinozzi, F, Pagliacci, MC, Migliorati, G, et al. . (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res 18, 431439.CrossRefGoogle ScholarPubMed
42Yamaguchi, M (2002) Isoflavone and bone metabolism: its cellular mechanism and preventive role in bone loss. J Health Sci 48, 209222.CrossRefGoogle Scholar
43Sugimoto, E & Yamaguchi, M (2000) Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol 59, 471475.CrossRefGoogle ScholarPubMed
44Orzechowski, A, Ostaszewski, P, Jank, M, et al. . (2002) Bioactive substances of plant origin in food – impact on genomics. Reprod Nutr Dev 42, 461477.CrossRefGoogle ScholarPubMed
45Katiyar, SK, Afaq, F, Azizuddin, K, et al. . (2001) Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol ( − )-epigallocatechin-3-gallate. Toxicol Appl Pharmacol 176, 110117.CrossRefGoogle ScholarPubMed
46Balasubramanian, S, Efimova, T & Eckert, RL (2002) Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes. J Biol Chem 277, 18281836.CrossRefGoogle ScholarPubMed
47Bradamante, S, Barenghi, L & Villa, A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22, 169188.CrossRefGoogle ScholarPubMed
48Aziz, MH, Kumar, R & Ahmad, N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (review). Int J Oncol 23, 1728.Google Scholar
49King, RE, Bomser, JA & Min, DB (2006) Bioactivity of resveratrol. Compr Rev Food Sci Food Safety 5, 6570.CrossRefGoogle Scholar
50Das, S, Tosaki, A, Bagchi, D, et al. . (2006) Potentiation of a survival signal in the ischemic heart by resveratrol through p38 mitogen-activated protein kinase/mitogen- and stress-activated protein kinase 1/cAMP response element-binding protein signaling. J Pharmacol Exp Ther 317, 980988.CrossRefGoogle ScholarPubMed
51Linder, MW, Falkner, KC, Srinivasan, G, et al. . (1999) Role of canonical glucocorticoid responsive elements in modulating expression of genes regulated by the arylhydrocarbon receptor. Drug Metab Rev 31, 247271.CrossRefGoogle ScholarPubMed
52Klinge, CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29, 29052919.CrossRefGoogle ScholarPubMed
53Kuiper, GG, Lemmen, JG, Carlsson, B, et al. . (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139, 42524263.CrossRefGoogle ScholarPubMed
54Bennetau-Pelissero, C, Latonnelle, K, Sequeira, A, et al. . (2000) Phytoestrogens, endocrine disrupters from food. Analusis 28, 763775.CrossRefGoogle Scholar
55Niehrs, C & Meinhardt, H (2002) Developmental biology – modular feedback. Nature 417, 3536.CrossRefGoogle Scholar
56Noe, V, Penuelas, S, Lamuela-Raventos, RM, et al. . (2004) Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr 134, 25092516.CrossRefGoogle Scholar
57Ko, CH, Shen, SC, Lin, HY, et al. . (2002) Flavanones structure-related inhibition on TPA-induced tumor promotion through suppression of extracellular signal-regulated protein kinases: involvement of prostaglandin E-2 in anti-promotive process. J Cell Physiol 193, 93102.CrossRefGoogle ScholarPubMed
58Yang, CS, Lambert, JD, Hou, Z, et al. . (2006) Molecular targets for the cancer preventive activity of tea polyphenols. Mol Carcinog 45, 431435.CrossRefGoogle ScholarPubMed
59O'Prey, J, Brown, J, Fleming, J, et al. . (2003) Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol 66, 20752088.CrossRefGoogle ScholarPubMed
60Vittal, R, Selvanayagam, ZE, Sun, Y, et al. . (2004) Gene expression changes induced by green tea polyphenol ( − )-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Mol Cancer Ther 3, 10911099.CrossRefGoogle ScholarPubMed
61Muller, M & Kersten, S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4, 315322.CrossRefGoogle ScholarPubMed
62Komori, T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95, 445453.CrossRefGoogle ScholarPubMed
63Celil, AB, Hollinger, JO & Campbell, PG (2005) Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 95, 518528.CrossRefGoogle ScholarPubMed
64Ducy, P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219, 461471.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
65Nakashima, K, Zhou, X, Kunkel, G, et al. . (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108, 1729.CrossRefGoogle ScholarPubMed
66Lee, MH, Kwon, TG, Park, HS, et al. . (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309, 689694.CrossRefGoogle ScholarPubMed
67Chen, CH, Ho, ML, Chang, JK, et al. . (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16, 20392045.CrossRefGoogle Scholar
68Vali, B, Rao, LG & El-Sohemy, A (2007) Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J Nutr Biochem 18, 341347.CrossRefGoogle ScholarPubMed
69De Wilde, A, Lieberherr, M, Colin, C, et al. . (2004) A low dose of daidzein acts as an ERβ-selective agonist in trabecular osteoblasts of young female piglets. J Cell Physiol 200, 253262.CrossRefGoogle ScholarPubMed
70Mizutani, K, Ikeda, K, Kawai, Y, et al. . (1998) Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 253, 859863.CrossRefGoogle ScholarPubMed
71Dai, Z, Li, Y, Quarles, LD, et al. . (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14, 806814.CrossRefGoogle ScholarPubMed
72Liu, M, Liu, HP, Lu, XM, et al. . (2007) Simultaneous determination of icariin, icariside II and osthole in rat plasma after oral administration of the extract of Gushudan (a Chinese compound formulation) by LC-MS/MS. J Chromatogr B 860, 113120.CrossRefGoogle ScholarPubMed
73Zhao, J, Ohba, S, Shinkai, M, et al. . (2008) Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 369, 444448.CrossRefGoogle Scholar
74Pinkus, R, Weiner, LM & Daniel, V (1996) Role of oxidants and antioxidants in the induction of AP-1, NF-κ B, and glutathione S-transferase gene expression. J Biol Chem 271, 1342213429.CrossRefGoogle ScholarPubMed
75Fujioka, S, Niu, JG, Schmidt, C, et al. . (2004) NF-KB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol Cell Biol 24, 78067819.CrossRefGoogle ScholarPubMed
76Wagner, EF (2002) Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 61, Suppl. 2, ii40ii42.CrossRefGoogle ScholarPubMed
77McCabe, LR, Kockx, M, Lian, J, et al. . (1995) Selective expression of fos- and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res 218, 255262.CrossRefGoogle ScholarPubMed
78Frigo, DE, Duong, BN, Melnik, LI, et al. . (2002) Flavonoid phytochemicals regulate activator protein-1 signal transduction pathways in endometrial and kidney stable cell lines. J Nutr 132, 18481853.Google ScholarPubMed
79Pang, JL, Ricupero, DA, Huang, S, et al. . (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem Pharmacol 71, 818826.CrossRefGoogle ScholarPubMed
80Son, YO, Kook, SH, Choi, KC, et al. . (2008) Quercetin accelerates TNF-α-induced apoptosis of MC3T3-E1 osteoblastic cells through caspase-dependent and JNK-mediated pathways. Eur J Pharmacol 579, 2633.CrossRefGoogle ScholarPubMed
81Lee, SU, Shin, HK, Min, YK, et al. . (2008) Emodin accelerates osteoblast differentiation through phosphatidylinositol 3-kinase activation and bone morphogenetic protein-2 gene expression. Int Immunopharmacol 8, 741747.CrossRefGoogle ScholarPubMed
82Tokuda, H, Takai, S, Matsushima-Nishiwaki, R, et al. . (2007) ( − )-Epigallocatechin gallate enhances prostaglandin F2α-induced VEGF synthesis via upregulating SAPK/JNK activation in osteoblasts. J Cell Biochem 100, 11461153.CrossRefGoogle ScholarPubMed
83Canalis, E, Economides, AN & Gazzerro, E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24, 218235.CrossRefGoogle ScholarPubMed
84Yamashita, T, Ishii, H, Shimoda, K, et al. . (1996) Subcloning of three osteoblastic cell lines with distinct differentiation phenotypes from the mouse osteoblastic cell line KS-4. Bone 19, 429436.CrossRefGoogle ScholarPubMed
85Miyazono, K, Maeda, S & Imamura, T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16, 251263.CrossRefGoogle ScholarPubMed
86Shi, Y & Massague, J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685700.CrossRefGoogle ScholarPubMed
87Boden, SD, Kang, J, Sandhu, H, et al. . (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 27, 26622673.CrossRefGoogle ScholarPubMed
88Zimmerman, LB, De Jesús-Escobar, JM & Harland, RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599606.CrossRefGoogle ScholarPubMed
89Groppe, J, Greenwald, J, Wiater, E, et al. . (2002) Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420, 636642.CrossRefGoogle ScholarPubMed
90Gazzerro, E, Gangji, V & Canalis, E (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest 102, 21062114.CrossRefGoogle ScholarPubMed
91Kuo, P-L, Hsu, Y-L, Chang, C-H, et al. . (2005) Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells. J Pharmacol Exp Ther 314, 12901299.CrossRefGoogle ScholarPubMed
92Tang, CH, Yang, RS, Chien, MY, et al. . (2008) Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur J Pharmacol 579, 4049.CrossRefGoogle ScholarPubMed
93Chang, JK, Hsu, YL, Teng, IC, et al. . (2006) Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production. Eur J Pharmacol 551, 19.CrossRefGoogle ScholarPubMed
94Su, JL, Yang, CY, Zhao, M, et al. . (2007) Forkhead proteins are critical for bone morphogenetic protein-2 regulation and anti-tumor activity of resveratrol. J Biol Chem 282, 1938519398.CrossRefGoogle ScholarPubMed
95Hsu, YL, Chang, JK, Tsai, CH, et al. . (2007) Myricetin induces human osteoblast differentiation through bone morphogenetic protein-2/p38 mitogen-activated protein kinase pathway. Biochem Pharmacol 73, 504514.CrossRefGoogle ScholarPubMed
96Wolter, F, Clausnitzer, A, Akoglu, B, et al. . (2002) Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J Nutr 132, 298302.CrossRefGoogle Scholar
97Yanez, J, Vicente, V, Alcaraz, M, et al. . (2004) Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer 49, 191199.CrossRefGoogle ScholarPubMed
98Kousteni, S, Bellido, T, Plotkin, LI, et al. . (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719730.Google ScholarPubMed
99Kousteni, S, Han, L, Chen, JR, et al. . (2003) Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 111, 16511664.CrossRefGoogle ScholarPubMed
100Manolagas, SC, Kousteni, S & Jilka, RL (2002) Sex steroids and bone. Recent Prog Horm Res 57, 385409.CrossRefGoogle ScholarPubMed
101Ascenzi, P, Bocedi, A & Maria, M (2006) Structure–function relationship of estrogen receptor a and b: impact on human health. Mol Aspect Med 27, 299402.CrossRefGoogle Scholar
102Nilsson, S, Makela, S, Treuter, E, et al. . (2001) Mechanisms of estrogen action. Physiol Rev 81, 15351565.CrossRefGoogle ScholarPubMed
103Losel, RM, Falkenstein, E, Feuring, M, et al. . (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83, 9651016.CrossRefGoogle ScholarPubMed
104Watson, CS, Bulayeva, NN, Wozniak, AL, et al. . (2005) Signaling from the membrane via membrane estrogen receptor-α estrogens, xenoestrogens, and phytoestrogens. Steroids 70, 364371.CrossRefGoogle ScholarPubMed
105Prouillet, C, Maziere, JC, Maziere, C, et al. . (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67, 13071313.CrossRefGoogle ScholarPubMed
106Kousteni, S, Chen, JR, Bellido, T, et al. . (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298, 843846.CrossRefGoogle ScholarPubMed
107Dai, Z, Li, Y, Quarles, LD, et al. . (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14, 806814.CrossRefGoogle ScholarPubMed
108Weitzmann, MN & Pacifici, R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116, 11861194.CrossRefGoogle ScholarPubMed
109Kono, SJ, Oshima, Y, Hoshi, K, et al. . (2007) Erk pathways negatively regulate matrix mineralization. Bone 40, 6874.CrossRefGoogle ScholarPubMed
110Driggers, PH & Segars, JH (2002) Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 13, 422427.CrossRefGoogle ScholarPubMed
111Totta, P, Acconcia, F, Leone, S, et al. . (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor α and β signalling. IUBMB Life 56, 491499.CrossRefGoogle ScholarPubMed
112Cassidy, A & Dalais, FS (2003) Phytochemicals. In Nutrition and Metabolism, pp. 307317 [Gibney, MJ, Macdonald, IA and Roche, HM, editors]. Oxford: Blackwell Publishing.Google Scholar
113Chen, XW, Garner, SC & Anderson, JJ (2002) Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem Biophys Res Commun 295, 417422.CrossRefGoogle ScholarPubMed
114Clifford, MN & Scalbert, A (2000) Ellagitannins – nature, occurrence and dietary burden. J Sci Food Agric 80, 11181125.3.0.CO;2-9>CrossRefGoogle Scholar
115Papoutsi, Z, Kassi, E, Tsiapara, A, et al. . (2005) Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERα and ERβ. J Agric Food Chem 53, 77157720.CrossRefGoogle ScholarPubMed
116Simonet, WS, Lacey, DL, Dunstan, CR, et al. . (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309319.CrossRefGoogle ScholarPubMed
117Rodan, GA & Martin, TJ (1981) Role of osteoblasts in hormonal control of bone resorption – a hypothesis. Calcif Tissue Int 33, 349351.CrossRefGoogle ScholarPubMed
118Lacey, DL, Timms, E, Tan, HL, et al. . (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165176.CrossRefGoogle ScholarPubMed
119Yasuda, H, Shima, N, Nakagawa, N, et al. . (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95, 35973602.CrossRefGoogle ScholarPubMed
120Hsu, H, Lacey, DL, Dunstan, CR, et al. . (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 96, 35403545.CrossRefGoogle ScholarPubMed
121Bu, SY, Hunt, TS & Smith, BJ (2009) Dried plum polyphenols attenuate the detrimental effects of TNF-α on osteoblast function coincident with up-regulation of Runx2, Osterix and IGF-I. J Nutr Biochem 20, 3544.CrossRefGoogle ScholarPubMed
122University of Michigan (2005) Bone remodeling. http://www.umich.edu/news/Releases/2005/Feb05/bone.html.Google Scholar