Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-09-07T06:49:02.804Z Has data issue: false hasContentIssue false

METRICAL PROPERTIES OF CONTINUED FRACTION AND LÜROTH SERIES EXPANSIONS

Published online by Cambridge University Press:  04 September 2025

ADAM BROWN-SARRE*
Affiliation:
Department of Mathematical and Physical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
Rights & Permissions [Opens in a new window]

Abstract

Information

Type
PhD Abstract
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

The theory of continued fractions is an extremely useful tool in approximating irrational numbers by rational numbers. Any number $x\in \mathbb {R}{\setminus} \mathbb {Q}$ can be uniquely represented by a continued fraction of the form

$$ \begin{align*} x=a_0(x)+\cfrac{1}{a_1(x)+\cfrac{1}{a_2(x)+\cfrac{1}{\ddots}}}=[a_0(x); a_1(x),a_2(x),\ldots], \end{align*} $$

where $a_n(x)\in \mathbb {Z}, a_n(x)\geq 1$ for $n\geq 1$ , is known as the nth partial quotient of x. The classical theory of continued fractions shows that the convergents of the partial quotients of x give exactly the best rational approximation of x (see [Reference Khinchin11, Theorems 16 and 17]. The nth convergent is given by

$$ \begin{align*} \frac{p_n}{q_n}:=[a_0(x); a_1(x),\ldots, a_n(x)], \end{align*} $$

where $p_n,q_n\in \mathbb {Z}$ are coprime and $q_n\geq 1$ . The speed of approximation for any irrational number x is related to the size of the partial quotients by

$$ \begin{align*} \bigg| x - \frac{p_n}{q_n}\bigg| < \frac{1}{q_n(a_{n+1}q_n + q_{n-1})} \quad \text{for all } n\in\mathbb{N}. \end{align*} $$

Kleinbock and Wadleigh [Reference Kleinbock and Wadleigh12] showed that Dirichlet’s theorem is optimal in a precise sense. For any nonincreasing function $\psi :\mathbb {N}\to \mathbb {R}_+$ , define the set of $\psi $ -Dirichlet improvable numbers by

$$ \begin{align*} D(\psi):=\bigg\{x\in\mathbb R: \begin{array}{ll}\exists\, N \ {\rm such\ that\ the\ system}\ |qx-p|\, <\, \psi(t), |q|<t\ \\ \text{has a nontrivial integer solution for all }t>N\end{array}\!\!\bigg\}. \end{align*} $$

Then, Kleinbock and Wadleigh showed for $x\in [0,1) \setminus \mathbb {Q}$ that:

  1. (i) $x\in D(\psi )$ if $a_{n+1}(x)a_n(x)\, \le \,\psi (q_n)/4$ for all sufficiently large n;

  2. (ii) $x\not \in D(\psi )$ if $a_{n+1}(x)a_n(x)\,>\, \psi (q_n)$ for infinitely many n.

The metric theory for the set $D(\psi )$ is fully characterised in the papers [Reference Bos, Hussain and Simmons2, Reference Huang, Wu and Xu8, Reference Hussain, Kleinbock, Wadleigh and Wang9].

My thesis contains results on the metric theory of continued fraction and Lüroth series expansions. The first result gives metrical properties of the product of partial quotients in the plane. Let $\Psi :\mathbb N\to \mathbb R_+$ be a function. Define the set, for $(t_1, \ldots , t_m)\in \mathbb R_{+}^m$ ,

$$ \begin{align*} \Lambda(\Psi):=\bigg\{(x, y)\in[0,1]^2:\max\bigg\{\prod_{i=1}^ma_{n+i}^{t_i}(x), \prod_{i=1}^ma_{n+i}^{t_i}(y)\bigg\} \geq \Psi(n) \ \text{for all} \ n\geq 1\bigg\}. \end{align*} $$

For the one-dimensional analogue of this set, the Hausdorff dimension (for $m=2$ ) was determined in [Reference Bakhtawar, Hussain, Kleinbock and Wang1] and can also be deduced from [Reference Hussain and Shulga10]. In my thesis, I prove the following two-dimensional result. Throughout, $\dim _{H}$ is the Hausdorff dimension.

Theorem 1 [Reference Brown-Sarre and Hussain5].

Let $\Psi $ be a positive function. Then,

$$ \begin{align*} \dim_{H} (\Lambda(\Psi))=\frac{2+\tau}{1+\tau}\quad \text{where } \log\tau=\limsup_{n\to\infty}\frac{\log\log\Psi(n)}{n}.\end{align*} $$

For a nondecreasing function $\varphi : \mathbb {N} \to [2,\infty )$ and $\ell \in \mathbb {N}$ , define the set

$$ \begin{align*} \mathcal{F}_{\ell}(\varphi) := \bigg\{ x\in [0,1): \begin{matrix} a_{j}(x)\cdots a_{j+\ell-1}(x) \geq \varphi(n) \\ a_{k}(x)\cdots a_{k+\ell-1}(x) \geq \varphi(n) \end{matrix}\; \text{ with } 1\leq j < k \leq n \text{ for i.m. } n\in\mathbb{N}\bigg\}, \end{align*} $$

where ‘i.m.’ stands for ‘infinitely many’. The set $\mathcal {F}_{\ell }(\varphi )$ arises in the determination of laws of large numbers for partial quotients. Phillip [Reference Philipp13] proved that there is no reasonable function $\sigma :\mathbb {N}\to \mathbb {R}_+$ such that ${(a_1(x)+a_2(x)+\cdots +a_n(x))}/{\sigma (n)}$ converges almost everywhere as $n \to \infty $ . However, Diamond and Vaaler [Reference Diamond and Vaaler6] showed that such a relation holds if we omit the largest partial quotient. Hu et al. [Reference Hu, Hussain and Yu7] extended this further by proving the case for the sum of products of two consecutive partial quotients and omitting the largest product. They proved that almost every $x\in [0,1)$ satisfies

(1) $$ \begin{align} \lim_{n\to\infty} \cfrac{1}{n\log^2 n}\hspace{0.5pt}\bigg( \sum_{j=1}^n a_j(x)a_{j+1}(x) - \max_{1\leq j \leq n} a_j(x)a_{j+1}(x)\bigg) = \cfrac{1}{2\log 2}. \end{align} $$

This led Tan et al. in [Reference Tan, Tian and Wang14] and Tan and Zhou in [Reference Tan and Zhou15] to find a zero-one law for the Lebesgue measure of $\mathcal {F}_1(\varphi )$ . We extend this work to $\mathcal {F}_{3}(\varphi )$ .

Theorem 2 [Reference Brown-Sarre, González Robert and Hussain4].

Let $\varphi :\mathbb {N}\to [2,\infty )$ be nondecreasing. The Lebesgue measure $\lambda $ of $\mathcal {F}_{3}(\varphi )$ is given by

$$ \begin{align*} \lambda(\mathcal{F}_{3}(\varphi)) = \begin{cases} 0 &\text{if } \displaystyle\sum_{n\geq 1} \frac{n\log^{4}\varphi(n)}{\varphi^2(n)} + \frac{\log \varphi(n)}{\varphi(n)}<\infty, \\ 1 &\text{if } \displaystyle\sum_{n\geq 1} \frac{n\log^{4}\varphi(n)}{\varphi^2(n)} + \frac{\log \varphi(n)}{\varphi(n)}=\infty. \end{cases} \end{align*} $$

I further calculate the Hausdorff dimension for $\mathcal {F}_3(\varphi )$ . Define $g_3:\mathbb {R}\to \mathbb {R}$ by

$$ \begin{align*} g_3(s) := \frac{3s^3-5s^2+4s-1}{s^2-s+1}. \end{align*} $$

For a function $\varphi :\mathbb {N}\to \mathbb {R}_+$ , let B and b be defined by

(2) $$ \begin{align} \log B = \liminf_{n\to\infty} \frac{\log \varphi(n)}{n} \quad\text{and}\quad \log b = \liminf_{n\to\infty} \frac{\log\log \varphi(n)}{n}. \end{align} $$

Theorem 3 [Reference Brown-Sarre, González Robert and Hussain4].

Let $\varphi :\mathbb {N}\to [2,\infty )$ be nondecreasing. Then, the Hausdorff dimension of $\mathcal {F}_3(\varphi )$ is given by

$$ \begin{align*} \dim_{H} \mathcal{F}_3(\varphi) = \begin{cases} 1 &\text{if } B=1, \\ \inf\{s \geq 0: P(T,-g_3(s)\log B - s \log |T'|) \leq 0\} &\text{if } 1<B<\infty, \\ {1}/{(1+b)} &\text{if } B=\infty, \end{cases} \end{align*} $$

where $P(T,\cdot )$ is a pressure function.

The thesis also contains a result on the Lebesgue measure of a set associated with the Lüroth series expansion of a real number. Every $x\in (0,1]$ has a Lüroth series expansion

$$ \begin{align*} x= \frac{1}{d_1} + \frac{1}{d_1(d_1-1)d_2} + \frac{1}{d_1(d_1-1)d_2(d_2-1)d_3} + \cdots \end{align*} $$

with a unique sequence $(d_n)_{n\geq 1}$ of integers at least $2$ . Let $m\in \mathbb {N}$ , $\mathbf {t}=(t_0,\ldots , t_{m-1})\in \mathbb {R}_{+}^m$ and $\liminf _{n\to \infty }\Psi (n)>1$ . Define the set

$$ \begin{align*} \mathfrak{E}_{\mathbf{t}}(\Psi) := \bigg\{ x\in [0,1): \prod_{i=0}^{m-1} d_{n+i}^{t_i}(x) \geq \Psi(n) \text{ for infinitely many }n\in\mathbb{N}\bigg\}, \end{align*} $$

and the numbers

$$ \begin{align*} t_{\min} := \min\{t_0,t_1,\ldots, t_{m-1}\}, \quad \; t_{\max} :=\max\{t_0,t_1,\ldots, t_{m-1}\} \end{align*} $$

and

$$ \begin{align*} \ell(\mathbf{t}):=\# \{j\in \{0,\ldots, m-1\}: t_j=t_{\max}\}. \end{align*} $$

Theorem 4 [Reference Brown-Sarre, González Robert and Hussain3].

Let $m\in \mathbb {N}$ and $\mathbf {t}\in \mathbb {R}_{+}^m$ be arbitrary. If $\liminf _{n\to \infty } \Psi (n)>1,$ then

(3) $$ \begin{align} \lambda\left(\mathfrak{E}_{\mathbf{t}}(\Psi)\right) = \begin{cases} 0 &\text{if } \displaystyle\sum_{n=1}^{\infty} \cfrac{\left( \log\Psi(n)\right)^{\ell(\mathbf{t}) - 1} }{\Psi(n)^{{1}/{t_{\max}}}} < \infty, \\[2ex] 1 &\text{if } \displaystyle\sum_{n=1}^{\infty} \cfrac{\left( \log\Psi(n)\right)^{\ell(\mathbf{t}) - 1}}{\Psi(n)^{{1}/{t_{\max}}}} = \infty. \end{cases} \end{align} $$

Theorem 5 [Reference Brown-Sarre, González Robert and Hussain3].

Let B and b be given by (2). For any $m\in \mathbb {N}$ and $\mathbf {t}\in \mathbb {R}_{+}^{m}$ ,

$$ \begin{align*} \dim_{H} \mathfrak{E}_{\mathbf{t}}(\Psi) = \begin{cases} 1 &\text{if } B=1, \\ {1}/{(b+1)} &\text{if } B=\infty. \end{cases} \end{align*} $$

Theorem 6 [Reference Brown-Sarre, González Robert and Hussain3].

Suppose $m=2$ . Let B and b be given by (2) and assume $1<B<\infty $ . For a given $\mathbf {t}=(t_0,t_1)\in \mathbb {R}_{+}^2$ , define

$$ \begin{align*} f_{t_0,t_1}(s):= \frac{s^2}{t_0t_1\max \{ {s}/{t_1} + {(1-s)}/{t_0}, {s}/{t_0}\}}. \end{align*} $$

Then, the Hausdorff dimension of $\mathfrak {E}_{\mathbf {t}}(\Psi )$ is the unique solution of

$$ \begin{align*} \sum_{d=2}^{\infty} \frac{1}{d^s(d-1)^s B^{f_{t_0,t_1}(s)}}=1. \end{align*} $$

Acknowledgement

I am thankful to my supervisors Associate Professor Mumtaz Hussain and Dr. Gerardo González Robert for their help and support throughout my studies.

Footnotes

Masters Thesis submitted to La Trobe University in June 2024; degree approved on 3 December 2024; supervisors Mumtaz Hussain and Gerardo González Robert.

References

Bakhtawar, A., Hussain, M., Kleinbock, D. and Wang, B.-W., ‘Metrical properties for the weighted products of multiple partial quotients in continued fractions’, Houston J. Math. 49 (2023), 159194.Google Scholar
Bos, P., Hussain, M. and Simmons, D., ‘The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers’. Proc. Amer. Math. Soc. 151(5) (2023), 18231838.Google Scholar
Brown-Sarre, A., González Robert, G. and Hussain, M., ‘Metrical properties of weighted products of consecutive Lüroth digits’, Houston J. Math. 49(4) (2023), 861897.Google Scholar
Brown-Sarre, A., González Robert, G. and Hussain, M., ‘Measure theoretic properties of large products of consecutive partial quotients’, Preprint, 2025, arXiv:2405.10538.Google Scholar
Brown-Sarre, A. and Hussain, M., ‘A note on the relative growth of products of multiple partial quotients in the plane’, Canad. Math. Bull. 66(2) (2023), 544552.10.4153/S0008439522000510CrossRefGoogle Scholar
Diamond, H. G. and Vaaler, J. D., ‘Estimates for partial sums of continued fraction partial quotients’, Pacific J. Math. 122(1) (1986), 7382.10.2140/pjm.1986.122.73CrossRefGoogle Scholar
Hu, H., Hussain, M. and Yu, Y., ‘Limit theorems for sums of products of consecutive partial quotients of continued fractions’, Nonlinearity 34(12) (2021), 81438173.10.1088/1361-6544/ac2da9CrossRefGoogle Scholar
Huang, L., Wu, J. and Xu, J., ‘Metric properties of the product of consecutive partial quotients in continued fractions’, Israel J. Math. 238(2) (2020), 901943.10.1007/s11856-020-2049-1CrossRefGoogle Scholar
Hussain, M., Kleinbock, D., Wadleigh, N. and Wang, B.-W., ‘Hausdorff measure of sets of Dirichlet non-improvable numbers’, Mathematika 64(2) (2018), 502518.10.1112/S0025579318000074CrossRefGoogle Scholar
Hussain, M. and Shulga, N., ‘Metrical properties of exponentially growing partial quotients’, Forum Math. 37(5) (2025), 13791399.Google Scholar
Khinchin, A. Y., Continued Fractions (Dover Publications, Mineola, NY, 1997).Google Scholar
Kleinbock, D. and Wadleigh, N., ‘A zero-one law for improvements to Dirichlet’s theorem’, Proc. Amer. Math. Soc. 146(5) (2018), 18331844.10.1090/proc/13685CrossRefGoogle Scholar
Philipp, W., ‘Some metrical theorems in number theory’, Pacific J. Math. 20 (1967), 109127.10.2140/pjm.1967.20.109CrossRefGoogle Scholar
Tan, B., Tian, C. and Wang, B., ‘The distribution of the large partial quotients in continued fraction expansions’, Sci. China Math. 66(5) (2023), 935956.10.1007/s11425-021-1979-3CrossRefGoogle Scholar
Tan, B. and Zhou, Q.-L., ‘Metrical properties of the large products of partial quotients in continued fractions’, Nonlinearity 37(2) (2024), Article no. 025008, 28 pages.10.1088/1361-6544/ad140fCrossRefGoogle Scholar