1 Introduction
 Let f be a cuspidal normalized newform of weight 
 $2k$
 and level
$2k$
 and level 
 $\Gamma _0(pN)$
, where p is a prime number and
$\Gamma _0(pN)$
, where p is a prime number and 
 $N\in {\mathbf {Z}}_{>0}$
 such that
$N\in {\mathbf {Z}}_{>0}$
 such that 
 $p\nmid N$
. Consider the complex L-function attached to f
$p\nmid N$
. Consider the complex L-function attached to f 
 $$\begin{align*}L(f, s) = \sum_{n=1}^{\infty} a_n n^{-s}. \end{align*}$$
$$\begin{align*}L(f, s) = \sum_{n=1}^{\infty} a_n n^{-s}. \end{align*}$$
One way to study 
 $L(f, s)$
 is via p-adic method. That is, one can associate f with a p-adic L-function
$L(f, s)$
 is via p-adic method. That is, one can associate f with a p-adic L-function 
 $L_p(f, s)$
, which p-adically interpolates the algebraic part of the special values
$L_p(f, s)$
, which p-adically interpolates the algebraic part of the special values 
 $L(f, j)$
 for
$L(f, j)$
 for 
 $1\leq j\leq 2k-1$
. In particular, the interpolation property at
$1\leq j\leq 2k-1$
. In particular, the interpolation property at 
 $s= k$
 is given by the formula
$s= k$
 is given by the formula 
 $$\begin{align*}L_p(f, k) = \left( 1- \frac{p^{k-1}}{a_p}\right)\frac{L(f, k)}{\Omega_f}, \end{align*}$$
$$\begin{align*}L_p(f, k) = \left( 1- \frac{p^{k-1}}{a_p}\right)\frac{L(f, k)}{\Omega_f}, \end{align*}$$
where 
 $\Omega _f$
 is the Deligne period of f at k ([Reference Deligne, Koblitz and Ogus6]).
$\Omega _f$
 is the Deligne period of f at k ([Reference Deligne, Koblitz and Ogus6]).
 Suppose moreover that 
 $a_p = p^{k-1}$
; the formula above shows that
$a_p = p^{k-1}$
; the formula above shows that 
 $L_p(f, s)$
 vanishes at
$L_p(f, s)$
 vanishes at 
 $s=k$
. In the case when
$s=k$
. In the case when 
 $k=1$
, Mazur–Tate–Teitelbaum conjectured in [Reference Mazur, Tate and Teitelbaum15] that there exists an invariant
$k=1$
, Mazur–Tate–Teitelbaum conjectured in [Reference Mazur, Tate and Teitelbaum15] that there exists an invariant 
 ${\mathcal {L}}(f)$
 such that
${\mathcal {L}}(f)$
 such that 
 $$\begin{align*}\frac{d}{ds} L_p(f, s)|_{s=k} = {\mathcal{L}}(f) \frac{L(f, k)}{\Omega_f}. \end{align*}$$
$$\begin{align*}\frac{d}{ds} L_p(f, s)|_{s=k} = {\mathcal{L}}(f) \frac{L(f, k)}{\Omega_f}. \end{align*}$$
This conjecture is known as the trivial zero conjecture and has been proven by Greenberg–Stevens in [Reference Greenberg and Stevens9]. Moreover, for higher weights, various generalizations of the invariant 
 ${\mathcal {L}}(f)$
 has been proposed. The following is an incomplete list:
${\mathcal {L}}(f)$
 has been proposed. The following is an incomplete list: 
- 
• In [Reference Greenberg8], R. Greenberg constructed the  ${\mathcal {L}}$
-invariants for Galois representations that are ordinary at p and suggested a generalization of the trivial zero conjecture. ${\mathcal {L}}$
-invariants for Galois representations that are ordinary at p and suggested a generalization of the trivial zero conjecture.
- 
• In [Reference Mazur14], Fontaine–Mazur defined the  ${\mathcal {L}}$
-invariant by studying the semistable module (à la Fontaine) associated with a p-adic representation. ${\mathcal {L}}$
-invariant by studying the semistable module (à la Fontaine) associated with a p-adic representation.
- 
• In [Reference Coleman5], R. Coleman proposed a construction of  ${\mathcal {L}}$
-invariants as an application of his p-adic integration theory. ${\mathcal {L}}$
-invariants as an application of his p-adic integration theory.
- 
• In [Reference Teitelbaum18], J. Teitelbaum proposed a construction of  ${\mathcal {L}}$
-invariants by applying the p-adic integration theory to p-adically uniformized Shimura curve. ${\mathcal {L}}$
-invariants by applying the p-adic integration theory to p-adically uniformized Shimura curve.
All these 
 ${\mathcal {L}}$
-invariants are known to be equal: Coleman–Iovita compared the second and the third in [Reference Coleman and iovita4]; Iovita–Spieß compared the second and the fourth in [Reference Iovita and Spieß13]; and the comparison between the first and the second is a special case of [Reference Benois2, Proposition 2.3.7].
${\mathcal {L}}$
-invariants are known to be equal: Coleman–Iovita compared the second and the third in [Reference Coleman and iovita4]; Iovita–Spieß compared the second and the fourth in [Reference Iovita and Spieß13]; and the comparison between the first and the second is a special case of [Reference Benois2, Proposition 2.3.7].
It is a natural question to ask whether one can establish a similar philosophy for higher rank automorphic forms. Let us mention the following generalizations in our consideration:
- 
• In [Reference Benois2], D. Benois generalized Greeberg’s construction to Galois representations of  $\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}}$
 that satisfies some reasonable conditions. He also stated a trivial zero conjecture in such a generality ([op. cit., pp. 1579]). $\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}}$
 that satisfies some reasonable conditions. He also stated a trivial zero conjecture in such a generality ([op. cit., pp. 1579]).
- 
• In [Reference Besser and de Shalit1], Besser–de Shalit generalized both the Fontaine–Mazur  ${\mathcal {L}}$
-invariants and Coleman (or Teitelbaum) ${\mathcal {L}}$
-invariants and Coleman (or Teitelbaum) ${\mathcal {L}}$
-invariants by studying the p-adic cohomology groups of p-adically uniformized Shimura varieties. It is conjectured in loc. cit. that these two constructions give rise to the same ${\mathcal {L}}$
-invariants by studying the p-adic cohomology groups of p-adically uniformized Shimura varieties. It is conjectured in loc. cit. that these two constructions give rise to the same ${\mathcal {L}}$
-invariants (or ${\mathcal {L}}$
-invariants (or ${\mathcal {L}}$
-operators as called in loc. cit.). Authors of loc. cit. also speculated that the existence of a trivial zero conjecture for these two ${\mathcal {L}}$
-operators as called in loc. cit.). Authors of loc. cit. also speculated that the existence of a trivial zero conjecture for these two ${\mathcal {L}}$
-invariants. However, they were not able to provide an explicit statement. ${\mathcal {L}}$
-invariants. However, they were not able to provide an explicit statement.
 This article concerns the comparison between Benois’s 
 ${\mathcal {L}}$
-invariants and the Fontaine–Mazur type
${\mathcal {L}}$
-invariants and the Fontaine–Mazur type 
 ${\mathcal {L}}$
-invariants of Besser–de Shalit. To explain our result, let us fix some notations: Let F be a number field such that for every prime ideal
${\mathcal {L}}$
-invariants of Besser–de Shalit. To explain our result, let us fix some notations: Let F be a number field such that for every prime ideal 
 ${\mathfrak {p}}\subset {\mathcal {O}}_F$
 sitting above p, the maximal unramified extension of
${\mathfrak {p}}\subset {\mathcal {O}}_F$
 sitting above p, the maximal unramified extension of 
 ${\mathbf {Q}}_p$
 in
${\mathbf {Q}}_p$
 in 
 $F_{{\mathfrak {p}}}$
 is
$F_{{\mathfrak {p}}}$
 is 
 ${\mathbf {Q}}_p$
 itself; let E be a large enough value field that is a finite extension over
${\mathbf {Q}}_p$
 itself; let E be a large enough value field that is a finite extension over 
 ${\mathbf {Q}}_p$
. Suppose
${\mathbf {Q}}_p$
. Suppose 
 $$\begin{align*}\rho : \operatorname{\mathrm{Gal}}_F \rightarrow \operatorname{\mathrm{GL}}_n(E) \end{align*}$$
$$\begin{align*}\rho : \operatorname{\mathrm{Gal}}_F \rightarrow \operatorname{\mathrm{GL}}_n(E) \end{align*}$$
is a Galois representation that is semistable at places above p. We further assume that 
 $\rho $
 satisfies the assumptions in §5.1. In particular, we assume the Frobenius eigenvalues on the associated semistable modules are given by
$\rho $
 satisfies the assumptions in §5.1. In particular, we assume the Frobenius eigenvalues on the associated semistable modules are given by 
 $p^m, \ldots, p^{m-n+1}$
 (for some suitable
$p^m, \ldots, p^{m-n+1}$
 (for some suitable 
 $m\in {\mathbf {Z}}$
 that is independent of the prime ideals sitting above p) and the monodromy is maximal. We remark in the beginning that these assumptions are required so that we can perform the following two constructions:
$m\in {\mathbf {Z}}$
 that is independent of the prime ideals sitting above p) and the monodromy is maximal. We remark in the beginning that these assumptions are required so that we can perform the following two constructions: 
- 
• Following the suggestion in [Reference Rosso17] (see also [Reference Hida10]), one can consider the induction  $\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_F \rho $
. Part of the assumptions then allows us to attach the $\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_F \rho $
. Part of the assumptions then allows us to attach the ${\mathcal {L}}$
-invariant in Benois’s style to ${\mathcal {L}}$
-invariant in Benois’s style to $\operatorname {\mathrm {Ind}}_{F}^{{\mathbf {Q}}}\rho (m)$
. This resulting $\operatorname {\mathrm {Ind}}_{F}^{{\mathbf {Q}}}\rho (m)$
. This resulting ${\mathcal {L}}$
-invariant is denoted by ${\mathcal {L}}$
-invariant is denoted by ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
, where the subscript ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
, where the subscript $\operatorname {\mathrm {GB}}$
 stands for “Greenberg–Benois”. We refer the readers to §3 for the construction of $\operatorname {\mathrm {GB}}$
 stands for “Greenberg–Benois”. We refer the readers to §3 for the construction of ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}$
. ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}$
.
- 
• We realized that the generalization of Fontaine–Mazur  ${\mathcal {L}}$
-invariants suggested by Besser–de Shalit can be translated to the world of semistable modules of a local Galois representation. The other part of the assumptions in §5.1 then allow us to attach ${\mathcal {L}}$
-invariants suggested by Besser–de Shalit can be translated to the world of semistable modules of a local Galois representation. The other part of the assumptions in §5.1 then allow us to attach ${\mathcal {L}}$
-invariants of Fontaine–Mazur style to each local Galois representation ${\mathcal {L}}$
-invariants of Fontaine–Mazur style to each local Galois representation $\rho _{{\mathfrak {p}}} = \rho |_{\operatorname {\mathrm {Gal}}_{F_{{\mathfrak {p}}}}}$
 for every prime $\rho _{{\mathfrak {p}}} = \rho |_{\operatorname {\mathrm {Gal}}_{F_{{\mathfrak {p}}}}}$
 for every prime ${\mathfrak {p}}$
 above p. We term such ${\mathfrak {p}}$
 above p. We term such ${\mathcal {L}}$
-invariants ${\mathcal {L}}$
-invariants ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho _{{\mathfrak {p}}})$
, where the subscript ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho _{{\mathfrak {p}}})$
, where the subscript $\operatorname {\mathrm {FM}}$
 stands for “Fontaine–Mazur”. We refer the readers to §4 for the construction of $\operatorname {\mathrm {FM}}$
 stands for “Fontaine–Mazur”. We refer the readers to §4 for the construction of ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}$
. ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}$
.
Our main result reads as follows.
Theorem 5.4 We have an equality
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}} | p} - {\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}), \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}} | p} - {\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}), \end{align*}$$
where the index set runs through all prime ideals in 
 ${\mathcal {O}}_F$
 sitting above p
${\mathcal {O}}_F$
 sitting above p
 Since there is a well-stated trivial zero conjecture for 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
 in [Reference Benois2], our result immediately supplies an affirmative answer to Besser–de Shalit’s speculation of the relationship between their
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
 in [Reference Benois2], our result immediately supplies an affirmative answer to Besser–de Shalit’s speculation of the relationship between their 
 ${\mathcal {L}}$
-invariants and p-adic L-functions.
${\mathcal {L}}$
-invariants and p-adic L-functions.
 To close this introduction, let us mention that the generalization of 
 ${\mathcal {L}}$
-invariants à la Coleman (or Teitelbaum) suggested by Besser–de Shalit replaces Coleman’s integration theory with Besser’s theory of finite polynomial cohomology. Although they only consider the case for the trivial coefficient (so that we can only see automorphic forms of weight associated with the differential 1-forms), one can hope a generalization for nontrivial coefficients by using finite polynomial cohomology with coefficients ([Reference Huang and J.-F.12]). We wish to come back to this in future projects and hopefully to compare this type of
${\mathcal {L}}$
-invariants à la Coleman (or Teitelbaum) suggested by Besser–de Shalit replaces Coleman’s integration theory with Besser’s theory of finite polynomial cohomology. Although they only consider the case for the trivial coefficient (so that we can only see automorphic forms of weight associated with the differential 1-forms), one can hope a generalization for nontrivial coefficients by using finite polynomial cohomology with coefficients ([Reference Huang and J.-F.12]). We wish to come back to this in future projects and hopefully to compare this type of 
 ${\mathcal {L}}$
-invariants with
${\mathcal {L}}$
-invariants with 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho _{{\mathfrak {p}}})$
 as suggested in [Reference Besser and de Shalit1].
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho _{{\mathfrak {p}}})$
 as suggested in [Reference Besser and de Shalit1].
Notations
- 
• Through out this article, we fix a prime number p. 
- 
• Given a field F, we fix a separable closure  $\overline {F}$
 and denote by $\overline {F}$
 and denote by $\operatorname {\mathrm {Gal}}_F = \operatorname {\mathrm {Gal}}(\overline {F}/F)$
 its absolute Galois group. $\operatorname {\mathrm {Gal}}_F = \operatorname {\mathrm {Gal}}(\overline {F}/F)$
 its absolute Galois group.
2 Preliminaries on 
 $(\varphi , \Gamma )$
-modules
$(\varphi , \Gamma )$
-modules
2.1 General 
 $(\varphi , \Gamma )$
-modules
$(\varphi , \Gamma )$
-modules
 Fix a compatible system of primitive p-power roots of unity 
 $(\zeta _{p^n})_{n\in {\mathbf {Z}}_{\geq 0}}$
 in
$(\zeta _{p^n})_{n\in {\mathbf {Z}}_{\geq 0}}$
 in 
 $\overline {{\mathbf {Q}}}_p$
. Given a finite extension K of
$\overline {{\mathbf {Q}}}_p$
. Given a finite extension K of 
 ${\mathbf {Q}}_p$
, consider
${\mathbf {Q}}_p$
, consider 
 $K(\zeta _{p^{\infty }}) = \bigcup _{n\in {\mathbf {Z}}_{\geq 0}} K(\zeta _{p^n})$
 and denote by
$K(\zeta _{p^{\infty }}) = \bigcup _{n\in {\mathbf {Z}}_{\geq 0}} K(\zeta _{p^n})$
 and denote by 
 $\Gamma = \Gamma _K$
 the Galois group
$\Gamma = \Gamma _K$
 the Galois group 
 $\operatorname {\mathrm {Gal}}(K(\zeta _{p^{\infty }})/K)$
. Moreover, for any
$\operatorname {\mathrm {Gal}}(K(\zeta _{p^{\infty }})/K)$
. Moreover, for any 
 $r\in [0, 1)$
, let
$r\in [0, 1)$
, let 
 $$\begin{align*}{\mathcal{R}}_K^r := \left\{ f = \sum_{i\in {\mathbf{Z}}}a_i T^i: \begin{array}{l} a_i \in K^{\mathrm{unr}} \cap K(\zeta_{p^{\infty}}) \\ f\text{ is holomorphic on the annulus } r\leq |T| <1 \end{array}\!\right\} \end{align*}$$
$$\begin{align*}{\mathcal{R}}_K^r := \left\{ f = \sum_{i\in {\mathbf{Z}}}a_i T^i: \begin{array}{l} a_i \in K^{\mathrm{unr}} \cap K(\zeta_{p^{\infty}}) \\ f\text{ is holomorphic on the annulus } r\leq |T| <1 \end{array}\!\right\} \end{align*}$$
and
 $$\begin{align*}{\mathcal{R}}_K := \bigcup_{r\in [0, 1)} {\mathcal{R}}_K^r, \end{align*}$$
$$\begin{align*}{\mathcal{R}}_K := \bigcup_{r\in [0, 1)} {\mathcal{R}}_K^r, \end{align*}$$
where 
 $K^{\mathrm {unr}}$
 is the maximal unramified extension of K in
$K^{\mathrm {unr}}$
 is the maximal unramified extension of K in 
 $\overline {{\mathbf {Q}}}_p$
 and the infinite union is taken with respect to the inclusions
$\overline {{\mathbf {Q}}}_p$
 and the infinite union is taken with respect to the inclusions 
 ${\mathcal {R}}_K^{r} \hookrightarrow {\mathcal {R}}_K^{r'}$
 for
${\mathcal {R}}_K^{r} \hookrightarrow {\mathcal {R}}_K^{r'}$
 for 
 $r\leq r'<1$
. We call the ring
$r\leq r'<1$
. We call the ring 
 ${\mathcal {R}}_K$
 the Robba ring over K. It carries a
${\mathcal {R}}_K$
 the Robba ring over K. It carries a 
 $\varphi $
-action and a
$\varphi $
-action and a 
 $\Gamma $
-action via the formula
$\Gamma $
-action via the formula 
 $$\begin{align*}\varphi(T) = (1+T)^p -1 \quad \text{ and }\quad \gamma(T) = (1+T)^{\chi_{\operatorname{\mathrm{cyc}}}(\gamma)}-1 \text{ for any }\gamma \in \Gamma, \end{align*}$$
$$\begin{align*}\varphi(T) = (1+T)^p -1 \quad \text{ and }\quad \gamma(T) = (1+T)^{\chi_{\operatorname{\mathrm{cyc}}}(\gamma)}-1 \text{ for any }\gamma \in \Gamma, \end{align*}$$
where 
 $\chi _{\operatorname {\mathrm {cyc}}}$
 is the cyclotomic character.
$\chi _{\operatorname {\mathrm {cyc}}}$
 is the cyclotomic character.
 In what follows, we shall consider a more generalized version of 
 ${\mathcal {R}}_K$
. Let E be a finite extension of
${\mathcal {R}}_K$
. Let E be a finite extension of 
 ${\mathbf {Q}}_p$
. We denote by
${\mathbf {Q}}_p$
. We denote by 
 ${\mathcal {R}}_{K, E} := {\mathcal {R}}_K \otimes _{{\mathbf {Q}}_p}E$
 and call it the Robba ring over K with coefficients in E. We linearize the actions of
${\mathcal {R}}_{K, E} := {\mathcal {R}}_K \otimes _{{\mathbf {Q}}_p}E$
 and call it the Robba ring over K with coefficients in E. We linearize the actions of 
 $\varphi $
 and
$\varphi $
 and 
 $\Gamma $
 on
$\Gamma $
 on 
 ${\mathcal {R}}_{K, E}$
 via
${\mathcal {R}}_{K, E}$
 via 
 $\varphi \otimes \operatorname {\mathrm {id}}$
 and
$\varphi \otimes \operatorname {\mathrm {id}}$
 and 
 $\gamma \otimes \operatorname {\mathrm {id}}$
, respectively. In what follows, we often assume E is large enough so that
$\gamma \otimes \operatorname {\mathrm {id}}$
, respectively. In what follows, we often assume E is large enough so that 
 $K \subset E$
.
$K \subset E$
.
 By a 
 $(\varphi , \Gamma )$
-module over
$(\varphi , \Gamma )$
-module over 
 ${\mathcal {R}}_{K, E}$
, we mean a finite free
${\mathcal {R}}_{K, E}$
, we mean a finite free 
 ${\mathcal {R}}_{K, E}$
-module D together with a
${\mathcal {R}}_{K, E}$
-module D together with a 
 $\varphi $
-semilinear endomorphism
$\varphi $
-semilinear endomorphism 
 $\varphi _D$
 and a semilinear action by
$\varphi _D$
 and a semilinear action by 
 $\Gamma $
, which commute with each other, such that the induced map
$\Gamma $
, which commute with each other, such that the induced map 
 $$\begin{align*}\varphi_D: \varphi^*D = D \otimes_{\varphi}{\mathcal{R}}_{K, E} \rightarrow D \end{align*}$$
$$\begin{align*}\varphi_D: \varphi^*D = D \otimes_{\varphi}{\mathcal{R}}_{K, E} \rightarrow D \end{align*}$$
is an isomorphism. We shall denote by 
 ${\mathbf{\mathsf{Mod}}}_{{\mathcal {R}}_{K, E}}^{(\varphi , \Gamma )}$
 the category of
${\mathbf{\mathsf{Mod}}}_{{\mathcal {R}}_{K, E}}^{(\varphi , \Gamma )}$
 the category of 
 $(\varphi , \Gamma )$
-modules over
$(\varphi , \Gamma )$
-modules over 
 ${\mathcal {R}}_{K, E}$
.
${\mathcal {R}}_{K, E}$
.
 Let 
 ${\mathbf{\mathsf{Rep}}}_{K}(E)$
 the category of Galois representations of
${\mathbf{\mathsf{Rep}}}_{K}(E)$
 the category of Galois representations of 
 $\operatorname {\mathrm {Gal}}_K$
 with coefficients in E. Then, by [Reference Benois2, Proposition 1.1.4], there is a fully faithful functor
$\operatorname {\mathrm {Gal}}_K$
 with coefficients in E. Then, by [Reference Benois2, Proposition 1.1.4], there is a fully faithful functor 
 $$\begin{align*}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger} : {\mathbf{\mathsf{Rep}}}_{K}(E) \rightarrow {\mathbf{\mathsf{Mod}}}_{{\mathcal{R}}_{K, E}}^{(\varphi, \Gamma)}. \end{align*}$$
$$\begin{align*}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger} : {\mathbf{\mathsf{Rep}}}_{K}(E) \rightarrow {\mathbf{\mathsf{Mod}}}_{{\mathcal{R}}_{K, E}}^{(\varphi, \Gamma)}. \end{align*}$$
Moreover, by letting 
 ${\mathbf{\mathsf{Mod}}}_{K, E}^{(\varphi , N)}$
 (resp.,
${\mathbf{\mathsf{Mod}}}_{K, E}^{(\varphi , N)}$
 (resp., 
 ${\mathbf{\mathsf{Mod}}}_{K, E}^{\varphi }$
) the category of
${\mathbf{\mathsf{Mod}}}_{K, E}^{\varphi }$
) the category of 
 $(\varphi , N)$
-modules (resp.,
$(\varphi , N)$
-modules (resp., 
 $\varphi $
-modules) over
$\varphi $
-modules) over 
 $K_0 = K \cap {\mathbf {Q}}_p^{\mathrm {unr}}$
 with coefficients in E, there is a functor (see, for example, [Reference Benois2, §1.2.3])
$K_0 = K \cap {\mathbf {Q}}_p^{\mathrm {unr}}$
 with coefficients in E, there is a functor (see, for example, [Reference Benois2, §1.2.3]) 
 $$\begin{align*}{\mathcal{D}}_{{\mathrm{st}}}: {\mathbf{\mathsf{Mod}}}_{{\mathcal{R}}_{K, E}}^{(\varphi, \Gamma)} \rightarrow {\mathbf{\mathsf{Mod}}}_{K, E}^{(\varphi, N)} \quad (\text{resp., }{\mathcal{D}}_{\operatorname{\mathrm{cris}}}: {\mathbf{\mathsf{Mod}}}_{{\mathcal{R}}_{K, E}}^{(\varphi, \Gamma)} \rightarrow {\mathbf{\mathsf{Mod}}}_{K, E}^{\varphi}) \end{align*}$$
$$\begin{align*}{\mathcal{D}}_{{\mathrm{st}}}: {\mathbf{\mathsf{Mod}}}_{{\mathcal{R}}_{K, E}}^{(\varphi, \Gamma)} \rightarrow {\mathbf{\mathsf{Mod}}}_{K, E}^{(\varphi, N)} \quad (\text{resp., }{\mathcal{D}}_{\operatorname{\mathrm{cris}}}: {\mathbf{\mathsf{Mod}}}_{{\mathcal{R}}_{K, E}}^{(\varphi, \Gamma)} \rightarrow {\mathbf{\mathsf{Mod}}}_{K, E}^{\varphi}) \end{align*}$$
such that if 
 $\rho \in {\mathbf{\mathsf{Rep}}}_{K}(E)$
 is semistable (resp., crystalline), then ([Reference Berger3, Théorème 0.2])
$\rho \in {\mathbf{\mathsf{Rep}}}_{K}(E)$
 is semistable (resp., crystalline), then ([Reference Berger3, Théorème 0.2]) 
 $$\begin{align*}{\mathcal{D}}_{{\mathrm{st}}}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) = {\mathbf{D}}_{{\mathrm{st}}}(\rho) \quad (\text{resp., } {\mathcal{D}}_{\operatorname{\mathrm{cris}}}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) = {\mathbf{D}}_{\operatorname{\mathrm{cris}}}(\rho)). \end{align*}$$
$$\begin{align*}{\mathcal{D}}_{{\mathrm{st}}}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) = {\mathbf{D}}_{{\mathrm{st}}}(\rho) \quad (\text{resp., } {\mathcal{D}}_{\operatorname{\mathrm{cris}}}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) = {\mathbf{D}}_{\operatorname{\mathrm{cris}}}(\rho)). \end{align*}$$
Here, 
 ${\mathbf {D}}_{{\mathrm {st}}}$
 (resp.,
${\mathbf {D}}_{{\mathrm {st}}}$
 (resp., 
 ${\mathbf {D}}_{\operatorname {\mathrm {cris}}}$
) is Fontaine’s semistable (resp., crystalline) functor ([Reference Fontaine7, Reference Berger3]), assigning a Galois representation in
${\mathbf {D}}_{\operatorname {\mathrm {cris}}}$
) is Fontaine’s semistable (resp., crystalline) functor ([Reference Fontaine7, Reference Berger3]), assigning a Galois representation in 
 ${\mathbf{\mathsf{Rep}}}_{K}(E)$
 a
${\mathbf{\mathsf{Rep}}}_{K}(E)$
 a 
 $(\varphi , N)$
-module (resp.,
$(\varphi , N)$
-module (resp., 
 $\varphi $
-module) over
$\varphi $
-module) over 
 $K_0$
 with coefficients in E.
$K_0$
 with coefficients in E.
 Now, let D be a 
 $(\varphi , \Gamma )$
-module over
$(\varphi , \Gamma )$
-module over 
 ${\mathcal {R}}_{K, E}$
. Recall the cohomology of D is defined by the cohomology of the Herr complex
${\mathcal {R}}_{K, E}$
. Recall the cohomology of D is defined by the cohomology of the Herr complex 
 $$\begin{align*}0 \rightarrow D \xrightarrow{x \mapsto ((\varphi_D-1)x, (\gamma -1)x)} D \oplus D \xrightarrow{(x,y) \mapsto (\gamma -1)x - (\varphi_D -1)y} D \rightarrow 0, \end{align*}$$
$$\begin{align*}0 \rightarrow D \xrightarrow{x \mapsto ((\varphi_D-1)x, (\gamma -1)x)} D \oplus D \xrightarrow{(x,y) \mapsto (\gamma -1)x - (\varphi_D -1)y} D \rightarrow 0, \end{align*}$$
where 
 $\gamma $
 is a (fixed) topological generator of
$\gamma $
 is a (fixed) topological generator of 
 $\Gamma $
. Note that, given
$\Gamma $
. Note that, given 
 $\alpha = (x, y)\in D \oplus D$
 such that
$\alpha = (x, y)\in D \oplus D$
 such that 
 $(\gamma -1)x -(\varphi _D -1)y = 0$
, there is an extension
$(\gamma -1)x -(\varphi _D -1)y = 0$
, there is an extension 
 $$\begin{align*}0 \rightarrow D \rightarrow D_{\alpha} \rightarrow {\mathcal{R}}_{K, E} \rightarrow 0 \end{align*}$$
$$\begin{align*}0 \rightarrow D \rightarrow D_{\alpha} \rightarrow {\mathcal{R}}_{K, E} \rightarrow 0 \end{align*}$$
defined by
 $$ \begin{align} D_{\alpha} = D \oplus {\mathcal{R}}_{K, E}e, \quad (\varphi_{D_{\alpha}}-1)e = x, \quad (\gamma -1)e = y. \end{align} $$
$$ \begin{align} D_{\alpha} = D \oplus {\mathcal{R}}_{K, E}e, \quad (\varphi_{D_{\alpha}}-1)e = x, \quad (\gamma -1)e = y. \end{align} $$
It turns out that such an assignment gives rise to an isomorphism
 $$\begin{align*}H^1(D) \cong \mathrm{Ext}_{(\varphi, \Gamma)}^1({\mathcal{R}}_{K, E}, D). \end{align*}$$
$$\begin{align*}H^1(D) \cong \mathrm{Ext}_{(\varphi, \Gamma)}^1({\mathcal{R}}_{K, E}, D). \end{align*}$$
Furthermore, we write 
 $H^1_{{\mathrm {st}}}(D)$
 (resp.,
$H^1_{{\mathrm {st}}}(D)$
 (resp., 
 $H^1_f(D)$
) the subspace of
$H^1_f(D)$
) the subspace of 
 $H^1(D)$
, consisting of those semistable (resp., crystalline) extensions
$H^1(D)$
, consisting of those semistable (resp., crystalline) extensions 
 $D_{\alpha }$
 (i.e., those satisfy
$D_{\alpha }$
 (i.e., those satisfy 
 $\operatorname {\mathrm {rank}}_{K_0\otimes _{{\mathbf {Q}}_p}E}{\mathcal {D}}_{{\mathrm {st}}}(D_{\alpha }) = \operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} {\mathcal {D}}_{{\mathrm {st}}}(D) +1$
 (resp.,
$\operatorname {\mathrm {rank}}_{K_0\otimes _{{\mathbf {Q}}_p}E}{\mathcal {D}}_{{\mathrm {st}}}(D_{\alpha }) = \operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} {\mathcal {D}}_{{\mathrm {st}}}(D) +1$
 (resp., 
 $\operatorname {\mathrm {rank}}_{K_0\otimes _{{\mathbf {Q}}_p}E}{\mathcal {D}}_{\operatorname {\mathrm {cris}}}(D_{\alpha }) = \operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} {\mathcal {D}}_{\operatorname {\mathrm {cris}}}(D) +1$
)). According to [Reference Benois2, Proposition 1.4.2], if
$\operatorname {\mathrm {rank}}_{K_0\otimes _{{\mathbf {Q}}_p}E}{\mathcal {D}}_{\operatorname {\mathrm {cris}}}(D_{\alpha }) = \operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} {\mathcal {D}}_{\operatorname {\mathrm {cris}}}(D) +1$
)). According to [Reference Benois2, Proposition 1.4.2], if 
 $\rho \in {\mathbf{\mathsf{Rep}}}_{K}(E)$
, then
$\rho \in {\mathbf{\mathsf{Rep}}}_{K}(E)$
, then 
 $$\begin{align*}H^1_{{\mathrm{st}}}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) \cong H^1_{{\mathrm{st}}}(K, \rho) \quad (\text{resp., } H^1_{f}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) \cong H_f^1(K, \rho)), \end{align*}$$
$$\begin{align*}H^1_{{\mathrm{st}}}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) \cong H^1_{{\mathrm{st}}}(K, \rho) \quad (\text{resp., } H^1_{f}({\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)) \cong H_f^1(K, \rho)), \end{align*}$$
where
 $$ \begin{align*} H_{{\mathrm{st}}}^1(K, \rho) &= \ker\left(H^1(K, \rho) \rightarrow H^1(K, \rho\otimes_{{\mathbf{Q}}_p}{\mathbf{B}}_{{\mathrm{st}}})\right) \\ (\text{resp., }H_{f}^1(K, \rho) &= \ker\left(H^1(K, \rho) \rightarrow H^1(K, \rho\otimes_{{\mathbf{Q}}_p}{\mathbf{B}}_{\operatorname{\mathrm{cris}}})\right)) \end{align*} $$
$$ \begin{align*} H_{{\mathrm{st}}}^1(K, \rho) &= \ker\left(H^1(K, \rho) \rightarrow H^1(K, \rho\otimes_{{\mathbf{Q}}_p}{\mathbf{B}}_{{\mathrm{st}}})\right) \\ (\text{resp., }H_{f}^1(K, \rho) &= \ker\left(H^1(K, \rho) \rightarrow H^1(K, \rho\otimes_{{\mathbf{Q}}_p}{\mathbf{B}}_{\operatorname{\mathrm{cris}}})\right)) \end{align*} $$
Footnote 1 is the usual local Bloch–Kato Selmer group.
 To conclude our discussion for general 
 $(\varphi , \Gamma )$
-modules, we mention that if D is semistable,Footnote 
2
 then
$(\varphi , \Gamma )$
-modules, we mention that if D is semistable,Footnote 
2
 then 
 $H_{{\mathrm {st}}}^1(D)$
 and
$H_{{\mathrm {st}}}^1(D)$
 and 
 $H_f^1(D)$
 can be computed by complexes
$H_f^1(D)$
 can be computed by complexes 
 $C_{{\mathrm {st}}}^{\bullet }$
 and
$C_{{\mathrm {st}}}^{\bullet }$
 and 
 $C_{\operatorname {\mathrm {cris}}}^{\bullet }$
, respectively ([Reference Benois2, Proposition 1.4.4]). Here,
$C_{\operatorname {\mathrm {cris}}}^{\bullet }$
, respectively ([Reference Benois2, Proposition 1.4.4]). Here, 

and
 $$ \begin{align*} C_{\operatorname{\mathrm{cris}}}^{\bullet}(D) & = \left[{\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D) \xrightarrow{a\mapsto (a, (\varphi-1)a)} \frac{{\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D)}{\operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^0{\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D)} \oplus {\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D) \right]. \end{align*} $$
$$ \begin{align*} C_{\operatorname{\mathrm{cris}}}^{\bullet}(D) & = \left[{\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D) \xrightarrow{a\mapsto (a, (\varphi-1)a)} \frac{{\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D)}{\operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^0{\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D)} \oplus {\mathcal{D}}_{\operatorname{\mathrm{cris}}}(D) \right]. \end{align*} $$
2.2 
 $(\varphi , \Gamma )$
-modules of rank 1
$(\varphi , \Gamma )$
-modules of rank 1
 Recall that 
 $(\varphi , \Gamma )$
-modules of rank
$(\varphi , \Gamma )$
-modules of rank 
 $1$
 can be understood via continuous characters. More precisely, given a continuous character
$1$
 can be understood via continuous characters. More precisely, given a continuous character 
 $\delta : K^\times \rightarrow E^\times $
 and fixing a uniformizer
$\delta : K^\times \rightarrow E^\times $
 and fixing a uniformizer 
 $\varpi \in K$
, we can write
$\varpi \in K$
, we can write 
 $\delta = \delta ' \delta "$
 with
$\delta = \delta ' \delta "$
 with 
 $\delta '|_{{\mathcal {O}}_{K}^{\times }} = \delta |_{{\mathcal {O}}_{K}^{\times }}$
,
$\delta '|_{{\mathcal {O}}_{K}^{\times }} = \delta |_{{\mathcal {O}}_{K}^{\times }}$
, 
 $\delta '(\varpi ) = 1$
 and
$\delta '(\varpi ) = 1$
 and 
 $\delta "(\varpi ) = \delta (\varpi )$
,
$\delta "(\varpi ) = \delta (\varpi )$
, 
 $\delta "|_{{\mathcal {O}}_K^{\times }} = 1$
. By local class field theory,
$\delta "|_{{\mathcal {O}}_K^{\times }} = 1$
. By local class field theory, 
 $\delta '$
 defines a unique one-dimensional Galois representation
$\delta '$
 defines a unique one-dimensional Galois representation 
 $\chi _{\delta '}$
; that is,
$\chi _{\delta '}$
; that is, 
 $$\begin{align*}\chi_{\delta'}: \operatorname{\mathrm{Gal}}_K \xrightarrow{\text{local Artin map}} \widehat{K^\times} \cong {\mathcal{O}}_K^\times \times \widehat{{\mathbf{Z}}} \xrightarrow{(a, b)\mapsto \delta'(a)} E^\times, \end{align*}$$
$$\begin{align*}\chi_{\delta'}: \operatorname{\mathrm{Gal}}_K \xrightarrow{\text{local Artin map}} \widehat{K^\times} \cong {\mathcal{O}}_K^\times \times \widehat{{\mathbf{Z}}} \xrightarrow{(a, b)\mapsto \delta'(a)} E^\times, \end{align*}$$
Footnote 
3
which admits its associated 
 $(\varphi , \Gamma )$
-module
$(\varphi , \Gamma )$
-module 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\chi _{\delta '})$
. However, we define
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\chi _{\delta '})$
. However, we define 
 ${\mathcal {R}}_{K, E}(\delta ") = {\mathcal {R}}_{K, E}e_{\delta "}$
 such that
${\mathcal {R}}_{K, E}(\delta ") = {\mathcal {R}}_{K, E}e_{\delta "}$
 such that 
 $\varphi (e_{\delta "}) = \delta (\varpi )e_{\delta "}$
 and
$\varphi (e_{\delta "}) = \delta (\varpi )e_{\delta "}$
 and 
 $\gamma (e_{\delta "}) = e_{\delta "}$
. Then, the
$\gamma (e_{\delta "}) = e_{\delta "}$
. Then, the 
 $(\varphi , \Gamma )$
-module associated with
$(\varphi , \Gamma )$
-module associated with 
 $\delta $
 is defined to be
$\delta $
 is defined to be 
 $$\begin{align*}{\mathcal{R}}_{K, E}(\delta) := {\mathcal{R}}_{K, E}(\delta") \otimes_{{\mathcal{R}}_{K, E}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\chi_{\delta'}). \end{align*}$$
$$\begin{align*}{\mathcal{R}}_{K, E}(\delta) := {\mathcal{R}}_{K, E}(\delta") \otimes_{{\mathcal{R}}_{K, E}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\chi_{\delta'}). \end{align*}$$
 In particular, the cyclotomic character 
 $\operatorname {\mathrm {Gal}}_{K} \rightarrow {\mathcal {O}}_{E}^\times $
 has the associated
$\operatorname {\mathrm {Gal}}_{K} \rightarrow {\mathcal {O}}_{E}^\times $
 has the associated 
 $(\varphi , \Gamma )$
-module
$(\varphi , \Gamma )$
-module 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\chi _{\operatorname {\mathrm {cyc}}})$
. By [Reference Nakamura16, Lemma 2.13], we know that
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\chi _{\operatorname {\mathrm {cyc}}})$
. By [Reference Nakamura16, Lemma 2.13], we know that 
 $$\begin{align*}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\chi_{\operatorname{\mathrm{cyc}}}) = {\mathcal{R}}_{K, E}(\mathrm{Nm}^{K}_{{\mathbf{Q}}_p}(z)|\mathrm{Nm}^{K}_{{\mathbf{Q}}_p}(z)|), \end{align*}$$
$$\begin{align*}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\chi_{\operatorname{\mathrm{cyc}}}) = {\mathcal{R}}_{K, E}(\mathrm{Nm}^{K}_{{\mathbf{Q}}_p}(z)|\mathrm{Nm}^{K}_{{\mathbf{Q}}_p}(z)|), \end{align*}$$
where 
 $\mathrm {Nm}^K_{{\mathbf {Q}}_p}$
 is the norm function from K to
$\mathrm {Nm}^K_{{\mathbf {Q}}_p}$
 is the norm function from K to 
 ${\mathbf {Q}}_p$
.
${\mathbf {Q}}_p$
.
Lemma 2.1. Let 
 $\delta : K^\times \rightarrow E^\times $
 be the character
$\delta : K^\times \rightarrow E^\times $
 be the character 
 $$\begin{align*}\delta(z) = \left( \prod_{\sigma: K \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{m_{\sigma}}\right) \left| \mathrm{Nm}_{{\mathbf{Q}}_p}^{K} (z)\right| \end{align*}$$
$$\begin{align*}\delta(z) = \left( \prod_{\sigma: K \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{m_{\sigma}}\right) \left| \mathrm{Nm}_{{\mathbf{Q}}_p}^{K} (z)\right| \end{align*}$$
such that all 
 $m_{\sigma } \geq 1$
.
$m_{\sigma } \geq 1$
. 
- 
• If  $\left ({\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta ))^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}) \right )^{\varphi =1}$
 is nonzero, then the inclusion $\left ({\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta ))^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}) \right )^{\varphi =1}$
 is nonzero, then the inclusion $H_{{\mathrm {st}}}^1({\mathcal {R}}_{K, E}(\delta )) \hookrightarrow H^1({\mathcal {R}}_{K, E}(\delta ))$
 is an isomorphism. $H_{{\mathrm {st}}}^1({\mathcal {R}}_{K, E}(\delta )) \hookrightarrow H^1({\mathcal {R}}_{K, E}(\delta ))$
 is an isomorphism.
- 
• If  $\left ({\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta ))^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}) \right )^{\varphi =1} =0 $
, then the inclusion $\left ({\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta ))^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}) \right )^{\varphi =1} =0 $
, then the inclusion $H_f^1({\mathcal {R}}_{K, E}(\delta )) \kern1.4pt{\hookrightarrow}\kern1.4pt H_{{\mathrm {st}}}^1({\mathcal {R}}_{K, E}(\delta )\kern-0.7pt)$
 is an isomorphism. $H_f^1({\mathcal {R}}_{K, E}(\delta )) \kern1.4pt{\hookrightarrow}\kern1.4pt H_{{\mathrm {st}}}^1({\mathcal {R}}_{K, E}(\delta )\kern-0.7pt)$
 is an isomorphism.
Proof By [Reference Benois2, Corollary 1.4.5], we have the formula
 $$\begin{align*}\dim_E H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)) - \dim_E H_f^1({\mathcal{R}}_{K, E}(\delta)) = \dim_{E} \left({\mathcal{D}}_{{\mathrm{st}}}({\mathcal{R}}_{K, E}(\delta))^{\vee}(\chi_{\operatorname{\mathrm{cyc}}}) \right)^{\varphi =1}. \end{align*}$$
$$\begin{align*}\dim_E H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)) - \dim_E H_f^1({\mathcal{R}}_{K, E}(\delta)) = \dim_{E} \left({\mathcal{D}}_{{\mathrm{st}}}({\mathcal{R}}_{K, E}(\delta))^{\vee}(\chi_{\operatorname{\mathrm{cyc}}}) \right)^{\varphi =1}. \end{align*}$$
Applying [Reference Rosso17, Proposition 2.1 & Lemma 2.3], we know that
 $$\begin{align*}\dim_E H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)) \leq [K: {\mathbf{Q}}_p]+1 \quad \text{ and }\quad \dim_E H_f^1({\mathcal{R}}_{K, E}(\delta)) = [K: {\mathbf{Q}}_p]. \end{align*}$$
$$\begin{align*}\dim_E H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)) \leq [K: {\mathbf{Q}}_p]+1 \quad \text{ and }\quad \dim_E H_f^1({\mathcal{R}}_{K, E}(\delta)) = [K: {\mathbf{Q}}_p]. \end{align*}$$
The lemma then follows easily.
 Suppose 
 $\delta : K^\times \rightarrow E^\times $
 is a continuous character as in Lemma 2.1. Suppose
$\delta : K^\times \rightarrow E^\times $
 is a continuous character as in Lemma 2.1. Suppose 
 ${\mathcal {R}}_{K, E}(\delta )$
 is semistable and so
${\mathcal {R}}_{K, E}(\delta )$
 is semistable and so 
 $\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p}E}{\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta )) = 1$
. We fix a
$\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p}E}{\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta )) = 1$
. We fix a 
 $K_0 \otimes _{{\mathbf {Q}}_p}E$
-basis
$K_0 \otimes _{{\mathbf {Q}}_p}E$
-basis 
 $v_{\delta }$
 for
$v_{\delta }$
 for 
 ${\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta ))$
 and define
${\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\delta ))$
 and define 
 $$\begin{align*}\beta_{\delta}^* = -\operatorname{\mathrm{cl}}(0,0,v_{\delta}), \quad \alpha_{\delta}^* = \operatorname{\mathrm{cl}}(v_{\delta}, 0, 0) \in H^1(C_{{\mathrm{st}}}^{\bullet}({\mathcal{R}}_{K, E}(\delta))) = H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)). \end{align*}$$
$$\begin{align*}\beta_{\delta}^* = -\operatorname{\mathrm{cl}}(0,0,v_{\delta}), \quad \alpha_{\delta}^* = \operatorname{\mathrm{cl}}(v_{\delta}, 0, 0) \in H^1(C_{{\mathrm{st}}}^{\bullet}({\mathcal{R}}_{K, E}(\delta))) = H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)). \end{align*}$$
Lemma 2.2. Suppose 
 $\eta : K^\times \rightarrow E^\times $
 is a continuous character of the form
$\eta : K^\times \rightarrow E^\times $
 is a continuous character of the form 
 $\eta (z) = \prod _{\sigma : K \hookrightarrow \overline {{\mathbf {Q}}}_p} \sigma (z)^{n_{\sigma }}$
 with all
$\eta (z) = \prod _{\sigma : K \hookrightarrow \overline {{\mathbf {Q}}}_p} \sigma (z)^{n_{\sigma }}$
 with all 
 $n_{\sigma } \leq 0$
. Suppose
$n_{\sigma } \leq 0$
. Suppose 
 $$\begin{align*}0 \rightarrow {\mathcal{R}}_{K, E}(\delta) \rightarrow D \rightarrow {\mathcal{R}}_{K, E}(\eta) \rightarrow 0 \end{align*}$$
$$\begin{align*}0 \rightarrow {\mathcal{R}}_{K, E}(\delta) \rightarrow D \rightarrow {\mathcal{R}}_{K, E}(\eta) \rightarrow 0 \end{align*}$$
is a semistable extension (in the sense of §2.1). Then,
 $$\begin{align*}\operatorname{\mathrm{image}}\left( \partial: H^0({\mathcal{R}}_{K, E}(\eta)) \rightarrow H^1({\mathcal{R}}_{K, E}(\delta))\right) \subset H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)). \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{image}}\left( \partial: H^0({\mathcal{R}}_{K, E}(\eta)) \rightarrow H^1({\mathcal{R}}_{K, E}(\delta))\right) \subset H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)). \end{align*}$$
Moreover, there exists a unique 
 ${\mathcal {L}}(D)\in E$
 such that
${\mathcal {L}}(D)\in E$
 such that 
 $$\begin{align*}\beta_{\delta}^* + {\mathcal{L}}(D) \alpha_{\delta}^* \in \operatorname{\mathrm{image}} \partial. \end{align*}$$
$$\begin{align*}\beta_{\delta}^* + {\mathcal{L}}(D) \alpha_{\delta}^* \in \operatorname{\mathrm{image}} \partial. \end{align*}$$
Proof First of all, it follows from [Reference Benois2, Proposition 1.2.7] that 
 ${\mathcal {R}}_{K, E}(\eta )$
 is also semistable. Hence, by applying [op. cit., Proposition 1.4.4], we know that
${\mathcal {R}}_{K, E}(\eta )$
 is also semistable. Hence, by applying [op. cit., Proposition 1.4.4], we know that 
 $$\begin{align*}H^0({\mathcal{R}}_{K, E}(\eta)) = H_{{\mathrm{st}}}^0({\mathcal{R}}_{K, E}). \end{align*}$$
$$\begin{align*}H^0({\mathcal{R}}_{K, E}(\eta)) = H_{{\mathrm{st}}}^0({\mathcal{R}}_{K, E}). \end{align*}$$
Taking the cohomology of the short exact sequence in the lemma, we have a commutative diagram

which shows the first claim.
 Since 
 ${\mathcal {R}}_{K, E}(\eta )$
 is semistable and it is of rank
${\mathcal {R}}_{K, E}(\eta )$
 is semistable and it is of rank 
 $1$
 over
$1$
 over 
 ${\mathcal {R}}_{K,E}$
, it is crystalline and
${\mathcal {R}}_{K,E}$
, it is crystalline and 
 ${\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\eta )) = {\mathcal {D}}_{\operatorname {\mathrm {cris}}}({\mathcal {R}}_{K, E}(\eta ))$
. This is because the monodromy operator is nilpotent. We consider the commutative diagram
${\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\eta )) = {\mathcal {D}}_{\operatorname {\mathrm {cris}}}({\mathcal {R}}_{K, E}(\eta ))$
. This is because the monodromy operator is nilpotent. We consider the commutative diagram 

induced by the short exact sequence in the lemma, where the rows are exact and the columns are the semistable complexes. Let 
 $v_{\eta }$
 be the element in
$v_{\eta }$
 be the element in 
 ${\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\eta ))$
 that gives rise to the basis of
${\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\eta ))$
 that gives rise to the basis of 
 $H^0({\mathcal {R}}_{K, E}(\eta ))$
 as in [Reference Rosso17, Proposition 2.1]. In particular,
$H^0({\mathcal {R}}_{K, E}(\eta ))$
 as in [Reference Rosso17, Proposition 2.1]. In particular, 
 $v_{\eta } \in \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0 {\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\eta ))$
 and
$v_{\eta } \in \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0 {\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{K, E}(\eta ))$
 and 
 $\varphi (v_{\eta }) = v_{\eta }$
. Using the relation
$\varphi (v_{\eta }) = v_{\eta }$
. Using the relation 
 $N \varphi = p \varphi N$
, one deduces that
$N \varphi = p \varphi N$
, one deduces that 
 $1$
 and
$1$
 and 
 $p^{-1}$
 are Frobenius eigenvalues of
$p^{-1}$
 are Frobenius eigenvalues of 
 ${\mathcal {D}}_{{\mathrm {st}}}(D)$
. We choose a lift
${\mathcal {D}}_{{\mathrm {st}}}(D)$
. We choose a lift 
 $\widetilde {v}_{\eta }\in {\mathcal {D}}_{{\mathrm {st}}}(D)$
 such that
$\widetilde {v}_{\eta }\in {\mathcal {D}}_{{\mathrm {st}}}(D)$
 such that 
 $\varphi (\widetilde {v}_{\eta }) = \widetilde {v}_{\eta }$
. This then implies that
$\varphi (\widetilde {v}_{\eta }) = \widetilde {v}_{\eta }$
. This then implies that 
 $N(\widetilde {v}_{\eta })$
 has Frobenius eigenvalue
$N(\widetilde {v}_{\eta })$
 has Frobenius eigenvalue 
 $p^{-1}$
. The commutativity of the diagram then yields
$p^{-1}$
. The commutativity of the diagram then yields 

Applying the exactness of the middle row, we see that
 $$\begin{align*}(\widetilde{v}_{\eta}, 0, N(\widetilde{v}_{\eta})) = a(v_{\delta}, 0, 0) - b(0, 0, v_{\delta}). \end{align*}$$
$$\begin{align*}(\widetilde{v}_{\eta}, 0, N(\widetilde{v}_{\eta})) = a(v_{\delta}, 0, 0) - b(0, 0, v_{\delta}). \end{align*}$$
Since 
 $N(\widetilde {v}_{\eta })$
 is a basis for the Frobenius eigensubspace of
$N(\widetilde {v}_{\eta })$
 is a basis for the Frobenius eigensubspace of 
 ${\mathcal {D}}_{{\mathrm {st}}}(D)$
 on which
${\mathcal {D}}_{{\mathrm {st}}}(D)$
 on which 
 $\varphi $
 acts via
$\varphi $
 acts via 
 $p^{-1}$
, we see that b is invertible. We then conclude that
$p^{-1}$
, we see that b is invertible. We then conclude that 
 $$\begin{align*}\partial: H^0({\mathcal{R}}_{K, E}(\eta)) \rightarrow H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)), \quad \operatorname{\mathrm{cl}}(v_{\eta}) \mapsto a \alpha_{\delta}^* + b\beta_{\delta}^*. \end{align*}$$
$$\begin{align*}\partial: H^0({\mathcal{R}}_{K, E}(\eta)) \rightarrow H_{{\mathrm{st}}}^1({\mathcal{R}}_{K, E}(\delta)), \quad \operatorname{\mathrm{cl}}(v_{\eta}) \mapsto a \alpha_{\delta}^* + b\beta_{\delta}^*. \end{align*}$$
Therefore, 
 ${\mathcal {L}}(D) := a/b$
.
${\mathcal {L}}(D) := a/b$
.
3 Greenberg–Benois 
 ${\mathcal {L}}$
-invariants
${\mathcal {L}}$
-invariants
 In this section, we first discuss the construction of Greenberg–Benois 
 ${\mathcal {L}}$
-invariant over
${\mathcal {L}}$
-invariant over 
 ${\mathbf {Q}}$
 in §3.1 by summarizing Benois’s construction in [Reference Benois2, §2] (in particular [op. cit., (26)]). Then we follow the strategy in [Reference Rosso17], generalizing Benois’s construction to general number fields by considering inductions of Galois representations (§3.2).
${\mathbf {Q}}$
 in §3.1 by summarizing Benois’s construction in [Reference Benois2, §2] (in particular [op. cit., (26)]). Then we follow the strategy in [Reference Rosso17], generalizing Benois’s construction to general number fields by considering inductions of Galois representations (§3.2).
3.1 Greenberg–Benois 
 ${\mathcal {L}}$
-invariants over
${\mathcal {L}}$
-invariants over 
 ${\mathbf {Q}}$
${\mathbf {Q}}$
 To define Greenberg–Benois 
 ${\mathcal {L}}$
-invariants over
${\mathcal {L}}$
-invariants over 
 ${\mathbf {Q}}$
, we start with a Galois representation
${\mathbf {Q}}$
, we start with a Galois representation 
 $$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_{{\mathbf{Q}}} \rightarrow \operatorname{\mathrm{GL}}_n(E), \end{align*}$$
$$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_{{\mathbf{Q}}} \rightarrow \operatorname{\mathrm{GL}}_n(E), \end{align*}$$
which is unramified outside a finite set of places. We denote by
 $$\begin{align*}S = \{\ell: \rho|_{\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_{\ell}}} \text{ is ramified}\} \cup \{p, \infty\} \end{align*}$$
$$\begin{align*}S = \{\ell: \rho|_{\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_{\ell}}} \text{ is ramified}\} \cup \{p, \infty\} \end{align*}$$
and let 
 ${\mathbf {Q}}_{S}$
 be the maximal extension of
${\mathbf {Q}}_{S}$
 be the maximal extension of 
 ${\mathbf {Q}}$
 that is unramified outside S.
${\mathbf {Q}}$
 that is unramified outside S.
 Recall the Bloch–Kato Selmer group associated with 
 $\rho $
: Given
$\rho $
: Given 
 $v\in S$
, define the local Selmer groups
$v\in S$
, define the local Selmer groups 
 $$\begin{align*}H_f^1({\mathbf{Q}}_{v}, \rho) = \left\{\begin{array}{@{}ll} \ker\left(H^1({\mathbf{Q}}_{\ell}, \rho) \rightarrow H^1(I_{\ell}, \rho)\right), & \text{ if }v=\ell \nmid p\infty, \\ \ker(H^1({\mathbf{Q}}_p, \rho) \rightarrow H^1({\mathbf{Q}}_p, \rho\otimes_{{\mathbf{Q}}_p}{\mathbf{B}}_{\operatorname{\mathrm{cris}}})), & \text{ if }v=p, \\ H^1({\mathbf{R}}, \rho), & \text{ if } v=\infty, \end{array}\right. \end{align*}$$
$$\begin{align*}H_f^1({\mathbf{Q}}_{v}, \rho) = \left\{\begin{array}{@{}ll} \ker\left(H^1({\mathbf{Q}}_{\ell}, \rho) \rightarrow H^1(I_{\ell}, \rho)\right), & \text{ if }v=\ell \nmid p\infty, \\ \ker(H^1({\mathbf{Q}}_p, \rho) \rightarrow H^1({\mathbf{Q}}_p, \rho\otimes_{{\mathbf{Q}}_p}{\mathbf{B}}_{\operatorname{\mathrm{cris}}})), & \text{ if }v=p, \\ H^1({\mathbf{R}}, \rho), & \text{ if } v=\infty, \end{array}\right. \end{align*}$$
where 
 $I_{\ell }$
 stands for the inertia group at
$I_{\ell }$
 stands for the inertia group at 
 $\ell $
. Then, the Bloch-Kato Selmer group associated with
$\ell $
. Then, the Bloch-Kato Selmer group associated with 
 $\rho $
 is defined to be
$\rho $
 is defined to be 
 $$\begin{align*}H_f^1({\mathbf{Q}}, \rho) := \ker\left( H^1(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S}, \rho) \rightarrow \bigoplus_{v\in S} \frac{H^1({\mathbf{Q}}_v, \rho)}{H_f^1({\mathbf{Q}}_v, \rho)}\right). \end{align*}$$
$$\begin{align*}H_f^1({\mathbf{Q}}, \rho) := \ker\left( H^1(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S}, \rho) \rightarrow \bigoplus_{v\in S} \frac{H^1({\mathbf{Q}}_v, \rho)}{H_f^1({\mathbf{Q}}_v, \rho)}\right). \end{align*}$$
 Let 
 $\rho _p := \rho |_{\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_p}}$
. We follow [Reference Benois2, §2.1.2, 2.1.4] and proceed with the following conditions:
$\rho _p := \rho |_{\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_p}}$
. We follow [Reference Benois2, §2.1.2, 2.1.4] and proceed with the following conditions: 
- 
(B1) The local representation  $\rho _p$
 is semistable with Hodge–Tate weights $\rho _p$
 is semistable with Hodge–Tate weights $k_1 \leq k_2 \leq \cdots \leq k_n$
, giving rise to the de Rham filtration $k_1 \leq k_2 \leq \cdots \leq k_n$
, giving rise to the de Rham filtration $\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{\bullet } {\mathbf {D}}_{{\mathrm {st}}}(\rho )$
. $\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{\bullet } {\mathbf {D}}_{{\mathrm {st}}}(\rho )$
.
- 
(B2) The Frobenius action on  ${\mathbf {D}}_{{\mathrm {st}}}(\rho _p)$
 is semisimple at ${\mathbf {D}}_{{\mathrm {st}}}(\rho _p)$
 is semisimple at $1$
 and $1$
 and $p^{-1}$
. $p^{-1}$
.
- 
(GB1)  $H_f^1({\mathbf {Q}}, \rho ) = 0 = H_f^1({\mathbf {Q}}, \rho ^{\vee }(1))$
.Footnote 
5 $H_f^1({\mathbf {Q}}, \rho ) = 0 = H_f^1({\mathbf {Q}}, \rho ^{\vee }(1))$
.Footnote 
5
- 
(GB2)  $H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ) = 0 = H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ^{\vee }(1))$
. $H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ) = 0 = H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ^{\vee }(1))$
.
- 
(GB3) The associated  $(\varphi , \Gamma )$
-module $(\varphi , \Gamma )$
-module ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p)$
 has no saturated subquotientFootnote 
6
 isomorphic to ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p)$
 has no saturated subquotientFootnote 
6
 isomorphic to $U_{k,m}$
 with $U_{k,m}$
 with $k\geq 1$
 and $k\geq 1$
 and $m\geq 0$
 ([Reference Benois2, §2.1.2]), where $m\geq 0$
 ([Reference Benois2, §2.1.2]), where $U_{k,m}$
 is the unique crystalline $U_{k,m}$
 is the unique crystalline $(\varphi , \Gamma )$
-module sitting in a nonsplit short exact sequence $(\varphi , \Gamma )$
-module sitting in a nonsplit short exact sequence $$\begin{align*}0 \rightarrow {\mathcal{R}}_{{\mathbf{Q}}_p, E}(|z|z^k) \rightarrow U_{k,m} \rightarrow {\mathcal{R}}_{{\mathbf{Q}}_p, E}(z^{-m}) \rightarrow 0. \end{align*}$$ $$\begin{align*}0 \rightarrow {\mathcal{R}}_{{\mathbf{Q}}_p, E}(|z|z^k) \rightarrow U_{k,m} \rightarrow {\mathcal{R}}_{{\mathbf{Q}}_p, E}(z^{-m}) \rightarrow 0. \end{align*}$$
 Given a regular submodule 
 $D\subset {\mathbf {D}}_{{\mathrm {st}}}(\rho _p)$
 (i.e., a
$D\subset {\mathbf {D}}_{{\mathrm {st}}}(\rho _p)$
 (i.e., a 
 $(\varphi , N)$
-submodule such that
$(\varphi , N)$
-submodule such that 
 ${\mathbf {D}}_{{\mathrm {st}}}(\rho _p) = D \oplus \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0{\mathbf {D}}_{{\mathrm {st}}}(\rho _p)$
), Benois defines a five-step filtration
${\mathbf {D}}_{{\mathrm {st}}}(\rho _p) = D \oplus \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0{\mathbf {D}}_{{\mathrm {st}}}(\rho _p)$
), Benois defines a five-step filtration 
 $$ \begin{align} D^{\operatorname{\mathrm{GB}}}_i := \left\{ \begin{array}{cl} 0, & i=-2, \\ (1-p^{-1}\varphi^{-1})D + N(D^{\varphi = 1}), & i=-1,\\ D, & i=0,\\ D + {\mathbf{D}}_{{\mathrm{st}}}(\rho_p)^{\varphi=1}\cap N^{-1}(D^{\varphi=p^{-1}}), & i=1,\\ {\mathbf{D}}_{{\mathrm{st}}}(\rho_p), & i=2. \end{array}\right. \end{align} $$
$$ \begin{align} D^{\operatorname{\mathrm{GB}}}_i := \left\{ \begin{array}{cl} 0, & i=-2, \\ (1-p^{-1}\varphi^{-1})D + N(D^{\varphi = 1}), & i=-1,\\ D, & i=0,\\ D + {\mathbf{D}}_{{\mathrm{st}}}(\rho_p)^{\varphi=1}\cap N^{-1}(D^{\varphi=p^{-1}}), & i=1,\\ {\mathbf{D}}_{{\mathrm{st}}}(\rho_p), & i=2. \end{array}\right. \end{align} $$
Such a filtration then yields a filtration on 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p)$
 by
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p)$
 by 
 $$\begin{align*}\operatorname{\mathrm{Fil}}_i^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) = {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) \cap \left( D_i^{\operatorname{\mathrm{GB}}} \otimes_{{\mathbf{Q}}_p} {\mathcal{R}}_{{\mathbf{Q}}_p, E}[1/t]\right), \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{Fil}}_i^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) = {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) \cap \left( D_i^{\operatorname{\mathrm{GB}}} \otimes_{{\mathbf{Q}}_p} {\mathcal{R}}_{{\mathbf{Q}}_p, E}[1/t]\right), \end{align*}$$
where 
 $t = \log (1+T) \in {\mathcal {R}}_{{\mathbf {Q}}_p, E}$
.
$t = \log (1+T) \in {\mathcal {R}}_{{\mathbf {Q}}_p, E}$
.
Using this filtration, we define the exceptional subquotient
 $$\begin{align*}W := \operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) / \operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p). \end{align*}$$
$$\begin{align*}W := \operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) / \operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p). \end{align*}$$
By [Reference Benois2, Proposition 2.1.7], we have
 $$\begin{align*}\begin{array}{rcl} W \cong W_0 \oplus W_1 \oplus M & & \operatorname{\mathrm{rank}} W_0 = \dim_E H^0(W^{\vee}(1)), \\ \operatorname{\mathrm{Gr}}_0^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) \cong W_0 \oplus M_0 & \text{ with } & \operatorname{\mathrm{rank}} W_1 = \dim_E H^0(W),\\ \operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) \cong W_1 \oplus M_1 & & \operatorname{\mathrm{rank}} M_0 = \operatorname{\mathrm{rank}} M_1, \end{array} \end{align*}$$
$$\begin{align*}\begin{array}{rcl} W \cong W_0 \oplus W_1 \oplus M & & \operatorname{\mathrm{rank}} W_0 = \dim_E H^0(W^{\vee}(1)), \\ \operatorname{\mathrm{Gr}}_0^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) \cong W_0 \oplus M_0 & \text{ with } & \operatorname{\mathrm{rank}} W_1 = \dim_E H^0(W),\\ \operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p) \cong W_1 \oplus M_1 & & \operatorname{\mathrm{rank}} M_0 = \operatorname{\mathrm{rank}} M_1, \end{array} \end{align*}$$
where M, 
 $M_0$
, and
$M_0$
, and 
 $M_1$
 sit inside a short exact sequence
$M_1$
 sit inside a short exact sequence 
 $$\begin{align*}0 \rightarrow M_0 \rightarrow M \rightarrow M_1 \rightarrow 0. \end{align*}$$
$$\begin{align*}0 \rightarrow M_0 \rightarrow M \rightarrow M_1 \rightarrow 0. \end{align*}$$
Moreover, one has
 $$ \begin{align*} H^1(W) & = \operatorname{\mathrm{coker}} \left(H^1(\operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \rightarrow H^1(\operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \right),\\ H_f^1(W) & = \operatorname{\mathrm{coker}} \left(H_f^1(\operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \rightarrow H_f^1(\operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \right), \end{align*} $$
$$ \begin{align*} H^1(W) & = \operatorname{\mathrm{coker}} \left(H^1(\operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \rightarrow H^1(\operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \right),\\ H_f^1(W) & = \operatorname{\mathrm{coker}} \left(H_f^1(\operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \rightarrow H_f^1(\operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \right), \end{align*} $$
and 
 $\dim _E H^1(W)/H_f^1(W) = e_D = \operatorname {\mathrm {rank}} M_0 + \operatorname {\mathrm {rank}} W_0 +\operatorname {\mathrm {rank}} W_1$
 ([Reference Benois2, §2.2.1]).
$\dim _E H^1(W)/H_f^1(W) = e_D = \operatorname {\mathrm {rank}} M_0 + \operatorname {\mathrm {rank}} W_0 +\operatorname {\mathrm {rank}} W_1$
 ([Reference Benois2, §2.2.1]).
Under the assumption (GB1) and (GB2), one applies Poitou–Tate exact sequence and deduces an isomorphism
 $$\begin{align*}H^1(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S}, \rho) \cong \bigoplus_{v\in S} \frac{H^1({\mathbf{Q}}_v, \rho)}{H_f^1({\mathbf{Q}}_v, \rho)}. \end{align*}$$
$$\begin{align*}H^1(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S}, \rho) \cong \bigoplus_{v\in S} \frac{H^1({\mathbf{Q}}_v, \rho)}{H_f^1({\mathbf{Q}}_v, \rho)}. \end{align*}$$
Note that the latter space contains an 
 $e_D$
-dimensional subspace
$e_D$
-dimensional subspace 
 $\frac {H^1(W)}{H_f^1(W)} \cong \frac {H^1(\operatorname {\mathrm {Fil}}_1^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p))}{H^1_f({\mathbf {Q}}_p, \rho )}$
. We then define
$\frac {H^1(W)}{H_f^1(W)} \cong \frac {H^1(\operatorname {\mathrm {Fil}}_1^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p))}{H^1_f({\mathbf {Q}}_p, \rho )}$
. We then define 
 $H^1(D, \rho )$
 to be the image of
$H^1(D, \rho )$
 to be the image of 
 $\frac {H^1(W)}{H_f^1(W)}$
 in
$\frac {H^1(W)}{H_f^1(W)}$
 in 
 $H^1(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho )$
.
$H^1(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho )$
.
 To define the 
 ${\mathcal {L}}$
-invariant, we further assume that
${\mathcal {L}}$
-invariant, we further assume that 
- 
(GB4)  $W_0 = 0$
 and the Hodge–Tate weights for $W_0 = 0$
 and the Hodge–Tate weights for $\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p)$
 are positive (see [Reference Benois2, Proposition 1.5.9]). $\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p)$
 are positive (see [Reference Benois2, Proposition 1.5.9]).
Benois shows that there is a decomposition ([Reference Benois2, §2.1.9] (see also the discussion in [Reference Harron and Jorza11, §1.2]))
 $$\begin{align*}H^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \cong H_f^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \oplus H_c^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \end{align*}$$
$$\begin{align*}H^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \cong H_f^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \oplus H_c^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \end{align*}$$
and isomorphisms
 $$\begin{align*}H_f^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \cong {\mathcal{D}}_{\operatorname{\mathrm{cris}}}(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \cong H_c^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)). \end{align*}$$
$$\begin{align*}H_f^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \cong {\mathcal{D}}_{\operatorname{\mathrm{cris}}}(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)) \cong H_c^1(\operatorname{\mathrm{Gr}}_1^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_p)). \end{align*}$$
There are natural morphisms 
 $\varrho _{D, ?}: H^1(D, \rho ) \rightarrow {\mathcal {D}}_{\operatorname {\mathrm {cris}}}(\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p))$
 (for
$\varrho _{D, ?}: H^1(D, \rho ) \rightarrow {\mathcal {D}}_{\operatorname {\mathrm {cris}}}(\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _p))$
 (for 
 $? \in \{f, c\}$
) making the diagram
$? \in \{f, c\}$
) making the diagram 

commutative. Under the assumption of (GB4), Benois shows that 
 $\varrho _{D, c}$
 is an isomorphism, and so one can define the 
Greenberg–Benois
$\varrho _{D, c}$
 is an isomorphism, and so one can define the 
Greenberg–Benois
 
 ${\mathcal {L}}$
-
invariant
 attached to
${\mathcal {L}}$
-
invariant
 attached to 
 $\rho $
 (with respect to D) as
$\rho $
 (with respect to D) as 
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho) = {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho, D) := \det\left( \varrho_{D, f} \circ \varrho_{D, c}^{-1}\right)\in E. \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho) = {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho, D) := \det\left( \varrho_{D, f} \circ \varrho_{D, c}^{-1}\right)\in E. \end{align*}$$
3.2 Greenberg–Benois 
 ${\mathcal {L}}$
-invariants over general number fields
${\mathcal {L}}$
-invariants over general number fields
 To define the Greenberg–Benois 
 ${\mathcal {L}}$
-invariants over general number fields, we follow the idea in [Reference Rosso17] (see also [Reference Hida10]) and consider the induction of a Galois representation. More precisely, let F be a number field and suppose we are given a Galois representation
${\mathcal {L}}$
-invariants over general number fields, we follow the idea in [Reference Rosso17] (see also [Reference Hida10]) and consider the induction of a Galois representation. More precisely, let F be a number field and suppose we are given a Galois representation 
 $$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_F \rightarrow \operatorname{\mathrm{GL}}_n(E), \end{align*}$$
$$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_F \rightarrow \operatorname{\mathrm{GL}}_n(E), \end{align*}$$
where E is (again) a finite extension of 
 ${\mathbf {Q}}_p$
. We shall consider the induction
${\mathbf {Q}}_p$
. We shall consider the induction 
 $\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_F \rho $
 and define S similarly as before.
$\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_F \rho $
 and define S similarly as before.
 Assume the following conditions hold for 
 $\rho $
:
$\rho $
: 
- 
(B1) For each place  ${\mathfrak {p}} |p$
 in F, ${\mathfrak {p}} |p$
 in F, $\rho _{{\mathfrak {p}}} = \rho |_{\operatorname {\mathrm {Gal}}_{F_{{\mathfrak {p}}}}}$
 is semistable with Hodge–Tate weights $\rho _{{\mathfrak {p}}} = \rho |_{\operatorname {\mathrm {Gal}}_{F_{{\mathfrak {p}}}}}$
 is semistable with Hodge–Tate weights $k_{{\mathfrak {p}}, \sigma , 1} \leq k_{{\mathfrak {p}}, \sigma , 2}\leq \cdots \leq k_{{\mathfrak {p}}, \sigma , n}$
, where $k_{{\mathfrak {p}}, \sigma , 1} \leq k_{{\mathfrak {p}}, \sigma , 2}\leq \cdots \leq k_{{\mathfrak {p}}, \sigma , n}$
, where $\sigma : F_{{\mathfrak {p}}} \hookrightarrow \overline {{\mathbf {Q}}}_p$
. $\sigma : F_{{\mathfrak {p}}} \hookrightarrow \overline {{\mathbf {Q}}}_p$
.
- 
(B2) For each place  ${\mathfrak {p}} |p$
 in F, the Frobenius action on ${\mathfrak {p}} |p$
 in F, the Frobenius action on ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 is semistable at ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 is semistable at $1$
 and $1$
 and $p^{-1}$
. $p^{-1}$
.
- 
(GB1)  $H_f^1({\mathbf {Q}}, \operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F} \rho ) = 0 = H_f^1({\mathbf {Q}}, \operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}} \rho ^{\vee }(1))$
. $H_f^1({\mathbf {Q}}, \operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F} \rho ) = 0 = H_f^1({\mathbf {Q}}, \operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}} \rho ^{\vee }(1))$
.
- 
(GB2)  $H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ) = 0 = H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ^{\vee }(1))$
. $H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ) = 0 = H^0(\operatorname {\mathrm {Gal}}_{{\mathbf {Q}}_S}, \rho ^{\vee }(1))$
.
- 
(GB3) The associated  $(\varphi , \Gamma )$
-module $(\varphi , \Gamma )$
-module ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}}\rho )_p) = \bigoplus _{{\mathfrak {p}}|p} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}})$
 has no saturated subquotient isomorphic to ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}}\rho )_p) = \bigoplus _{{\mathfrak {p}}|p} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}})$
 has no saturated subquotient isomorphic to $U_{k,m}$
 with $U_{k,m}$
 with $k\geq 1$
 and $k\geq 1$
 and $m\geq 0$
 ([Reference Benois2, §2.1.2]). $m\geq 0$
 ([Reference Benois2, §2.1.2]).
 For every 
 ${\mathfrak {p}}|p$
, choose a regular subomdule
${\mathfrak {p}}|p$
, choose a regular subomdule 
 $D_{{\mathfrak {p}}} \subset {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
. Then,
$D_{{\mathfrak {p}}} \subset {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
. Then, 
 $D := \bigoplus _{{\mathfrak {p}} |p} D_{{\mathfrak {p}} } \subset \bigoplus _{{\mathfrak {p}} | p}{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}) = {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho )_p)$
 is a regular submodule.Footnote 
7
 Moreover, if
$D := \bigoplus _{{\mathfrak {p}} |p} D_{{\mathfrak {p}} } \subset \bigoplus _{{\mathfrak {p}} | p}{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}) = {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho )_p)$
 is a regular submodule.Footnote 
7
 Moreover, if 
 $W_0$
,
$W_0$
, 
 $M_0$
,
$M_0$
, 
 $M_1$
 (resp.,
$M_1$
 (resp., 
 $W_{{\mathfrak {p}}, 0}$
,
$W_{{\mathfrak {p}}, 0}$
, 
 $M_{{\mathfrak {p}}, 0}$
,
$M_{{\mathfrak {p}}, 0}$
, 
 $M_{{\mathfrak {p}}, 1}$
) are the corresponding subquotients of
$M_{{\mathfrak {p}}, 1}$
) are the corresponding subquotients of 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho )_p)$
 (resp.,
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho )_p)$
 (resp., 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}})$
) with respect to D (resp.,
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}})$
) with respect to D (resp., 
 $D_{{\mathfrak {p}}}$
), then we have decompositions
$D_{{\mathfrak {p}}}$
), then we have decompositions 
 $$\begin{align*}W_0 = \bigoplus_{{\mathfrak{p}} | p}W_{{\mathfrak{p}}, 0}, \quad M_0 = \bigoplus_{{\mathfrak{p}}| p} M_{{\mathfrak{p}}, 0}, \quad M_1 = \bigoplus_{{\mathfrak{p}}|p} M_{{\mathfrak{p}}, 1}. \end{align*}$$
$$\begin{align*}W_0 = \bigoplus_{{\mathfrak{p}} | p}W_{{\mathfrak{p}}, 0}, \quad M_0 = \bigoplus_{{\mathfrak{p}}| p} M_{{\mathfrak{p}}, 0}, \quad M_1 = \bigoplus_{{\mathfrak{p}}|p} M_{{\mathfrak{p}}, 1}. \end{align*}$$
Hence, by assuming
- 
(GB4)  $W_{{\mathfrak {p}}, 0} =0$
 for every $W_{{\mathfrak {p}}, 0} =0$
 for every ${\mathfrak {p}} |p$
 and the Hodge–Tate weights for ${\mathfrak {p}} |p$
 and the Hodge–Tate weights for $\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}} \rho )_p)$
 are all positive, $\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}} \rho )_p)$
 are all positive,
we may then follow the same recipe and define the 
Greenberg–Benois
 
 ${\mathcal {L}}$
-
invariant
 attached to
${\mathcal {L}}$
-
invariant
 attached to 
 $\rho $
 (with respect to
$\rho $
 (with respect to 
 $\{D_{{\mathfrak {p}}}\}_{{\mathfrak {p}}|p}$
)
$\{D_{{\mathfrak {p}}}\}_{{\mathfrak {p}}|p}$
) 
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho) = {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho, \{D_{{\mathfrak{p}}}\}_{{\mathfrak{p}}|p}) := {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\operatorname{\mathrm{Ind}}_{F}^{{\mathbf{Q}}}\rho, D)\in E. \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho) = {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho, \{D_{{\mathfrak{p}}}\}_{{\mathfrak{p}}|p}) := {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\operatorname{\mathrm{Ind}}_{F}^{{\mathbf{Q}}}\rho, D)\in E. \end{align*}$$
4 Fontaine–Mazur 
 ${\mathcal {L}}$
-invariants
${\mathcal {L}}$
-invariants
 To define the Fontaine–Mazur 
 ${\mathcal {L}}$
-invariants, we fix a finite extension K over
${\mathcal {L}}$
-invariants, we fix a finite extension K over 
 ${\mathbf {Q}}_p$
. We shall be considering Galois representations
${\mathbf {Q}}_p$
. We shall be considering Galois representations 
 $$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_K \rightarrow \operatorname{\mathrm{GL}}_n(E), \end{align*}$$
$$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_K \rightarrow \operatorname{\mathrm{GL}}_n(E), \end{align*}$$
where E is (again) a finite extension of 
 ${\mathbf {Q}}_p$
. In what follows, we consider the
${\mathbf {Q}}_p$
. In what follows, we consider the 
 $(\varphi , N)$
-module
$(\varphi , N)$
-module 
 ${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 associated with
${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 associated with 
 $\rho $
. Note that if
$\rho $
. Note that if 
 $K_0$
 is the maximal unramified extension of
$K_0$
 is the maximal unramified extension of 
 ${\mathbf {Q}}_p$
 in K, then
${\mathbf {Q}}_p$
 in K, then 
 ${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 is a priori a
${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 is a priori a 
 $K_0$
-vector space. However, we shall linearize everything by base change to E.
$K_0$
-vector space. However, we shall linearize everything by base change to E.
 Let q be the order of the residue field of K. We further assume 
 $\rho $
 enjoys the following properties:
$\rho $
 enjoys the following properties: 
- 
(B1) The representation  $\rho $
 is semistable with Hodge–Tate weights $\rho $
 is semistable with Hodge–Tate weights $k_{\sigma , 1} \leq k_{\sigma , 2} \leq \cdots \leq k_{\sigma , n-1}\leq k_{\sigma , n}$
, where $k_{\sigma , 1} \leq k_{\sigma , 2} \leq \cdots \leq k_{\sigma , n-1}\leq k_{\sigma , n}$
, where $\sigma : K \hookrightarrow \overline {{\mathbf {Q}}}_p$
. The Hodge–Tate weights give rise to the de Rham filtration $\sigma : K \hookrightarrow \overline {{\mathbf {Q}}}_p$
. The Hodge–Tate weights give rise to the de Rham filtration $\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{\bullet } {\mathbf {D}}_{{\mathrm {st}}}(\rho ) = [\operatorname {\mathrm {Fil}}^{k_{\bullet , 1}}_{\operatorname {\mathrm {dR}}} {\mathbf {D}}_{{\mathrm {st}}}(\rho ) \supset \operatorname {\mathrm {Fil}}^{k_{\bullet , 2}}_{\operatorname {\mathrm {dR}}} {\mathbf {D}}_{{\mathrm {st}}}(\rho ) \supset \cdots \supset \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{\bullet , n}}{\mathbf {D}}_{{\mathrm {st}}}(\rho )]$
. $\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{\bullet } {\mathbf {D}}_{{\mathrm {st}}}(\rho ) = [\operatorname {\mathrm {Fil}}^{k_{\bullet , 1}}_{\operatorname {\mathrm {dR}}} {\mathbf {D}}_{{\mathrm {st}}}(\rho ) \supset \operatorname {\mathrm {Fil}}^{k_{\bullet , 2}}_{\operatorname {\mathrm {dR}}} {\mathbf {D}}_{{\mathrm {st}}}(\rho ) \supset \cdots \supset \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{\bullet , n}}{\mathbf {D}}_{{\mathrm {st}}}(\rho )]$
.
- 
(B2) The linearized Frobenius eigenvalues on  ${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 are ${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 are $q^m, \ldots, q^{m-n+1}$
. $q^m, \ldots, q^{m-n+1}$
.
- 
(FM1) Let  $D_{(\varphi , N)}^{(i)}$
 be the eigenspace in $D_{(\varphi , N)}^{(i)}$
 be the eigenspace in ${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 on which the Frobenius acts via ${\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 on which the Frobenius acts via $q^{m-i}$
, and we assume that the induced monodromy operator N on $q^{m-i}$
, and we assume that the induced monodromy operator N on $D_{(\varphi , N)}^{(i)}$
 gives an isomorphism $D_{(\varphi , N)}^{(i)}$
 gives an isomorphism $$\begin{align*}N : D_{(\varphi, N)}^{(i)} \rightarrow D_{(\varphi, N)}^{(i+1)}. \end{align*}$$ $$\begin{align*}N : D_{(\varphi, N)}^{(i)} \rightarrow D_{(\varphi, N)}^{(i+1)}. \end{align*}$$
- 
(FM2) Define Frobenius filtration  $\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 by $\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho )$
 by $\operatorname {\mathrm {Fil}}_j^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho ) := \sum _{i>n-1-j} D_{(\varphi , N)}^{(i)}$
 and assume the orthogonality $\operatorname {\mathrm {Fil}}_j^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho ) := \sum _{i>n-1-j} D_{(\varphi , N)}^{(i)}$
 and assume the orthogonality $$\begin{align*}{\mathbf{D}}_{{\mathrm{st}}}(\rho) = \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, i}} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_i^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho). \end{align*}$$ $$\begin{align*}{\mathbf{D}}_{{\mathrm{st}}}(\rho) = \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, i}} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_i^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho). \end{align*}$$
Lemma 4.1. Keep the notations and the assumptions as above. We abuse the notation and denote by 
 $\operatorname {\mathrm {Gr}}_{\operatorname {\mathrm {dR}}}^{n-1}{\mathbf {D}}_{{\mathrm {st}}}(\rho ) := \operatorname {\mathrm {Fil}}^{k_{\bullet , n-1}}_{\operatorname {\mathrm {dR}}}{\mathbf {D}}_{{\mathrm {st}}}(\rho )/\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{\bullet , n}} {\mathbf {D}}_{{\mathrm {st}}}(\rho )$
. Then, we have an inclusion
$\operatorname {\mathrm {Gr}}_{\operatorname {\mathrm {dR}}}^{n-1}{\mathbf {D}}_{{\mathrm {st}}}(\rho ) := \operatorname {\mathrm {Fil}}^{k_{\bullet , n-1}}_{\operatorname {\mathrm {dR}}}{\mathbf {D}}_{{\mathrm {st}}}(\rho )/\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{\bullet , n}} {\mathbf {D}}_{{\mathrm {st}}}(\rho )$
. Then, we have an inclusion 
 $$\begin{align*}\operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-1} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \hookrightarrow D_{(\varphi, N)}^{(0)} \oplus D_{(\varphi, N)}^{(1)}. \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-1} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \hookrightarrow D_{(\varphi, N)}^{(0)} \oplus D_{(\varphi, N)}^{(1)}. \end{align*}$$
Proof Indeed, we have a sequence of identifications
 $$ \begin{align*} D_{(\varphi, N)}^{(0)} \oplus D_{(\varphi, N)}^{(1)} & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho)}{\operatorname{\mathrm{Fil}}_{n-2}^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho)} \\ & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{\operatorname{\mathrm{Fil}}_{n-2}^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}\\ & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{{\mathbf{D}}_{{\mathrm{st}}}(\rho)}\\ & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}\\ & = \frac{\operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{ \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n}} {\mathbf{D}}_{{\mathrm{st}}}(\rho)}, \end{align*} $$
$$ \begin{align*} D_{(\varphi, N)}^{(0)} \oplus D_{(\varphi, N)}^{(1)} & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho)}{\operatorname{\mathrm{Fil}}_{n-2}^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho)} \\ & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{\operatorname{\mathrm{Fil}}_{n-2}^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}\\ & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{{\mathbf{D}}_{{\mathrm{st}}}(\rho)}\\ & = \frac{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{\operatorname{\mathrm{Fil}}_n^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \oplus \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}\\ & = \frac{\operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n-2}}{\mathbf{D}}_{{\mathrm{st}}}(\rho)}{ \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{\bullet, n}} {\mathbf{D}}_{{\mathrm{st}}}(\rho)}, \end{align*} $$
where the third and the forth identifications follow from the orthogonality assumption.
Lemma 4.2. For every i, we have
 $$\begin{align*}\operatorname{\mathrm{rank}}_{K_0 \otimes_{{\mathbf{Q}}_p}E} D_{(\varphi, N)}^{(i)} = 1. \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{rank}}_{K_0 \otimes_{{\mathbf{Q}}_p}E} D_{(\varphi, N)}^{(i)} = 1. \end{align*}$$
Moreover, 
 $m <k_{\sigma , n}$
 for every
$m <k_{\sigma , n}$
 for every 
 $\sigma : K \hookrightarrow \overline {{\mathbf {Q}}}_p$
.
$\sigma : K \hookrightarrow \overline {{\mathbf {Q}}}_p$
.
Proof Consider the twisted Galois representation 
 $\rho (m)$
. One can similarly define the Frobenius filtration
$\rho (m)$
. One can similarly define the Frobenius filtration 
 $\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho (m))$
, and we denote by
$\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho (m))$
, and we denote by 
 $D_{(\varphi , N)}^{(i)}(m)$
 the graded pieces. Since each
$D_{(\varphi , N)}^{(i)}(m)$
 the graded pieces. Since each 
 $\operatorname {\mathrm {Fil}}^{\varphi }_i {\mathbf {D}}_{{\mathrm {st}}}(\rho (m))$
 is a
$\operatorname {\mathrm {Fil}}^{\varphi }_i {\mathbf {D}}_{{\mathrm {st}}}(\rho (m))$
 is a 
 $(\varphi , N)$
-module, [Reference Benois2, Proposition 1.2.7 (ii)] implies that we have an associated filtration
$(\varphi , N)$
-module, [Reference Benois2, Proposition 1.2.7 (ii)] implies that we have an associated filtration 
 $\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))$
 such that
$\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))$
 such that 
 ${\mathcal {D}}_{{\mathrm {st}}}(\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))) = \operatorname {\mathrm {Fil}}^{\varphi }_{i}{\mathbf {D}}_{{\mathrm {st}}}(\rho (m))$
.
${\mathcal {D}}_{{\mathrm {st}}}(\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))) = \operatorname {\mathrm {Fil}}^{\varphi }_{i}{\mathbf {D}}_{{\mathrm {st}}}(\rho (m))$
.
 Consider 
 $\operatorname {\mathrm {Gr}}_{n}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))$
. One sees that
$\operatorname {\mathrm {Gr}}_{n}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))$
. One sees that 
 $$\begin{align*}{\mathcal{D}}_{{\mathrm{st}}}(\operatorname{\mathrm{Gr}}_{n}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho(m))) = D_{(\varphi, N)}^{(0)}(m), \end{align*}$$
$$\begin{align*}{\mathcal{D}}_{{\mathrm{st}}}(\operatorname{\mathrm{Gr}}_{n}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho(m))) = D_{(\varphi, N)}^{(0)}(m), \end{align*}$$
on which the semistable Frobenius acts via 
 $1$
. Hence, by [Reference Rosso17, Proposition 2.4],
$1$
. Hence, by [Reference Rosso17, Proposition 2.4], 
 $\operatorname {\mathrm {Gr}}_{n}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))$
 is crystalline and
$\operatorname {\mathrm {Gr}}_{n}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho (m))$
 is crystalline and 
 $$\begin{align*}\operatorname{\mathrm{Gr}}_{n}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho(m)) \cong {\mathcal{R}}_{K, E}(\delta) \quad \text{ with } \quad \delta(z) = \prod_{\sigma: K \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{-k_{\sigma, n}+m}. \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{Gr}}_{n}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho(m)) \cong {\mathcal{R}}_{K, E}(\delta) \quad \text{ with } \quad \delta(z) = \prod_{\sigma: K \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{-k_{\sigma, n}+m}. \end{align*}$$
This shows that 
 $\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} D_{(\varphi , N)}^{(0)}(m) = 1$
. Using the formula in loc. cit., one also sees that
$\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} D_{(\varphi , N)}^{(0)}(m) = 1$
. Using the formula in loc. cit., one also sees that 
 $k_{\sigma , n}> m$
.
$k_{\sigma , n}> m$
.
 Since 
 $\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} D_{(\varphi , N)}^{(0)}(m) = 1$
, we see that
$\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} D_{(\varphi , N)}^{(0)}(m) = 1$
, we see that 
 $\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} D_{(\varphi , N)}^{(0)} = 1$
. The result then can be concluded by applying (FM1).
$\operatorname {\mathrm {rank}}_{K_0 \otimes _{{\mathbf {Q}}_p} E} D_{(\varphi , N)}^{(0)} = 1$
. The result then can be concluded by applying (FM1).
 Thanks to Lemma 4.1 and Lemma 4.2, we can now define the Fontaine–Mazur 
 ${\mathcal {L}}$
-invariant. Let
${\mathcal {L}}$
-invariant. Let 
 $v_0$
 be a
$v_0$
 be a 
 $K_0 \otimes _{{\mathbf {Q}}_p} E$
-basis for
$K_0 \otimes _{{\mathbf {Q}}_p} E$
-basis for 
 $D_{(\varphi , N)}^{(0)}$
 and let
$D_{(\varphi , N)}^{(0)}$
 and let 
 $v_1 := Nv_0$
, which is a a
$v_1 := Nv_0$
, which is a a 
 $K_0 \otimes _{{\mathbf {Q}}_p} E$
-basis for
$K_0 \otimes _{{\mathbf {Q}}_p} E$
-basis for 
 $D_{(\varphi , N)}^{(1)}$
. The 
Fontaine–Mazur
$D_{(\varphi , N)}^{(1)}$
. The 
Fontaine–Mazur
 
 ${\mathcal {L}}$
-
invariant
 attached to
${\mathcal {L}}$
-
invariant
 attached to 
 $\rho $
 is then defined to be
$\rho $
 is then defined to be 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho ) \in K_0 \otimes _{{\mathbf {Q}}_p}E$
 such that
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho ) \in K_0 \otimes _{{\mathbf {Q}}_p}E$
 such that 
 $$\begin{align*}v_0 - {\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho)v_1 \in \operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-1}{\mathbf{D}}_{{\mathrm{st}}}(\rho). \end{align*}$$
$$\begin{align*}v_0 - {\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho)v_1 \in \operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-1}{\mathbf{D}}_{{\mathrm{st}}}(\rho). \end{align*}$$
Remark 4.3. In fact, if we write 
 $\operatorname {\mathrm {Gr}}_{\operatorname {\mathrm {dR}}}^i {\mathbf {D}}_{{\mathrm {st}}}(\rho ) := \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_i}{\mathbf {D}}_{{\mathrm {st}}}(\rho )/\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{i+1}} {\mathbf {D}}_{{\mathrm {st}}}(\rho )$
, then a similar argument as in Lemma 4.1 shows that
$\operatorname {\mathrm {Gr}}_{\operatorname {\mathrm {dR}}}^i {\mathbf {D}}_{{\mathrm {st}}}(\rho ) := \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_i}{\mathbf {D}}_{{\mathrm {st}}}(\rho )/\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{i+1}} {\mathbf {D}}_{{\mathrm {st}}}(\rho )$
, then a similar argument as in Lemma 4.1 shows that 
 $$\begin{align*}\operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-i} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \hookrightarrow D_{(\varphi, N)}^{(i-1)} \oplus D_{(\varphi, N)}^{(i)}. \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-i} {\mathbf{D}}_{{\mathrm{st}}}(\rho) \hookrightarrow D_{(\varphi, N)}^{(i-1)} \oplus D_{(\varphi, N)}^{(i)}. \end{align*}$$
By using this inclusion, one can similarly define the i-th Fontaine–Mazur 
 ${\mathcal {L}}$
-operator attached to
${\mathcal {L}}$
-operator attached to 
 $\rho $
 to be
$\rho $
 to be 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(i)}(\rho )\in K_0 \otimes _{{\mathbf {Q}}_p}E$
 such that
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(i)}(\rho )\in K_0 \otimes _{{\mathbf {Q}}_p}E$
 such that 
 $v_{i-1} - {\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(i)}v_{i}\in \operatorname {\mathrm {Gr}}_{\operatorname {\mathrm {dR}}}^{n-i}{\mathbf {D}}_{{\mathrm {st}}}(\rho )$
, where
$v_{i-1} - {\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(i)}v_{i}\in \operatorname {\mathrm {Gr}}_{\operatorname {\mathrm {dR}}}^{n-i}{\mathbf {D}}_{{\mathrm {st}}}(\rho )$
, where 
 $v_j = N^j v$
. Such a strategy was taken in [Reference Besser and de Shalit1]. However, it is believed that
$v_j = N^j v$
. Such a strategy was taken in [Reference Besser and de Shalit1]. However, it is believed that 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(0)}(\rho ) = {\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho )$
 should determine all the other
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(0)}(\rho ) = {\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho )$
 should determine all the other 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(i)}(\rho )$
’s (see, for example, [op. cit., §4.3.2]). Hence, we focus on
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}^{(i)}(\rho )$
’s (see, for example, [op. cit., §4.3.2]). Hence, we focus on 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho )$
. Moreover, one shall see, in what follows, that it is
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho )$
. Moreover, one shall see, in what follows, that it is 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho )$
 we can relate to Greenberg–Benois
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}(\rho )$
 we can relate to Greenberg–Benois 
 ${\mathcal {L}}$
-invariants.
${\mathcal {L}}$
-invariants.
5 Comparing the two 
 ${\mathcal {L}}$
-invariants
${\mathcal {L}}$
-invariants
 The aim of this section is to prove the comparison theorem (Theorem 5.4). However, as aforementioned, to define 
 ${\mathcal {L}}$
-invariants, there are some constraints one needs to put on the Galois representations. For reader’s convenience, we collect all the assumptions in §5.1 and briefly discuss a folklore about these assumptions.
${\mathcal {L}}$
-invariants, there are some constraints one needs to put on the Galois representations. For reader’s convenience, we collect all the assumptions in §5.1 and briefly discuss a folklore about these assumptions.
5.1 Assumptions on the Galois representation
 Let F be a number field and let E be a finite extension of 
 ${\mathbf {Q}}_p$
 such that, for every prime ideal
${\mathbf {Q}}_p$
 such that, for every prime ideal 
 ${\mathfrak {p}}$
 in
${\mathfrak {p}}$
 in 
 ${\mathcal {O}}_F$
 sitting above p,
${\mathcal {O}}_F$
 sitting above p, 
 $F_{{\mathfrak {p}}} \subset E$
. Write
$F_{{\mathfrak {p}}} \subset E$
. Write 
 $F_{{\mathfrak {p}}, 0}$
 for the maximal unramified extension of
$F_{{\mathfrak {p}}, 0}$
 for the maximal unramified extension of 
 ${\mathbf {Q}}_p$
 in
${\mathbf {Q}}_p$
 in 
 $F_{{\mathfrak {p}}}$
; we further assume that
$F_{{\mathfrak {p}}}$
; we further assume that 
 $F_{{\mathfrak {p}}, 0} = {\mathbf {Q}}_p$
 for every
$F_{{\mathfrak {p}}, 0} = {\mathbf {Q}}_p$
 for every 
 ${\mathfrak {p}}$
. Suppose we are given a Galois representation
${\mathfrak {p}}$
. Suppose we are given a Galois representation 
 $$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_F \rightarrow \operatorname{\mathrm{GL}}_n(E) \end{align*}$$
$$\begin{align*}\rho: \operatorname{\mathrm{Gal}}_F \rightarrow \operatorname{\mathrm{GL}}_n(E) \end{align*}$$
that is unramified outside a finite set of places. Let S be the set of places in F such that 
 $\rho $
 ramifies. We make the following assumptions:
$\rho $
 ramifies. We make the following assumptions: 
- 
(I) Basic assumptions: - 
(B1) For any prime ideal  ${\mathfrak {p}} \subset {\mathcal {O}}_{F}$
 sitting above p, ${\mathfrak {p}} \subset {\mathcal {O}}_{F}$
 sitting above p, $\rho _{{\mathfrak {p}}} := \rho |_{\operatorname {\mathrm {Gal}}_{F_{{\mathfrak {p}}}}}$
 is semistable with Hodge–Tate weights $\rho _{{\mathfrak {p}}} := \rho |_{\operatorname {\mathrm {Gal}}_{F_{{\mathfrak {p}}}}}$
 is semistable with Hodge–Tate weights $0\leq k_{{\mathfrak {p}}, \sigma , 1} \leq k_{{\mathfrak {p}}, \sigma , 2} \leq \cdots \leq k_{{\mathfrak {p}}, \sigma , n-1} \leq k_{{\mathfrak {p}}, n}$
, where $0\leq k_{{\mathfrak {p}}, \sigma , 1} \leq k_{{\mathfrak {p}}, \sigma , 2} \leq \cdots \leq k_{{\mathfrak {p}}, \sigma , n-1} \leq k_{{\mathfrak {p}}, n}$
, where $\sigma : F_{{\mathfrak {p}}} \hookrightarrow \overline {{\mathbf {Q}}}_p$
. $\sigma : F_{{\mathfrak {p}}} \hookrightarrow \overline {{\mathbf {Q}}}_p$
.
- 
(B2) For any prime ideal  ${\mathfrak {p}} \subset {\mathcal {O}}_{F}$
 sitting above p, the Frobenius eigenvalues on ${\mathfrak {p}} \subset {\mathcal {O}}_{F}$
 sitting above p, the Frobenius eigenvalues on ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 are ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 are $p^m$
, …, $p^m$
, …, $p^{m-n+1}$
 such that $p^{m-n+1}$
 such that $k_{{\mathfrak {p}}, \sigma , n}> m > k_{{\mathfrak {p}}, \sigma , n-1}$
, where the first inequality is always guaranteed by Lemma 4.2.Footnote 
8 $k_{{\mathfrak {p}}, \sigma , n}> m > k_{{\mathfrak {p}}, \sigma , n-1}$
, where the first inequality is always guaranteed by Lemma 4.2.Footnote 
8
 
- 
- 
(II) Fontaine–Mazur assumptions: - 
(FM1) For any  ${\mathfrak {p}}|p$
, let ${\mathfrak {p}}|p$
, let $D_{{\mathfrak {p}}, (\varphi , N)}^{(i)}$
 be the eigenspace in $D_{{\mathfrak {p}}, (\varphi , N)}^{(i)}$
 be the eigenspace in ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 on which the Frobenius acts via ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 on which the Frobenius acts via $p^{m-i}$
. We assume that the induced monodromy operator N on $p^{m-i}$
. We assume that the induced monodromy operator N on $D_{{\mathfrak {p}}, (\varphi , N)}^{(i)}$
 gives an isomorphism $D_{{\mathfrak {p}}, (\varphi , N)}^{(i)}$
 gives an isomorphism $$\begin{align*}N: D_{{\mathfrak{p}}, (\varphi, N)}^{(i)} \rightarrow D_{{\mathfrak{p}}, (\varphi, N)}^{(i+1)}. \end{align*}$$ $$\begin{align*}N: D_{{\mathfrak{p}}, (\varphi, N)}^{(i)} \rightarrow D_{{\mathfrak{p}}, (\varphi, N)}^{(i+1)}. \end{align*}$$
- 
(FM2) Define  $\operatorname {\mathrm {Fil}}_j^{\varphi } {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}) := \sum _{i>n-1-j} D_{{\mathfrak {p}}, (\varphi , N)}^{(i)}$
, and we call the ascending filtration $\operatorname {\mathrm {Fil}}_j^{\varphi } {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}) := \sum _{i>n-1-j} D_{{\mathfrak {p}}, (\varphi , N)}^{(i)}$
, and we call the ascending filtration $\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi } {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 the Frobenius filtration on $\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi } {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 the Frobenius filtration on ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
. We assume the orthogonality ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
. We assume the orthogonality $$\begin{align*}{\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}) = \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{{\mathfrak{p}}, \bullet, i}}{\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}) \oplus \operatorname{\mathrm{Fil}}_i^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}). \end{align*}$$ $$\begin{align*}{\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}) = \operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{{\mathfrak{p}}, \bullet, i}}{\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}) \oplus \operatorname{\mathrm{Fil}}_i^{\varphi} {\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}). \end{align*}$$
 
- 
- 
(III) Greenberg–Benois assumptions: - 
(GB1) Vanishing of the Bloch–Kato Selmer groups  $$\begin{align*}H_f^1({\mathbf{Q}}, \operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_{F} \rho(m)) = H^1_f({\mathbf{Q}}, \operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_{F}\rho^{\vee}(1-m)) = 0. \end{align*}$$ $$\begin{align*}H_f^1({\mathbf{Q}}, \operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_{F} \rho(m)) = H^1_f({\mathbf{Q}}, \operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_{F}\rho^{\vee}(1-m)) = 0. \end{align*}$$
- 
(GB2) Vanishing of the zero-degree Galois cohomology  $$\begin{align*}H^0(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S}, \operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_{F} \rho(m)) = H^0(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S},\operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_F\rho^{\vee}(1-m)) =0. \end{align*}$$ $$\begin{align*}H^0(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S}, \operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_{F} \rho(m)) = H^0(\operatorname{\mathrm{Gal}}_{{\mathbf{Q}}_S},\operatorname{\mathrm{Ind}}^{{\mathbf{Q}}}_F\rho^{\vee}(1-m)) =0. \end{align*}$$
- 
(GB3) The associated  $(\varphi , \Gamma )$
-module $(\varphi , \Gamma )$
-module ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}}\rho (m))_p) = \bigoplus _{{\mathfrak {p}}|p} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}} (m))$
 does not admit a subquotient of the form ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}}\rho (m))_p) = \bigoplus _{{\mathfrak {p}}|p} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}} (m))$
 does not admit a subquotient of the form $U_{k,r}$
 with $U_{k,r}$
 with $k\geq 1$
 and $k\geq 1$
 and $r\geq 0$
 ([Reference Benois2, §2.1.2]). $r\geq 0$
 ([Reference Benois2, §2.1.2]).
- 
(GB4) For any  ${\mathfrak {p}}|p$
, the space ${\mathfrak {p}}|p$
, the space $W_{{\mathfrak {p}}, 0}$
 for $W_{{\mathfrak {p}}, 0}$
 for $\rho _{{\mathfrak {p}}}(m)$
 vanishes (see [Reference Benois2, Proposition 2.1.7] or [Reference Rosso17, pp. 1238]). $\rho _{{\mathfrak {p}}}(m)$
 vanishes (see [Reference Benois2, Proposition 2.1.7] or [Reference Rosso17, pp. 1238]).
 
- 
Remark 5.1. For every 
 ${\mathfrak {p}} | p$
, the Frobenius filtration
${\mathfrak {p}} | p$
, the Frobenius filtration 
 $\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 defines a filtration
$\operatorname {\mathrm {Fil}}_{\bullet }^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}})$
 defines a filtration 
 $\operatorname {\mathrm {Fil}}_{\bullet } {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 (similar as in the proof of Lemma 4.2). One observes that the graded pieces
$\operatorname {\mathrm {Fil}}_{\bullet } {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 (similar as in the proof of Lemma 4.2). One observes that the graded pieces 
 $\operatorname {\mathrm {Gr}}_{i}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 of this filtration are all of rank
$\operatorname {\mathrm {Gr}}_{i}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 of this filtration are all of rank 
 $1$
 over
$1$
 over 
 ${\mathcal {R}}_{F_{{\mathfrak {p}}}, E}$
 (by [Reference Benois2, Proposition 1.2.7 (ii)]). In particular,
${\mathcal {R}}_{F_{{\mathfrak {p}}}, E}$
 (by [Reference Benois2, Proposition 1.2.7 (ii)]). In particular, 
 $\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 is a triangulation of
$\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 is a triangulation of 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
. In fact, we have the following description for the graded pieces:
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
. In fact, we have the following description for the graded pieces: 
 $$\begin{align*}\operatorname{\mathrm{Gr}}_i {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho) = {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{n-i}), \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{Gr}}_i {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho) = {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{n-i}), \end{align*}$$
where
 $$\begin{align*}\delta_{n-i}(z) = \left(\prod_{\sigma: F_{{\mathfrak{p}}} \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{-k_{{\mathfrak{p}}, \sigma, i}} \right)|\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^{-(m-n+i)}. \end{align*}$$
$$\begin{align*}\delta_{n-i}(z) = \left(\prod_{\sigma: F_{{\mathfrak{p}}} \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{-k_{{\mathfrak{p}}, \sigma, i}} \right)|\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^{-(m-n+i)}. \end{align*}$$
Remark 5.2. For every 
 ${\mathfrak {p}} | p$
, since
${\mathfrak {p}} | p$
, since 
 $k_{{\mathfrak {p}}, \sigma , n}> m > k_{{\mathfrak {p}},\sigma , n-1} $
, we see that
$k_{{\mathfrak {p}}, \sigma , n}> m > k_{{\mathfrak {p}},\sigma , n-1} $
, we see that 
 $\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{{\mathfrak {p}}, \bullet , n-1}-m} {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m)) = \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0 {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
. Moreover, the orthogonality condition (FM2) implies that
$\operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{{\mathfrak {p}}, \bullet , n-1}-m} {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m)) = \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0 {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
. Moreover, the orthogonality condition (FM2) implies that 
 $\operatorname {\mathrm {Fil}}_{n-1}^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
 is a regular
$\operatorname {\mathrm {Fil}}_{n-1}^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
 is a regular 
 $(\varphi , N)$
-submodule of
$(\varphi , N)$
-submodule of 
 ${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
. Hence, in what follows, we naturally work with
${\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
. Hence, in what follows, we naturally work with 
 $D_{{\mathfrak {p}}} := \operatorname {\mathrm {Fil}}_{n-1}^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m)) \subset {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
 and
$D_{{\mathfrak {p}}} := \operatorname {\mathrm {Fil}}_{n-1}^{\varphi }{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m)) \subset {\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
 and 
 $D = \bigoplus _{{\mathfrak {p}} | p}D_{{\mathfrak {p}}} \subset \bigoplus _{{\mathfrak {p}} |p}{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
. Moreover, in our situation, we shall see in the proof (e.g., (5.2)) that the corresponding
$D = \bigoplus _{{\mathfrak {p}} | p}D_{{\mathfrak {p}}} \subset \bigoplus _{{\mathfrak {p}} |p}{\mathbf {D}}_{{\mathrm {st}}}(\rho _{{\mathfrak {p}}}(m))$
. Moreover, in our situation, we shall see in the proof (e.g., (5.2)) that the corresponding 
 $\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}}\rho )_p)$
 has positive Hodge–Tate weights, and so we remove such assumption in (GB4).
$\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}} {\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}_F^{{\mathbf {Q}}}\rho )_p)$
 has positive Hodge–Tate weights, and so we remove such assumption in (GB4).
Remark 5.3. We have many assumptions on our Galois representation 
 $\rho $
. On the one hand, one sees that they are necessary in order to attach both
$\rho $
. On the one hand, one sees that they are necessary in order to attach both 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}$
 and
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}$
 and 
 ${\mathcal {L}}_{\operatorname {\mathrm {FM}}}$
 to it. On the other hand, we remark that it is a folklore that they shall appear as Galois representations for automorphic forms of unitary groups whose corresponding Shimura varieties can be p-adically uniformized by Drinfeld’s upper-half spaces. For example, we are requiring maximal monodromy on our Galois representations. Such a phenomenon is expected to appear for the Galois representations attached to unitary automorphic representations that are Steinberg at p.
${\mathcal {L}}_{\operatorname {\mathrm {FM}}}$
 to it. On the other hand, we remark that it is a folklore that they shall appear as Galois representations for automorphic forms of unitary groups whose corresponding Shimura varieties can be p-adically uniformized by Drinfeld’s upper-half spaces. For example, we are requiring maximal monodromy on our Galois representations. Such a phenomenon is expected to appear for the Galois representations attached to unitary automorphic representations that are Steinberg at p.
5.2 The main theorem
Theorem 5.4. Keep the notations and assumptions as above. We have an equality
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}} | p} - {\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}). \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}} | p} - {\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}). \end{align*}$$
Proof The proof of the theorem is similar to the proof of [Reference Benois2, Proposition 2.3.7], which relies on the following three steps:
 
Step 1. Fontaine–Mazur 
 ${\mathcal {L}}$
-invariants and cohomology of
${\mathcal {L}}$
-invariants and cohomology of 
 $(\varphi , \Gamma )$
-modules.
$(\varphi , \Gamma )$
-modules.
 Consider the triangulation 
 $\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 in Remark 5.1. We define
$\operatorname {\mathrm {Fil}}_{\bullet }{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho )$
 in Remark 5.1. We define 
 $$\begin{align*}\widetilde{W}_{{\mathfrak{p}}} := \operatorname{\mathrm{Fil}}_{n}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)/\operatorname{\mathrm{Fil}}_{n-2}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho). \end{align*}$$
$$\begin{align*}\widetilde{W}_{{\mathfrak{p}}} := \operatorname{\mathrm{Fil}}_{n}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho)/\operatorname{\mathrm{Fil}}_{n-2}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho). \end{align*}$$
Hence, 
 $\widetilde {W}_{{\mathfrak {p}}}$
 sits inside the short exact sequence
$\widetilde {W}_{{\mathfrak {p}}}$
 sits inside the short exact sequence 

for 
 $\delta _{{\mathfrak {p}}, i} : F_{{\mathfrak {p}}}^\times \rightarrow E^\times $
 described as in Remark 5.1.
$\delta _{{\mathfrak {p}}, i} : F_{{\mathfrak {p}}}^\times \rightarrow E^\times $
 described as in Remark 5.1.
 As a result, 
 $\widetilde {W}_{{\mathfrak {p}}}$
 defines a class
$\widetilde {W}_{{\mathfrak {p}}}$
 defines a class 
 $$ \begin{align*} \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}) & \in \mathrm{Ext}_{(\varphi, \Gamma)}({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}), {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1})) \\ & \cong \mathrm{Ext}_{(\varphi, \Gamma)}({\mathcal{R}}, {\mathcal{R}}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1})) \\ & \cong H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1})). \end{align*} $$
$$ \begin{align*} \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}) & \in \mathrm{Ext}_{(\varphi, \Gamma)}({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}), {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1})) \\ & \cong \mathrm{Ext}_{(\varphi, \Gamma)}({\mathcal{R}}, {\mathcal{R}}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1})) \\ & \cong H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1})). \end{align*} $$
However, by construction, we know that 
 $\widetilde {W}_{{\mathfrak {p}}}$
 is semistable (since
$\widetilde {W}_{{\mathfrak {p}}}$
 is semistable (since 
 ${\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}) = D_{{\mathfrak {p}}, (\varphi , N)}^{(0)} \oplus D_{{\mathfrak {p}}, (\varphi , N)}^{(1)}$
), and so
${\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}) = D_{{\mathfrak {p}}, (\varphi , N)}^{(0)} \oplus D_{{\mathfrak {p}}, (\varphi , N)}^{(1)}$
), and so 
 $\operatorname {\mathrm {cl}}(\widetilde {W}_{{\mathfrak {p}}}) \in H_{{\mathrm {st}}}^1({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
. Recall that
$\operatorname {\mathrm {cl}}(\widetilde {W}_{{\mathfrak {p}}}) \in H_{{\mathrm {st}}}^1({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
. Recall that 
 $H_{{\mathrm {st}}}^1({\mathcal {R}}_{F_{{\mathfrak {p}}}, E} (\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
 can be computed via the complex
$H_{{\mathrm {st}}}^1({\mathcal {R}}_{F_{{\mathfrak {p}}}, E} (\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
 can be computed via the complex 
 $C_{{\mathrm {st}}}^{\bullet }({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
 with
$C_{{\mathrm {st}}}^{\bullet }({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
 with 

where the first map is given by 
 $a \mapsto \big (a\ \mod \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0 {\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1})), (\varphi -1)a, Na \big )$
, while the second arrow is defined by
$a \mapsto \big (a\ \mod \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0 {\mathcal {D}}_{{\mathrm {st}}}({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1})), (\varphi -1)a, Na \big )$
, while the second arrow is defined by 
 $(a, b, c)\mapsto Nb-(p\varphi -1)c$
.
$(a, b, c)\mapsto Nb-(p\varphi -1)c$
.
 Now, choose a basis 
 $v_{{\mathfrak {p}}, 0}\in D_{{\mathfrak {p}}, (\varphi , N)}^{(0)}$
 over
$v_{{\mathfrak {p}}, 0}\in D_{{\mathfrak {p}}, (\varphi , N)}^{(0)}$
 over 
 $F_{{\mathfrak {p}}, 0}\otimes _{{\mathbf {Q}}_p} E$
 and let
$F_{{\mathfrak {p}}, 0}\otimes _{{\mathbf {Q}}_p} E$
 and let 
 $v_{{\mathfrak {p}}, 1} := Nv_{{\mathfrak {p}}, 0}$
, which is a
$v_{{\mathfrak {p}}, 1} := Nv_{{\mathfrak {p}}, 0}$
, which is a 
 $F_{{\mathfrak {p}}, 0}\otimes _{{\mathbf {Q}}_p} E$
-basis for
$F_{{\mathfrak {p}}, 0}\otimes _{{\mathbf {Q}}_p} E$
-basis for 
 $D_{{\mathfrak {p}}, (\varphi , N)}^{(1)}$
. We again denote by
$D_{{\mathfrak {p}}, (\varphi , N)}^{(1)}$
. We again denote by 
 $v_{{\mathfrak {p}}, i}$
 for the image of
$v_{{\mathfrak {p}}, i}$
 for the image of 
 $v_{{\mathfrak {p}}, i}$
 in
$v_{{\mathfrak {p}}, i}$
 in 
 ${\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}(\delta _{{\mathfrak {p}}, 0}^{-1}))$
. By the proof of [Reference Benois2, Proposition 1.4.4 (ii)], we know that the class
${\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}(\delta _{{\mathfrak {p}}, 0}^{-1}))$
. By the proof of [Reference Benois2, Proposition 1.4.4 (ii)], we know that the class 
 $\operatorname {\mathrm {cl}}(\widetilde {W}_{{\mathfrak {p}}})$
 in
$\operatorname {\mathrm {cl}}(\widetilde {W}_{{\mathfrak {p}}})$
 in 
 $H^1(C_{{\mathrm {st}}}^{\bullet }({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1})))$
 is given by
$H^1(C_{{\mathrm {st}}}^{\bullet }({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1})))$
 is given by 
 $$\begin{align*}\operatorname{\mathrm{cl}}(a, b, c) = \operatorname{\mathrm{cl}}(a, (\varphi-1)v_{{\mathfrak{p}}, 0}, Nv_{{\mathfrak{p}}, 0}) = \operatorname{\mathrm{cl}}(a, 0 , v_{{\mathfrak{p}}, 1}), \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{cl}}(a, b, c) = \operatorname{\mathrm{cl}}(a, (\varphi-1)v_{{\mathfrak{p}}, 0}, Nv_{{\mathfrak{p}}, 0}) = \operatorname{\mathrm{cl}}(a, 0 , v_{{\mathfrak{p}}, 1}), \end{align*}$$
where 
 $a\in {\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}(\delta _{{\mathfrak {p}}, 0}^{-1}))$
 such that
$a\in {\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}(\delta _{{\mathfrak {p}}, 0}^{-1}))$
 such that 
 $v_{{\mathfrak {p}}, 0} + a \in \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0{\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}(\delta _{{\mathfrak {p}}, 0}^{-1}))$
. After untwisting, a defines an element, still denoted by
$v_{{\mathfrak {p}}, 0} + a \in \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^0{\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}}(\delta _{{\mathfrak {p}}, 0}^{-1}))$
. After untwisting, a defines an element, still denoted by 
 $a\in {\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}})$
 such that
$a\in {\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}})$
 such that 
 $v_{{\mathfrak {p}}, 0} +a \in \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{{\mathfrak {p}}, \bullet , n}}{\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}})$
. However, by construction,
$v_{{\mathfrak {p}}, 0} +a \in \operatorname {\mathrm {Fil}}_{\operatorname {\mathrm {dR}}}^{k_{{\mathfrak {p}}, \bullet , n}}{\mathcal {D}}_{{\mathrm {st}}}(\widetilde {W}_{{\mathfrak {p}}})$
. However, by construction, 
 $$\begin{align*}\operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{{\mathfrak{p}}, \bullet, n}}{\mathcal{D}}_{{\mathrm{st}}}(\widetilde{W}_{{\mathfrak{p}}}) = \operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-1}{\mathbf{D}}_{{\mathrm{st}}}(\rho) \text{ (notation as in Lemma 4.1)}. \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{Fil}}_{\operatorname{\mathrm{dR}}}^{k_{{\mathfrak{p}}, \bullet, n}}{\mathcal{D}}_{{\mathrm{st}}}(\widetilde{W}_{{\mathfrak{p}}}) = \operatorname{\mathrm{Gr}}_{\operatorname{\mathrm{dR}}}^{n-1}{\mathbf{D}}_{{\mathrm{st}}}(\rho) \text{ (notation as in Lemma 4.1)}. \end{align*}$$
Hence, we conclude that
 $$ \begin{align} \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}) = \operatorname{\mathrm{cl}}(-{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}})v_{{\mathfrak{p}}, 1}, 0, v_{{\mathfrak{p}}, 1})\in H^1(C_{{\mathrm{st}}}^{\bullet}({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1}))). \end{align} $$
$$ \begin{align} \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}) = \operatorname{\mathrm{cl}}(-{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}})v_{{\mathfrak{p}}, 1}, 0, v_{{\mathfrak{p}}, 1})\in H^1(C_{{\mathrm{st}}}^{\bullet}({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1}))). \end{align} $$
 
Step 2. Computing 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho )$
.
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho )$
.
 Next, we would also like to compute the Greenberg–Benois 
 ${\mathcal {L}}$
-invariant
${\mathcal {L}}$
-invariant 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho )$
 via cohomology of
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho )$
 via cohomology of 
 $(\varphi , \Gamma )$
-modules. As before, because of the decomposition
$(\varphi , \Gamma )$
-modules. As before, because of the decomposition 
 ${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho )_p) = \bigoplus _{{\mathfrak {p}}|p}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\operatorname {\mathrm {Ind}}_{F_{{\mathfrak {p}}}}^{{\mathbf {Q}}_p}\rho _{{\mathfrak {p}}})$
, we can study each
${\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }((\operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho )_p) = \bigoplus _{{\mathfrak {p}}|p}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\operatorname {\mathrm {Ind}}_{F_{{\mathfrak {p}}}}^{{\mathbf {Q}}_p}\rho _{{\mathfrak {p}}})$
, we can study each 
 ${\mathfrak {p}}$
 individually. Hence, fix
${\mathfrak {p}}$
 individually. Hence, fix 
 ${\mathfrak {p}} | p$
. Computing the five-step filtration (3.1) explicitly, we have
${\mathfrak {p}} | p$
. Computing the five-step filtration (3.1) explicitly, we have 
 $$\begin{align*}D_{{\mathfrak{p}}, i}^{\operatorname{\mathrm{GB}}} = \left\{ \begin{array}{@{}ll} 0, & i=-2, \\ \operatorname{\mathrm{Fil}}_{n-2}^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}(m)), & i=-1,\\ D_{{\mathfrak{p}}}, & i=0\\ {\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}(m)), & i=1,\\ {\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}(m)), & i=2, \end{array}\right. \end{align*}$$
$$\begin{align*}D_{{\mathfrak{p}}, i}^{\operatorname{\mathrm{GB}}} = \left\{ \begin{array}{@{}ll} 0, & i=-2, \\ \operatorname{\mathrm{Fil}}_{n-2}^{\varphi}{\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}(m)), & i=-1,\\ D_{{\mathfrak{p}}}, & i=0\\ {\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}(m)), & i=1,\\ {\mathbf{D}}_{{\mathrm{st}}}(\rho_{{\mathfrak{p}}}(m)), & i=2, \end{array}\right. \end{align*}$$
which gives rise to a five-step filtration 
 $\operatorname {\mathrm {Fil}}_{\bullet }^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}}(m))$
.
$\operatorname {\mathrm {Fil}}_{\bullet }^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}}(m))$
.
Let us simplify the notation and write
 $$\begin{align*}W_{{\mathfrak{p}}} = \operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_{{\mathfrak{p}}}(m))/\operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_{{\mathfrak{p}}}(m)). \end{align*}$$
$$\begin{align*}W_{{\mathfrak{p}}} = \operatorname{\mathrm{Fil}}_1^{\operatorname{\mathrm{GB}}} {\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_{{\mathfrak{p}}}(m))/\operatorname{\mathrm{Fil}}_{-1}^{\operatorname{\mathrm{GB}}}{\mathbf{D}}_{\operatorname{\mathrm{rig}}}^{\dagger}(\rho_{{\mathfrak{p}}}(m)). \end{align*}$$
Similar as before, we see that 
 $W_{{\mathfrak {p}}}$
 sits inside the short exact sequence
$W_{{\mathfrak {p}}}$
 sits inside the short exact sequence 

where
 $$\begin{align*}\delta_{{\mathfrak{p}}, n-i}' = \delta_{{\mathfrak{p}}, n-i}\left(\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z\right)^m |\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^m = \left(\prod_{\sigma: F_{{\mathfrak{p}}} \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{-k_{{\mathfrak{p}}, \sigma, i}+m} \right)|\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^{n-i}. \end{align*}$$
$$\begin{align*}\delta_{{\mathfrak{p}}, n-i}' = \delta_{{\mathfrak{p}}, n-i}\left(\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z\right)^m |\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^m = \left(\prod_{\sigma: F_{{\mathfrak{p}}} \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{-k_{{\mathfrak{p}}, \sigma, i}+m} \right)|\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^{n-i}. \end{align*}$$
By taking cohomology, we have the connecting homomorphism
 $$\begin{align*}\partial: H^0({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}')) \rightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')) = H_{{\mathrm{st}}}^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')), \end{align*}$$
$$\begin{align*}\partial: H^0({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}')) \rightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')) = H_{{\mathrm{st}}}^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')), \end{align*}$$
where the equation follows from Lemma 2.1. Denoted by 
 $\alpha _{\delta _{{\mathfrak {p}}, 1}'}^*$
 and
$\alpha _{\delta _{{\mathfrak {p}}, 1}'}^*$
 and 
 $\beta _{\delta _{{\mathfrak {p}}, 1}'}^*$
 the two classes in
$\beta _{\delta _{{\mathfrak {p}}, 1}'}^*$
 the two classes in 
 $H^1({\mathcal {R}}_{F_{{\mathfrak {p}}, E}}(\delta _{{\mathfrak {p}}, 1}'))$
 in Lemma 2.2. We know from loc. cit. that
$H^1({\mathcal {R}}_{F_{{\mathfrak {p}}, E}}(\delta _{{\mathfrak {p}}, 1}'))$
 in Lemma 2.2. We know from loc. cit. that 
 $\partial $
 gives rise to a unique number
$\partial $
 gives rise to a unique number 
 ${\mathcal {L}}(W_{{\mathfrak {p}}})\in E$
 such that
${\mathcal {L}}(W_{{\mathfrak {p}}})\in E$
 such that 
 $$\begin{align*}\beta_{\delta_{{\mathfrak{p}}, 1}'}^* + {\mathcal{L}}(W_{{\mathfrak{p}}}) \alpha_{\delta_{{\mathfrak{p}}, 1}'}^* \in \operatorname{\mathrm{image}} \partial. \end{align*}$$
$$\begin{align*}\beta_{\delta_{{\mathfrak{p}}, 1}'}^* + {\mathcal{L}}(W_{{\mathfrak{p}}}) \alpha_{\delta_{{\mathfrak{p}}, 1}'}^* \in \operatorname{\mathrm{image}} \partial. \end{align*}$$
We claim that
 $$ \begin{align} {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}}|p} {\mathcal{L}}(W_{{\mathfrak{p}}}). \end{align} $$
$$ \begin{align} {\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}}|p} {\mathcal{L}}(W_{{\mathfrak{p}}}). \end{align} $$
Note that, in the definition of 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
, one studies the cohomology of
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
, one studies the cohomology of 
 $\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}}(m))$
. However, we are now having cohomology classes in
$\operatorname {\mathrm {Gr}}_1^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger }(\rho _{{\mathfrak {p}}}(m))$
. However, we are now having cohomology classes in 
 $H^1(\operatorname {\mathrm {Gr}}_0^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger } (\rho _{{\mathfrak {p}}}(m)))$
. To resolve this, we look at the short exact sequence
$H^1(\operatorname {\mathrm {Gr}}_0^{\operatorname {\mathrm {GB}}}{\mathbf {D}}_{\operatorname {\mathrm {rig}}}^{\dagger } (\rho _{{\mathfrak {p}}}(m)))$
. To resolve this, we look at the short exact sequence 

By [Reference Benois2, Proposition 2.2.4], the Greenberg–Benois 
 ${\mathcal {L}}$
-invariant computed by this exact sequence (at each
${\mathcal {L}}$
-invariant computed by this exact sequence (at each 
 ${\mathfrak {p}}$
) is the same as
${\mathfrak {p}}$
) is the same as 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
. Here,
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
. Here, 
 $$\begin{align*}\kappa_{{\mathfrak{p}}, i}(z) = \left(\prod_{\sigma: F_{{\mathfrak{p}}} \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{k_{{\mathfrak{p}}, \sigma, n-i}-m+1} \right) |\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^{1-i}, \end{align*}$$
$$\begin{align*}\kappa_{{\mathfrak{p}}, i}(z) = \left(\prod_{\sigma: F_{{\mathfrak{p}}} \hookrightarrow \overline{{\mathbf{Q}}}_p} \sigma(z)^{k_{{\mathfrak{p}}, \sigma, n-i}-m+1} \right) |\mathrm{Nm}^{F_{{\mathfrak{p}}}}_{{\mathbf{Q}}_p}z|^{1-i}, \end{align*}$$
and we want to compute 
 ${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
 using the cohomology of
${\mathcal {L}}_{\operatorname {\mathrm {GB}}}(\rho (m))$
 using the cohomology of 
 ${\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\kappa _{{\mathfrak {p}}, 1})$
.
${\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\kappa _{{\mathfrak {p}}, 1})$
.
 By (B2), we have 
 $k_{{\mathfrak {p}}, \sigma , n-1}-m+1\leq 0$
 and we let
$k_{{\mathfrak {p}}, \sigma , n-1}-m+1\leq 0$
 and we let 
 $u_{{\mathfrak {p}}} := \min _{\sigma }\{ k_{{\mathfrak {p}}, \sigma , n-1}-m+1\}$
. By [Reference Rosso17, (2.8)], there is an injection
$u_{{\mathfrak {p}}} := \min _{\sigma }\{ k_{{\mathfrak {p}}, \sigma , n-1}-m+1\}$
. By [Reference Rosso17, (2.8)], there is an injection 
 $$\begin{align*}H^1({\mathcal{R}}_{{\mathbf{Q}}_p, E}(z^{u_{{\mathfrak{p}}}})) \hookrightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 1})), \quad \begin{array}{l} x_{u_{{\mathfrak{p}}}} \mapsto x_{k_{{\mathfrak{p}}, \bullet, n-1}-m+1} \\ y_{u_{{\mathfrak{p}}}} \mapsto y_{k_{{\mathfrak{p}}, \bullet, n-1}-m+1} \end{array}, \end{align*}$$
$$\begin{align*}H^1({\mathcal{R}}_{{\mathbf{Q}}_p, E}(z^{u_{{\mathfrak{p}}}})) \hookrightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 1})), \quad \begin{array}{l} x_{u_{{\mathfrak{p}}}} \mapsto x_{k_{{\mathfrak{p}}, \bullet, n-1}-m+1} \\ y_{u_{{\mathfrak{p}}}} \mapsto y_{k_{{\mathfrak{p}}, \bullet, n-1}-m+1} \end{array}, \end{align*}$$
where 
 $x_{u_{{\mathfrak {p}}}}$
,
$x_{u_{{\mathfrak {p}}}}$
, 
 $x_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
,
$x_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
, 
 $y_{u_{{\mathfrak {p}}}}$
, and
$y_{u_{{\mathfrak {p}}}}$
, and 
 $ y_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
 are as defined in loc. cit.
Footnote 
9
,Footnote 
10
 By the discussion on [Reference Rosso17, pp. 1238], we have a commutative diagram
$ y_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
 are as defined in loc. cit.
Footnote 
9
,Footnote 
10
 By the discussion on [Reference Rosso17, pp. 1238], we have a commutative diagram 

where 
 $\iota _c$
 is an isomorphism. Moreover, [op. cit., Corollary 3.9] yields that
$\iota _c$
 is an isomorphism. Moreover, [op. cit., Corollary 3.9] yields that 
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \det(\iota_f \circ \iota_c^{-1}). \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \det(\iota_f \circ \iota_c^{-1}). \end{align*}$$
In particular, if 
 ${\mathcal {L}}_{{\mathfrak {p}}}\in E$
 such that
${\mathcal {L}}_{{\mathfrak {p}}}\in E$
 such that 

then
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}}|p} {\mathcal{L}}_{{\mathfrak{p}}}. \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}}|p} {\mathcal{L}}_{{\mathfrak{p}}}. \end{align*}$$
 By definition, 
 $H^1\left (\bigoplus _{{\mathfrak {p}}|p}D_{{\mathfrak {p}}}^{\vee }(1-m), \operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho ^{\vee }(1-m)\right ) \cong \bigoplus _{{\mathfrak {p}}|p}\frac {H^1(W_{{\mathfrak {p}}}^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}))}{H_f^1(W_{{\mathfrak {p}}}^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}))}$
. The vertical morphism in (5.4) is compatible with the natural morphism
$H^1\left (\bigoplus _{{\mathfrak {p}}|p}D_{{\mathfrak {p}}}^{\vee }(1-m), \operatorname {\mathrm {Ind}}^{{\mathbf {Q}}}_{F}\rho ^{\vee }(1-m)\right ) \cong \bigoplus _{{\mathfrak {p}}|p}\frac {H^1(W_{{\mathfrak {p}}}^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}))}{H_f^1(W_{{\mathfrak {p}}}^{\vee }(\chi _{\operatorname {\mathrm {cyc}}}))}$
. The vertical morphism in (5.4) is compatible with the natural morphism 
 $$\begin{align*}H^1(W_{{\mathfrak{p}}}^{\vee}(\chi_{\operatorname{\mathrm{cyc}}})) \rightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 1})), \end{align*}$$
$$\begin{align*}H^1(W_{{\mathfrak{p}}}^{\vee}(\chi_{\operatorname{\mathrm{cyc}}})) \rightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 1})), \end{align*}$$
induced from the short exact sequence (5.2). Note that the exact sequence
 $$\begin{align*}H^1(W_{{\mathfrak{p}}}^{\vee}(\chi_{\operatorname{\mathrm{cyc}}})) \rightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 1})) \xrightarrow{\partial} H^2({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 0})) \end{align*}$$
$$\begin{align*}H^1(W_{{\mathfrak{p}}}^{\vee}(\chi_{\operatorname{\mathrm{cyc}}})) \rightarrow H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 1})) \xrightarrow{\partial} H^2({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\kappa_{{\mathfrak{p}}, 0})) \end{align*}$$
is dual to the exact sequence
 $$\begin{align*}H^0({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}')) \xrightarrow{\partial} H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')) \rightarrow H^1(W_{{\mathfrak{p}}}). \end{align*}$$
$$\begin{align*}H^0({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}')) \xrightarrow{\partial} H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')) \rightarrow H^1(W_{{\mathfrak{p}}}). \end{align*}$$
We have 
 $\partial ({\mathcal {L}}_{{\mathfrak {p}}} x_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1} + y_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}) = 0 \in H^2({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\kappa _{{\mathfrak {p}}, 0}))$
 and
$\partial ({\mathcal {L}}_{{\mathfrak {p}}} x_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1} + y_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}) = 0 \in H^2({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\kappa _{{\mathfrak {p}}, 0}))$
 and 
 $\beta _{\delta _{{\mathfrak {p}}, 1}'}^* + {\mathcal {L}}(W_{{\mathfrak {p}}}) \alpha _{\delta _{{\mathfrak {p}}, 1}'}^* = 0 \in H^1(W_{{\mathfrak {p}}})$
. Moreover, using the relation between
$\beta _{\delta _{{\mathfrak {p}}, 1}'}^* + {\mathcal {L}}(W_{{\mathfrak {p}}}) \alpha _{\delta _{{\mathfrak {p}}, 1}'}^* = 0 \in H^1(W_{{\mathfrak {p}}})$
. Moreover, using the relation between 
 $x_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
 (resp.,
$x_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
 (resp., 
 $y_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
) and
$y_{k_{{\mathfrak {p}}, \bullet , n-1}-m+1}$
) and 
 $\beta _{\delta _{{\mathfrak {p}}, 1}'}^*$
 (resp.,
$\beta _{\delta _{{\mathfrak {p}}, 1}'}^*$
 (resp., 
 $-\alpha _{\delta _{{\mathfrak {p}}, 1}'}^*$
), one sees that
$-\alpha _{\delta _{{\mathfrak {p}}, 1}'}^*$
), one sees that 
 $$\begin{align*}{\mathcal{L}}_{{\mathfrak{p}}} = {\mathcal{L}}(W_{{\mathfrak{p}}}), \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{{\mathfrak{p}}} = {\mathcal{L}}(W_{{\mathfrak{p}}}), \end{align*}$$
which concludes our claim.
Step 3. Conclusion.
 By construction, 
 $W_{{\mathfrak {p}}}$
 defines a class (see (5.2))
$W_{{\mathfrak {p}}}$
 defines a class (see (5.2)) 
 $$ \begin{align*} \mathrm{cl}(W_{{\mathfrak{p}}}) & \in \mathrm{Ext}_{(\varphi, \Gamma)}^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}'), {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')) \\ & \cong \mathrm{Ext}_{(\varphi, \Gamma)}^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}, {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}'\delta_{{\mathfrak{p}}, 0}'^{-1})) \\ & \cong H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1})). \end{align*} $$
$$ \begin{align*} \mathrm{cl}(W_{{\mathfrak{p}}}) & \in \mathrm{Ext}_{(\varphi, \Gamma)}^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 0}'), {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}')) \\ & \cong \mathrm{Ext}_{(\varphi, \Gamma)}^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}, {\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}'\delta_{{\mathfrak{p}}, 0}'^{-1})) \\ & \cong H^1({\mathcal{R}}_{F_{{\mathfrak{p}}}, E}(\delta_{{\mathfrak{p}}, 1}\delta_{{\mathfrak{p}}, 0}^{-1})). \end{align*} $$
Note that, as classes in 
 $H^1({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
, we have
$H^1({\mathcal {R}}_{F_{{\mathfrak {p}}}, E}(\delta _{{\mathfrak {p}}, 1}\delta _{{\mathfrak {p}}, 0}^{-1}))$
, we have 
 $$\begin{align*}\operatorname{\mathrm{cl}}(W_{{\mathfrak{p}}}) = \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}). \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{cl}}(W_{{\mathfrak{p}}}) = \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}). \end{align*}$$
Unwinding everything, we have
 $$\begin{align*}c\operatorname{\mathrm{cl}}({\mathcal{L}}(W_{{\mathfrak{p}}})v_{{\mathfrak{p}}, 1}, 0, -v_{{\mathfrak{p}}, 1}) = \operatorname{\mathrm{cl}}(W_{{\mathfrak{p}}}) = \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}) \stackrel{(5.1)}{=} \operatorname{\mathrm{cl}}(-{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}})v_{{\mathfrak{p}}, 1}, 0, v_{{\mathfrak{p}}, 1}) \end{align*}$$
$$\begin{align*}c\operatorname{\mathrm{cl}}({\mathcal{L}}(W_{{\mathfrak{p}}})v_{{\mathfrak{p}}, 1}, 0, -v_{{\mathfrak{p}}, 1}) = \operatorname{\mathrm{cl}}(W_{{\mathfrak{p}}}) = \operatorname{\mathrm{cl}}(\widetilde{W}_{{\mathfrak{p}}}) \stackrel{(5.1)}{=} \operatorname{\mathrm{cl}}(-{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}})v_{{\mathfrak{p}}, 1}, 0, v_{{\mathfrak{p}}, 1}) \end{align*}$$
for some 
 $c\in E$
. In particular, we conclude that
$c\in E$
. In particular, we conclude that 
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}) = -{\mathcal{L}}(W_{{\mathfrak{p}}}) \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}) = -{\mathcal{L}}(W_{{\mathfrak{p}}}) \end{align*}$$
and so,
 $$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}}|p} -{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}) \end{align*}$$
$$\begin{align*}{\mathcal{L}}_{\operatorname{\mathrm{GB}}}(\rho(m)) = \prod_{{\mathfrak{p}}|p} -{\mathcal{L}}_{\operatorname{\mathrm{FM}}}(\rho_{{\mathfrak{p}}}) \end{align*}$$
by (5.3).
Acknowledgements
 This paper grew from a working group with Ting-Han Huang, Martí Roset Julià, and Giovanni Rosso, and I would like to thank them for interesting discussions. I especially thank Giovanni Rosso for valuable feedback regarding the early draft of this paper. I also thank David Loeffler for pointing out a mistake in an early version of this paper. I would also like to thank Muhammad Manji for interesting discussions on 
 $(\varphi , \Gamma )$
-modules. Part of the work was done when I was visiting National Center for Theoretical Sciences in Taipei; I would like to thank the hospitality of the institute and Ming-Lun Hsieh. Finally, I thank the anonymous referees for their corrections and valuable suggestions, which helped to improve the exposition of the article. This work is supported by the ERC Consolidator grant “Shimura varieties and the BSD conjecture” and the Irish Research Council under grant number IRCLA/2023/849 (HighCritical).
$(\varphi , \Gamma )$
-modules. Part of the work was done when I was visiting National Center for Theoretical Sciences in Taipei; I would like to thank the hospitality of the institute and Ming-Lun Hsieh. Finally, I thank the anonymous referees for their corrections and valuable suggestions, which helped to improve the exposition of the article. This work is supported by the ERC Consolidator grant “Shimura varieties and the BSD conjecture” and the Irish Research Council under grant number IRCLA/2023/849 (HighCritical).
 
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
