1 Introduction
The following theorem is one of the main results of this paper. Our proof of Theorem 1.1 uses the framework of the toric Mori theory developed by [Reference ReidR, Reference FujinoF1, Reference FujinoF2, Reference FujinoF4, Reference Fujino and SatoFS1], and so on.
Theorem 1.1. (Theorem 4.2.3 and Corollary 4.2.4)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-Gorenstein projective toric
$\mathbb{Q}$-Gorenstein projective toric  $n$-fold and let
$n$-fold and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. Then
$X$. Then  $K_{X}+(n-1)D$ is pseudo-effective if and only if
$K_{X}+(n-1)D$ is pseudo-effective if and only if  $K_{X}+(n-1)D$ is nef. In particular, if
$K_{X}+(n-1)D$ is nef. In particular, if  $X$ is Gorenstein, then
$X$ is Gorenstein, then 
 $$\begin{eqnarray}H^{0}(X,{\mathcal{O}}_{X}(K_{X}+(n-1)D))\neq 0\end{eqnarray}$$
$$\begin{eqnarray}H^{0}(X,{\mathcal{O}}_{X}(K_{X}+(n-1)D))\neq 0\end{eqnarray}$$ if and only if the complete linear system  $|K_{X}+(n-1)D|$ is basepoint-free.
$|K_{X}+(n-1)D|$ is basepoint-free.
This theorem was inspired by Lin’s paper (see [Reference LinLi]). Our proof of Theorem 1.1 depends on the following new estimates of lengths of extremal rays of birational type for toric varieties.
Theorem 1.2. (Theorem 3.2.1)
 Let  $f:X\rightarrow Y$ be a projective toric morphism with
$f:X\rightarrow Y$ be a projective toric morphism with  $\dim X=n$. Assume that
$\dim X=n$. Assume that  $K_{X}$ is
$K_{X}$ is  $\mathbb{Q}$-Cartier. Let
$\mathbb{Q}$-Cartier. Let  $R$ be a
$R$ be a  $K_{X}$-negative extremal ray of
$K_{X}$-negative extremal ray of  $\operatorname{NE}(X/Y)$ and let
$\operatorname{NE}(X/Y)$ and let  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the contraction morphism associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the contraction morphism associated to  $R$. We put
$R$. We put 
 $$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)\end{eqnarray}$$
$$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)\end{eqnarray}$$ and call it the length of  $R$. Assume that
$R$. Assume that  $\unicode[STIX]{x1D711}_{R}$ is birational. Then we obtain
$\unicode[STIX]{x1D711}_{R}$ is birational. Then we obtain 
 $$\begin{eqnarray}l(R)<d+1,\end{eqnarray}$$
$$\begin{eqnarray}l(R)<d+1,\end{eqnarray}$$where
 $$\begin{eqnarray}d=\max _{w\in W}\dim \unicode[STIX]{x1D711}_{R}^{-1}(w)\leqslant n-1.\end{eqnarray}$$
$$\begin{eqnarray}d=\max _{w\in W}\dim \unicode[STIX]{x1D711}_{R}^{-1}(w)\leqslant n-1.\end{eqnarray}$$ When  $d=n-1$, we have a sharper inequality
$d=n-1$, we have a sharper inequality 
 $$\begin{eqnarray}l(R)\leqslant d=n-1.\end{eqnarray}$$
$$\begin{eqnarray}l(R)\leqslant d=n-1.\end{eqnarray}$$ In particular, if  $l(R)=n-1$, then
$l(R)=n-1$, then  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ can be described as follows. There exists a torus invariant smooth point
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ can be described as follows. There exists a torus invariant smooth point  $P\in W$ such that
$P\in W$ such that  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at  $P$ with the weight
$P$ with the weight  $(1,a,\ldots ,a)$ for some positive integer
$(1,a,\ldots ,a)$ for some positive integer  $a$. In this case, the exceptional locus
$a$. In this case, the exceptional locus  $E$ of
$E$ of  $\unicode[STIX]{x1D711}_{R}$ is a torus invariant prime divisor and is isomorphic to
$\unicode[STIX]{x1D711}_{R}$ is a torus invariant prime divisor and is isomorphic to  $\mathbb{P}^{n-1}$. Moreover,
$\mathbb{P}^{n-1}$. Moreover,  $X$ is
$X$ is  $\mathbb{Q}$-factorial in a neighborhood of
$\mathbb{Q}$-factorial in a neighborhood of  $E$.
$E$.
 Theorem 1.2 supplements [Reference FujinoF1, Theorem 0.1] (see also [Reference FujinoF2, Theorem 3.13]). We will see that the estimates obtained in Theorem 1.2 are the best by constructing some examples explicitly (see Examples 3.3.1 and 3.3.2). For lengths of extremal rays for nontoric varieties, see [Reference KawamataK]. As an application of Theorem 1.2, we can prove the following theorem on lengths of extremal rays for  $\mathbb{Q}$-Gorenstein toric varieties.
$\mathbb{Q}$-Gorenstein toric varieties.
Theorem 1.3. (Theorem 3.2.9)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-Gorenstein projective toric
$\mathbb{Q}$-Gorenstein projective toric  $n$-fold with
$n$-fold with  $\unicode[STIX]{x1D70C}(X)\geqslant 2$. Let
$\unicode[STIX]{x1D70C}(X)\geqslant 2$. Let  $R$ be a
$R$ be a  $K_{X}$-negative extremal ray of
$K_{X}$-negative extremal ray of  $\operatorname{NE}(X)$ such that
$\operatorname{NE}(X)$ such that 
 $$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)>n-1.\end{eqnarray}$$
$$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)>n-1.\end{eqnarray}$$ Then the extremal contraction  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to  $R$ is a
$R$ is a  $\mathbb{P}^{n-1}$-bundle over
$\mathbb{P}^{n-1}$-bundle over  $\mathbb{P}^{1}$.
$\mathbb{P}^{1}$.
As a direct easy consequence of Theorem 1.3, we obtain the following corollary, which supplements Theorem 1.1.
Corollary 1.4. (Corollary 4.2.5)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-Gorenstein projective toric
$\mathbb{Q}$-Gorenstein projective toric  $n$-fold and let
$n$-fold and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. If
$X$. If  $\unicode[STIX]{x1D70C}(X)\geqslant 3$, then
$\unicode[STIX]{x1D70C}(X)\geqslant 3$, then  $K_{X}+(n-1)D$ is always nef. More precisely, if
$K_{X}+(n-1)D$ is always nef. More precisely, if  $\unicode[STIX]{x1D70C}(X)\geqslant 2$ and
$\unicode[STIX]{x1D70C}(X)\geqslant 2$ and  $X$ is not a
$X$ is not a  $\mathbb{P}^{n-1}$-bundle over
$\mathbb{P}^{n-1}$-bundle over  $\mathbb{P}^{1}$, then
$\mathbb{P}^{1}$, then  $K_{X}+(n-1)D$ is nef.
$K_{X}+(n-1)D$ is nef.
In this paper, we also give some generalizations of Fujita’s freeness and very ampleness for toric varieties based on our powerful vanishing theorem (see [Reference FujinoF5, Reference FujinoF6]). As a very special case of our generalization of Fujita’s freeness for toric varieties (see Theorem 4.1.1), we can easily recover some parts of Lin’s theorem (see [Reference LinLi, Main theorem A]).
Theorem 1.5. (Corollary 4.1.2)
 Let  $X$ be an
$X$ be an  $n$-dimensional projective toric variety and let
$n$-dimensional projective toric variety and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. Then the reflexive sheaf
$X$. Then the reflexive sheaf  ${\mathcal{O}}_{X}(K_{X}+(n+1)D)$ is generated by its global sections.
${\mathcal{O}}_{X}(K_{X}+(n+1)D)$ is generated by its global sections.
By the same way, we can obtain a generalization of Fujita’s very ampleness for toric varieties (see Theorem 4.1.8). We note that Payne completely settled Fujita’s very ampleness conjecture for singular projective toric varieties by his clever combinatorial approach (see [Reference PayneP]). As was mentioned above, we do not use combinatorial arguments, but apply some vanishing theorems for the proof of Theorem 1.6.
Theorem 1.6. (Theorem 4.1.6)
 Let  $f:X\rightarrow Y$ be a proper surjective toric morphism, let
$f:X\rightarrow Y$ be a proper surjective toric morphism, let  $\unicode[STIX]{x1D6E5}$ be a reduced torus invariant divisor on
$\unicode[STIX]{x1D6E5}$ be a reduced torus invariant divisor on  $X$ such that
$X$ such that  $K_{X}+\unicode[STIX]{x1D6E5}$ is Cartier, and let
$K_{X}+\unicode[STIX]{x1D6E5}$ is Cartier, and let  $D$ be an
$D$ be an  $f$-ample Cartier divisor on
$f$-ample Cartier divisor on  $X$. Then
$X$. Then  ${\mathcal{O}}_{X}(K_{X}+\unicode[STIX]{x1D6E5}+kD)$ is
${\mathcal{O}}_{X}(K_{X}+\unicode[STIX]{x1D6E5}+kD)$ is  $f$-very ample for every
$f$-very ample for every  $k\geqslant \max _{y\in Y}\dim f^{-1}(y)+2$.
$k\geqslant \max _{y\in Y}\dim f^{-1}(y)+2$.
For the precise statements of our generalizations of Fujita’s freeness and very ampleness for toric varieties, see Theorems 4.1.1 and 4.1.8. We omit them here since they are technically complicated.
 This paper is organized as follows. In Section 2, we collect some basic definitions and results. In Section 2.1, we explain the basic concepts of the toric geometry. In Section 2.2, we recall the definitions of the Kleiman–Mori cone, the nef cone, the ample cone, and the pseudo-effective cone for toric varieties, and some related results. In Section 2.3, we explain subadjunction for  $\mathbb{Q}$-factorial toric varieties. Section 3 is the main part of this paper. After recalling the known estimates of lengths of extremal rays for projective toric varieties in Section 3.1, we give new estimates of lengths of extremal rays of toric birational contraction morphisms in Section 3.2. In Section 3.3, we see that the estimates obtained in Section 3.2 are the best by constructing some examples explicitly. Section 4 treats Fujita’s freeness and very ampleness for toric varieties. The results in Section 4.1 depend on our powerful vanishing theorem for toric varieties and are independent of our estimates of lengths of extremal rays for toric varieties. Therefore, Section 4.1 is independent of the other parts of this paper. In Section 4.2, we discuss Lin’s problem (see [Reference LinLi]) related to Fujita’s freeness for toric varieties. We use our new estimates of lengths of extremal rays in this subsection. Section 4.3 is a supplement to Fujita’s paper: [Reference FujitaFuj]. This paper contains various supplementary results for [Reference FujitaFuj, Reference FultonFul, Reference LinLi], and so on.
$\mathbb{Q}$-factorial toric varieties. Section 3 is the main part of this paper. After recalling the known estimates of lengths of extremal rays for projective toric varieties in Section 3.1, we give new estimates of lengths of extremal rays of toric birational contraction morphisms in Section 3.2. In Section 3.3, we see that the estimates obtained in Section 3.2 are the best by constructing some examples explicitly. Section 4 treats Fujita’s freeness and very ampleness for toric varieties. The results in Section 4.1 depend on our powerful vanishing theorem for toric varieties and are independent of our estimates of lengths of extremal rays for toric varieties. Therefore, Section 4.1 is independent of the other parts of this paper. In Section 4.2, we discuss Lin’s problem (see [Reference LinLi]) related to Fujita’s freeness for toric varieties. We use our new estimates of lengths of extremal rays in this subsection. Section 4.3 is a supplement to Fujita’s paper: [Reference FujitaFuj]. This paper contains various supplementary results for [Reference FujitaFuj, Reference FultonFul, Reference LinLi], and so on.
We will work over an arbitrary algebraically closed field throughout this paper. For the standard notations of the minimal model program, see [Reference FujinoF7, Reference FujinoF8]. For the toric Mori theory, we recommend the reader to see [Reference ReidR], [Reference MatsukiMa, Chapter 14], [Reference FujinoF1], and [Reference Fujino and SatoFS1] (see also [Reference Cox, Little and SchenckCLS]).
2 Preliminaries
This section collects some basic definitions and results.
2.1 Basics of the toric geometry
In this subsection, we recall the basic notion of toric varieties and fix the notation. For the details, see [Reference OdaO, Reference FultonFul, Reference ReidR], or [Reference MatsukiMa, Chapter 14] (see also [Reference Cox, Little and SchenckCLS]).
2.1.1. Let  $N\simeq \mathbb{Z}^{n}$ be a lattice of rank
$N\simeq \mathbb{Z}^{n}$ be a lattice of rank  $n$. A toric variety
$n$. A toric variety  $X(\unicode[STIX]{x1D6F4})$ is associated to a fan
$X(\unicode[STIX]{x1D6F4})$ is associated to a fan  $\unicode[STIX]{x1D6F4}$, a correction of convex cones
$\unicode[STIX]{x1D6F4}$, a correction of convex cones  $\unicode[STIX]{x1D70E}\subset N_{\mathbb{R}}=N\otimes _{\mathbb{Z}}\mathbb{R}$ satisfying:
$\unicode[STIX]{x1D70E}\subset N_{\mathbb{R}}=N\otimes _{\mathbb{Z}}\mathbb{R}$ satisfying:
- (i) Each convex cone  $\unicode[STIX]{x1D70E}$ is a rational polyhedral cone in the sense that there are finitely many $\unicode[STIX]{x1D70E}$ is a rational polyhedral cone in the sense that there are finitely many $v_{1},\ldots ,v_{s}\in N\subset N_{\mathbb{R}}$ such that and it is strongly convex in the sense that $v_{1},\ldots ,v_{s}\in N\subset N_{\mathbb{R}}$ such that and it is strongly convex in the sense that $$\begin{eqnarray}\unicode[STIX]{x1D70E}=\{r_{1}v_{1}+\cdots +r_{s}v_{s};r_{i}\geqslant 0\}=:\langle v_{1},\ldots ,v_{s}\rangle ,\end{eqnarray}$$ $$\begin{eqnarray}\unicode[STIX]{x1D70E}=\{r_{1}v_{1}+\cdots +r_{s}v_{s};r_{i}\geqslant 0\}=:\langle v_{1},\ldots ,v_{s}\rangle ,\end{eqnarray}$$ $$\begin{eqnarray}\unicode[STIX]{x1D70E}\cap -\unicode[STIX]{x1D70E}=\{0\}.\end{eqnarray}$$ $$\begin{eqnarray}\unicode[STIX]{x1D70E}\cap -\unicode[STIX]{x1D70E}=\{0\}.\end{eqnarray}$$
- (ii) Each face  $\unicode[STIX]{x1D70F}$ of a convex cone $\unicode[STIX]{x1D70F}$ of a convex cone $\unicode[STIX]{x1D70E}\in \unicode[STIX]{x1D6F4}$ is again an element in $\unicode[STIX]{x1D70E}\in \unicode[STIX]{x1D6F4}$ is again an element in $\unicode[STIX]{x1D6F4}$. $\unicode[STIX]{x1D6F4}$.
- (iii) The intersection of two cones in  $\unicode[STIX]{x1D6F4}$ is a face of each. $\unicode[STIX]{x1D6F4}$ is a face of each.
Definition 2.1.2. The dimension  $\dim \unicode[STIX]{x1D70E}$ of a cone
$\dim \unicode[STIX]{x1D70E}$ of a cone  $\unicode[STIX]{x1D70E}$ is the dimension of the linear space
$\unicode[STIX]{x1D70E}$ is the dimension of the linear space  $\mathbb{R}\cdot \unicode[STIX]{x1D70E}=\unicode[STIX]{x1D70E}+(-\unicode[STIX]{x1D70E})$ spanned by
$\mathbb{R}\cdot \unicode[STIX]{x1D70E}=\unicode[STIX]{x1D70E}+(-\unicode[STIX]{x1D70E})$ spanned by  $\unicode[STIX]{x1D70E}$.
$\unicode[STIX]{x1D70E}$.
 We define the sublattice  $N_{\unicode[STIX]{x1D70E}}$ of
$N_{\unicode[STIX]{x1D70E}}$ of  $N$ generated (as a subgroup) by
$N$ generated (as a subgroup) by  $\unicode[STIX]{x1D70E}\cap N$ as follows:
$\unicode[STIX]{x1D70E}\cap N$ as follows: 
 $$\begin{eqnarray}N_{\unicode[STIX]{x1D70E}}:=\unicode[STIX]{x1D70E}\cap N+(-\unicode[STIX]{x1D70E}\cap N).\end{eqnarray}$$
$$\begin{eqnarray}N_{\unicode[STIX]{x1D70E}}:=\unicode[STIX]{x1D70E}\cap N+(-\unicode[STIX]{x1D70E}\cap N).\end{eqnarray}$$ If  $\unicode[STIX]{x1D70E}$ is a
$\unicode[STIX]{x1D70E}$ is a  $k$-dimensional simplicial cone, and
$k$-dimensional simplicial cone, and  $v_{1},\ldots ,v_{k}$ are the first lattice points along the edges of
$v_{1},\ldots ,v_{k}$ are the first lattice points along the edges of  $\unicode[STIX]{x1D70E}$, the multiplicity of
$\unicode[STIX]{x1D70E}$, the multiplicity of  $\unicode[STIX]{x1D70E}$ is defined to be the index of the lattice generated by the
$\unicode[STIX]{x1D70E}$ is defined to be the index of the lattice generated by the  $\{v_{1},\ldots ,v_{k}\}$ in the lattice
$\{v_{1},\ldots ,v_{k}\}$ in the lattice  $N_{\unicode[STIX]{x1D70E}}$;
$N_{\unicode[STIX]{x1D70E}}$; 
 $$\begin{eqnarray}\operatorname{mult}(\unicode[STIX]{x1D70E}):=[N_{\unicode[STIX]{x1D70E}}:\mathbb{Z}v_{1}+\cdots +\mathbb{Z}v_{k}].\end{eqnarray}$$
$$\begin{eqnarray}\operatorname{mult}(\unicode[STIX]{x1D70E}):=[N_{\unicode[STIX]{x1D70E}}:\mathbb{Z}v_{1}+\cdots +\mathbb{Z}v_{k}].\end{eqnarray}$$ We note that the affine toric variety  $X(\unicode[STIX]{x1D70E})$ associated to the cone
$X(\unicode[STIX]{x1D70E})$ associated to the cone  $\unicode[STIX]{x1D70E}$ is smooth if and only if
$\unicode[STIX]{x1D70E}$ is smooth if and only if  $\operatorname{mult}(\unicode[STIX]{x1D70E})=1$.
$\operatorname{mult}(\unicode[STIX]{x1D70E})=1$.
The following is a well-known fact. See, for example, [Reference MatsukiMa, Lemma 14-1-1].
Lemma 2.1.3. A toric variety  $X(\unicode[STIX]{x1D6F4})$ is
$X(\unicode[STIX]{x1D6F4})$ is  $\mathbb{Q}$-factorial if and only if each cone
$\mathbb{Q}$-factorial if and only if each cone  $\unicode[STIX]{x1D70E}\in \unicode[STIX]{x1D6F4}$ is simplicial.
$\unicode[STIX]{x1D70E}\in \unicode[STIX]{x1D6F4}$ is simplicial.
2.1.4. The star of a cone  $\unicode[STIX]{x1D70F}$ can be defined abstractly as the set of cones
$\unicode[STIX]{x1D70F}$ can be defined abstractly as the set of cones  $\unicode[STIX]{x1D70E}$ in
$\unicode[STIX]{x1D70E}$ in  $\unicode[STIX]{x1D6F4}$ that contain
$\unicode[STIX]{x1D6F4}$ that contain  $\unicode[STIX]{x1D70F}$ as a face. Such cones
$\unicode[STIX]{x1D70F}$ as a face. Such cones  $\unicode[STIX]{x1D70E}$ are determined by their images in
$\unicode[STIX]{x1D70E}$ are determined by their images in  $N(\unicode[STIX]{x1D70F}):=N/N_{\unicode[STIX]{x1D70F}}$, that is, by
$N(\unicode[STIX]{x1D70F}):=N/N_{\unicode[STIX]{x1D70F}}$, that is, by 
 $$\begin{eqnarray}\overline{\unicode[STIX]{x1D70E}}=\unicode[STIX]{x1D70E}+(N_{\unicode[STIX]{x1D70F}})_{\mathbb{R}}/(N_{\unicode[STIX]{x1D70F}})_{\mathbb{R}}\subset N(\unicode[STIX]{x1D70F})_{\mathbb{R}}.\end{eqnarray}$$
$$\begin{eqnarray}\overline{\unicode[STIX]{x1D70E}}=\unicode[STIX]{x1D70E}+(N_{\unicode[STIX]{x1D70F}})_{\mathbb{R}}/(N_{\unicode[STIX]{x1D70F}})_{\mathbb{R}}\subset N(\unicode[STIX]{x1D70F})_{\mathbb{R}}.\end{eqnarray}$$ These cones  $\{\overline{\unicode[STIX]{x1D70E}};\unicode[STIX]{x1D70F}\prec \unicode[STIX]{x1D70E}\}$ form a fan in
$\{\overline{\unicode[STIX]{x1D70E}};\unicode[STIX]{x1D70F}\prec \unicode[STIX]{x1D70E}\}$ form a fan in  $N(\unicode[STIX]{x1D70F})$, and we denote this fan by
$N(\unicode[STIX]{x1D70F})$, and we denote this fan by  $\operatorname{Star}(\unicode[STIX]{x1D70F})$. We set
$\operatorname{Star}(\unicode[STIX]{x1D70F})$. We set  $V(\unicode[STIX]{x1D70F})=X(\operatorname{Star}(\unicode[STIX]{x1D70F}))$, that is, the toric variety associated to the fan
$V(\unicode[STIX]{x1D70F})=X(\operatorname{Star}(\unicode[STIX]{x1D70F}))$, that is, the toric variety associated to the fan  $\operatorname{Star}(\unicode[STIX]{x1D70F})$. It is well known that
$\operatorname{Star}(\unicode[STIX]{x1D70F})$. It is well known that  $V(\unicode[STIX]{x1D70F})$ is an
$V(\unicode[STIX]{x1D70F})$ is an  $(n-k)$-dimensional closed toric subvariety of
$(n-k)$-dimensional closed toric subvariety of  $X(\unicode[STIX]{x1D6F4})$, where
$X(\unicode[STIX]{x1D6F4})$, where  $\dim \unicode[STIX]{x1D70F}=k$. If
$\dim \unicode[STIX]{x1D70F}=k$. If  $\dim V(\unicode[STIX]{x1D70F})=1$ (resp.
$\dim V(\unicode[STIX]{x1D70F})=1$ (resp.  $n-1$), then we call
$n-1$), then we call  $V(\unicode[STIX]{x1D70F})$ a torus invariant curve (resp. torus invariant divisor). For the details about the correspondence between
$V(\unicode[STIX]{x1D70F})$ a torus invariant curve (resp. torus invariant divisor). For the details about the correspondence between  $\unicode[STIX]{x1D70F}$ and
$\unicode[STIX]{x1D70F}$ and  $V(\unicode[STIX]{x1D70F})$, see [Reference FultonFul, 3.1 Orbits].
$V(\unicode[STIX]{x1D70F})$, see [Reference FultonFul, 3.1 Orbits].
2.1.5. (Intersection theory for  $\mathbb{Q}$-factorial toric varieties)
$\mathbb{Q}$-factorial toric varieties)
 Assume that  $\unicode[STIX]{x1D6F4}$ is simplicial. If
$\unicode[STIX]{x1D6F4}$ is simplicial. If  $\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70F}\in \unicode[STIX]{x1D6F4}$ span
$\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70F}\in \unicode[STIX]{x1D6F4}$ span  $\unicode[STIX]{x1D6FE}\in \unicode[STIX]{x1D6F4}$ with
$\unicode[STIX]{x1D6FE}\in \unicode[STIX]{x1D6F4}$ with  $\unicode[STIX]{x1D70E}\cap \unicode[STIX]{x1D70F}=\{0\}$, then
$\unicode[STIX]{x1D70E}\cap \unicode[STIX]{x1D70F}=\{0\}$, then 
 $$\begin{eqnarray}V(\unicode[STIX]{x1D70E})\cdot V(\unicode[STIX]{x1D70F})=\frac{\operatorname{mult}(\unicode[STIX]{x1D70E})\cdot \operatorname{mult}(\unicode[STIX]{x1D70F})}{\operatorname{mult}(\unicode[STIX]{x1D6FE})}V(\unicode[STIX]{x1D6FE})\end{eqnarray}$$
$$\begin{eqnarray}V(\unicode[STIX]{x1D70E})\cdot V(\unicode[STIX]{x1D70F})=\frac{\operatorname{mult}(\unicode[STIX]{x1D70E})\cdot \operatorname{mult}(\unicode[STIX]{x1D70F})}{\operatorname{mult}(\unicode[STIX]{x1D6FE})}V(\unicode[STIX]{x1D6FE})\end{eqnarray}$$ in the Chow group  $A^{\ast }(X)_{\mathbb{Q}}$. For the details, see [Reference FultonFul, 5.1 Chow groups]. If
$A^{\ast }(X)_{\mathbb{Q}}$. For the details, see [Reference FultonFul, 5.1 Chow groups]. If  $\unicode[STIX]{x1D70E}$ and
$\unicode[STIX]{x1D70E}$ and  $\unicode[STIX]{x1D70F}$ are contained in no cone of
$\unicode[STIX]{x1D70F}$ are contained in no cone of  $\unicode[STIX]{x1D6F4}$, then
$\unicode[STIX]{x1D6F4}$, then  $V(\unicode[STIX]{x1D70E})\cdot V(\unicode[STIX]{x1D70F})=0$.
$V(\unicode[STIX]{x1D70E})\cdot V(\unicode[STIX]{x1D70F})=0$.
2.2 Cones of divisors
In this subsection, we explain various cones of divisors and some related topics.
2.2.1. Let  $f:X\rightarrow Y$ be a proper toric morphism; a
$f:X\rightarrow Y$ be a proper toric morphism; a  $1$-cycle of
$1$-cycle of  $X/Y$ is a formal sum
$X/Y$ is a formal sum  $\sum a_{i}C_{i}$ with complete curves
$\sum a_{i}C_{i}$ with complete curves  $C_{i}$ in the fibers of
$C_{i}$ in the fibers of  $f$, and
$f$, and  $a_{i}\in \mathbb{Z}$. We put
$a_{i}\in \mathbb{Z}$. We put 
 $$\begin{eqnarray}Z_{1}(X/Y):=\{1\text{-cycles of }X/Y\},\end{eqnarray}$$
$$\begin{eqnarray}Z_{1}(X/Y):=\{1\text{-cycles of }X/Y\},\end{eqnarray}$$and
 $$\begin{eqnarray}Z_{1}(X/Y)_{\mathbb{R}}:=Z_{1}(X/Y)\otimes \mathbb{R}.\end{eqnarray}$$
$$\begin{eqnarray}Z_{1}(X/Y)_{\mathbb{R}}:=Z_{1}(X/Y)\otimes \mathbb{R}.\end{eqnarray}$$There is a pairing
 $$\begin{eqnarray}\operatorname{Pic}(X)\times Z_{1}(X/Y)_{\mathbb{R}}\rightarrow \mathbb{R}\end{eqnarray}$$
$$\begin{eqnarray}\operatorname{Pic}(X)\times Z_{1}(X/Y)_{\mathbb{R}}\rightarrow \mathbb{R}\end{eqnarray}$$ defined by  $({\mathcal{L}},C)\mapsto \deg _{C}{\mathcal{L}}$, extended by bilinearity. We define
$({\mathcal{L}},C)\mapsto \deg _{C}{\mathcal{L}}$, extended by bilinearity. We define 
 $$\begin{eqnarray}N^{1}(X/Y):=(\operatorname{Pic}(X)\otimes \mathbb{R})/\equiv\end{eqnarray}$$
$$\begin{eqnarray}N^{1}(X/Y):=(\operatorname{Pic}(X)\otimes \mathbb{R})/\equiv\end{eqnarray}$$and
 $$\begin{eqnarray}N_{1}(X/Y):=Z_{1}(X/Y)_{\mathbb{R}}/\equiv ,\end{eqnarray}$$
$$\begin{eqnarray}N_{1}(X/Y):=Z_{1}(X/Y)_{\mathbb{R}}/\equiv ,\end{eqnarray}$$ where the numerical equivalence  $\equiv$ is by definition the smallest equivalence relation which makes
$\equiv$ is by definition the smallest equivalence relation which makes  $N^{1}$ and
$N^{1}$ and  $N_{1}$ into dual spaces.
$N_{1}$ into dual spaces.
 Inside  $N_{1}(X/Y)$ there is a distinguished cone of effective
$N_{1}(X/Y)$ there is a distinguished cone of effective  $1$-cycles of
$1$-cycles of  $X/Y$,
$X/Y$, 
 $$\begin{eqnarray}\operatorname{NE}(X/Y)=\bigg\{Z\mid Z\equiv \sum a_{i}C_{i}\text{ with }a_{i}\in \mathbb{R}_{{\geqslant}0}\bigg\}\subset N_{1}(X/Y),\end{eqnarray}$$
$$\begin{eqnarray}\operatorname{NE}(X/Y)=\bigg\{Z\mid Z\equiv \sum a_{i}C_{i}\text{ with }a_{i}\in \mathbb{R}_{{\geqslant}0}\bigg\}\subset N_{1}(X/Y),\end{eqnarray}$$ which is usually called the Kleiman–Mori cone of  $f:X\rightarrow Y$. It is known that
$f:X\rightarrow Y$. It is known that  $\operatorname{NE}(X/Y)$ is a rational polyhedral cone. A face
$\operatorname{NE}(X/Y)$ is a rational polyhedral cone. A face  $F\prec \operatorname{NE}(X/Y)$ is called an extremal face in this case. A one-dimensional extremal face is called an extremal ray.
$F\prec \operatorname{NE}(X/Y)$ is called an extremal face in this case. A one-dimensional extremal face is called an extremal ray.
 We define the relative Picard number  $\unicode[STIX]{x1D70C}(X/Y)$ by
$\unicode[STIX]{x1D70C}(X/Y)$ by 
 $$\begin{eqnarray}\unicode[STIX]{x1D70C}(X/Y):=\dim _{\mathbb{Q}}N^{1}(X/Y)<\infty .\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70C}(X/Y):=\dim _{\mathbb{Q}}N^{1}(X/Y)<\infty .\end{eqnarray}$$ An element  $D\in N^{1}(X/Y)$ is called
$D\in N^{1}(X/Y)$ is called  $f$-nef if
$f$-nef if  $D\geqslant 0$ on
$D\geqslant 0$ on  $\operatorname{NE}(X/Y)$.
$\operatorname{NE}(X/Y)$.
 If  $X$ is complete and
$X$ is complete and  $Y$ is a point, then we write
$Y$ is a point, then we write  $\operatorname{NE}(X)$ and
$\operatorname{NE}(X)$ and  $\unicode[STIX]{x1D70C}(X)$ for
$\unicode[STIX]{x1D70C}(X)$ for  $\operatorname{NE}(X/Y)$ and
$\operatorname{NE}(X/Y)$ and  $\unicode[STIX]{x1D70C}(X/Y)$, respectively. We note that
$\unicode[STIX]{x1D70C}(X/Y)$, respectively. We note that  $N_{1}(X/Y)\subset N_{1}(X)$, and
$N_{1}(X/Y)\subset N_{1}(X)$, and  $N^{1}(X/Y)$ is the corresponding quotient of
$N^{1}(X/Y)$ is the corresponding quotient of  $N^{1}(X)$.
$N^{1}(X)$.
 From now on, we assume that  $X$ is complete. We define the nef cone
$X$ is complete. We define the nef cone  $\operatorname{Nef}(X)$, the ample cone
$\operatorname{Nef}(X)$, the ample cone  $\operatorname{Amp}(X)$, and the pseudo-effective cone
$\operatorname{Amp}(X)$, and the pseudo-effective cone  $\operatorname{PE}(X)$ in
$\operatorname{PE}(X)$ in  $N^{1}(X)$ as follows.
$N^{1}(X)$ as follows. 
 $$\begin{eqnarray}\displaystyle & \displaystyle \operatorname{Nef}(X)=\{D\mid D\text{ is nef}\}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \operatorname{Amp}(X)=\{D\mid D\text{ is ample}\} & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & \displaystyle \operatorname{Nef}(X)=\{D\mid D\text{ is nef}\}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \operatorname{Amp}(X)=\{D\mid D\text{ is ample}\} & \displaystyle \nonumber\end{eqnarray}$$and
 $$\begin{eqnarray}\operatorname{PE}(X)=\left\{D\biggm\vert\begin{array}{@{}l@{}}D\equiv \sum a_{i}D_{i}\text{ such that }D_{i}\text{ is an effective}\\ \text{Cartier divisor and }a_{i}\in \mathbb{R}_{{\geqslant}0}\text{ for every }i\end{array}\right\}.\end{eqnarray}$$
$$\begin{eqnarray}\operatorname{PE}(X)=\left\{D\biggm\vert\begin{array}{@{}l@{}}D\equiv \sum a_{i}D_{i}\text{ such that }D_{i}\text{ is an effective}\\ \text{Cartier divisor and }a_{i}\in \mathbb{R}_{{\geqslant}0}\text{ for every }i\end{array}\right\}.\end{eqnarray}$$It is easy to see that
 $$\begin{eqnarray}\operatorname{Amp}(X)\subset \operatorname{Nef}(X)\subset \operatorname{PE}(X).\end{eqnarray}$$
$$\begin{eqnarray}\operatorname{Amp}(X)\subset \operatorname{Nef}(X)\subset \operatorname{PE}(X).\end{eqnarray}$$The reader can find various examples of cones of divisors and curves in [Reference FujinoF3, Reference Fujino and PayneFP, Reference Fujino and SatoFS2].
Lemma 2.2.2. Let  $X$ be a complete toric variety and let
$X$ be a complete toric variety and let  $D$ be a
$D$ be a  $\mathbb{Q}$-Cartier
$\mathbb{Q}$-Cartier  $\mathbb{Q}$-divisor on
$\mathbb{Q}$-divisor on  $X$. Then
$X$. Then  $D$ is pseudo-effective if and only if
$D$ is pseudo-effective if and only if  $\unicode[STIX]{x1D705}(X,D)\geqslant 0$, that is, there exists a positive integer
$\unicode[STIX]{x1D705}(X,D)\geqslant 0$, that is, there exists a positive integer  $m$ such that
$m$ such that  $mD$ is Cartier and that
$mD$ is Cartier and that 
 $$\begin{eqnarray}H^{0}(X,{\mathcal{O}}_{X}(mD))\neq 0.\end{eqnarray}$$
$$\begin{eqnarray}H^{0}(X,{\mathcal{O}}_{X}(mD))\neq 0.\end{eqnarray}$$ More generally,  $g^{\ast }D$ is pseudo-effective for some projective birational toric morphism
$g^{\ast }D$ is pseudo-effective for some projective birational toric morphism  $g:Z\rightarrow X$ from a smooth projective toric variety
$g:Z\rightarrow X$ from a smooth projective toric variety  $Z$ if and only if
$Z$ if and only if  $\unicode[STIX]{x1D705}(X,D)\geqslant 0$.
$\unicode[STIX]{x1D705}(X,D)\geqslant 0$.
Proof. It is sufficient to prove that  $\unicode[STIX]{x1D705}(X,D)\geqslant 0$ when
$\unicode[STIX]{x1D705}(X,D)\geqslant 0$ when  $g^{\ast }D$ is pseudo-effective. By replacing
$g^{\ast }D$ is pseudo-effective. By replacing  $X$ and
$X$ and  $D$ with
$D$ with  $Z$ and
$Z$ and  $g^{\ast }D$, we may assume that
$g^{\ast }D$, we may assume that  $X$ is a smooth projective toric variety. In this case, it is easy to see that
$X$ is a smooth projective toric variety. In this case, it is easy to see that  $\operatorname{PE}(X)$ is spanned by the numerical equivalence classes of torus invariant prime divisors (see, for example, [Reference Cox, Little and SchenckCLS, Lemma 15.1.8]). Therefore, we can write
$\operatorname{PE}(X)$ is spanned by the numerical equivalence classes of torus invariant prime divisors (see, for example, [Reference Cox, Little and SchenckCLS, Lemma 15.1.8]). Therefore, we can write  $D\equiv \sum _{i}a_{i}D_{i}$ where
$D\equiv \sum _{i}a_{i}D_{i}$ where  $D_{i}$ is a torus invariant prime divisor and
$D_{i}$ is a torus invariant prime divisor and  $a_{i}\in \mathbb{Q}_{{>}0}$ for every
$a_{i}\in \mathbb{Q}_{{>}0}$ for every  $i$ since
$i$ since  $D$ is a
$D$ is a  $\mathbb{Q}$-divisor. Thus, we obtain
$\mathbb{Q}$-divisor. Thus, we obtain  $D{\sim}_{\mathbb{Q}}\sum _{i}a_{i}D_{i}\geqslant 0$. This implies
$D{\sim}_{\mathbb{Q}}\sum _{i}a_{i}D_{i}\geqslant 0$. This implies  $\unicode[STIX]{x1D705}(X,D)\geqslant 0$.◻
$\unicode[STIX]{x1D705}(X,D)\geqslant 0$.◻
2.2.3. Let  $X$ be a complete toric variety and let
$X$ be a complete toric variety and let  $g:Z\rightarrow X$ be a projective birational toric morphism from a smooth projective toric variety
$g:Z\rightarrow X$ be a projective birational toric morphism from a smooth projective toric variety  $Z$. Then
$Z$. Then 
 $$\begin{eqnarray}g^{\ast }:\operatorname{Pic}(X)\rightarrow \operatorname{Pic}(Z)\end{eqnarray}$$
$$\begin{eqnarray}g^{\ast }:\operatorname{Pic}(X)\rightarrow \operatorname{Pic}(Z)\end{eqnarray}$$induces a natural inclusion
 $$\begin{eqnarray}N^{1}(X){\hookrightarrow}N^{1}(Z).\end{eqnarray}$$
$$\begin{eqnarray}N^{1}(X){\hookrightarrow}N^{1}(Z).\end{eqnarray}$$ By this inclusion, we can see  $N^{1}(X)$ as a linear subspace of
$N^{1}(X)$ as a linear subspace of  $N^{1}(Z)$. It is well known that
$N^{1}(Z)$. It is well known that  $\operatorname{PE}(Z)$ is a rational polyhedral cone in
$\operatorname{PE}(Z)$ is a rational polyhedral cone in  $N^{1}(Z)$ (see, for example, [Reference Cox, Little and SchenckCLS, Lemma 15.1.8]). Note that the inclusion
$N^{1}(Z)$ (see, for example, [Reference Cox, Little and SchenckCLS, Lemma 15.1.8]). Note that the inclusion  $\operatorname{PE}(X)\subset N^{1}(X)\cap \operatorname{PE}(Z)$ is obvious. The opposite inclusion
$\operatorname{PE}(X)\subset N^{1}(X)\cap \operatorname{PE}(Z)$ is obvious. The opposite inclusion  $\operatorname{PE}(X)\supset N^{1}(X)\cap \operatorname{PE}(Z)$ follows from Lemma 2.2.2. Anyway, the equality
$\operatorname{PE}(X)\supset N^{1}(X)\cap \operatorname{PE}(Z)$ follows from Lemma 2.2.2. Anyway, the equality 
 $$\begin{eqnarray}\operatorname{PE}(X)=N^{1}(X)\cap \operatorname{PE}(Z)\end{eqnarray}$$
$$\begin{eqnarray}\operatorname{PE}(X)=N^{1}(X)\cap \operatorname{PE}(Z)\end{eqnarray}$$holds. In particular, we have the following statement.
Proposition 2.2.4. Let  $X$ be a complete toric variety. Then
$X$ be a complete toric variety. Then  $\operatorname{PE}(X)$ is a rational polyhedral cone in
$\operatorname{PE}(X)$ is a rational polyhedral cone in  $N^{1}(X)$.
$N^{1}(X)$.
The following lemma is well known and is very important. We will use it in the subsequent sections repeatedly.
Lemma 2.2.5. Let  $f:X\rightarrow Y$ be a proper toric morphism and let
$f:X\rightarrow Y$ be a proper toric morphism and let  $D$ be an
$D$ be an  $f$-nef Cartier divisor on
$f$-nef Cartier divisor on  $X$. Then
$X$. Then  $D$ is
$D$ is  $f$-free, that is,
$f$-free, that is, 
 $$\begin{eqnarray}f^{\ast }f_{\ast }{\mathcal{O}}_{X}(D)\rightarrow {\mathcal{O}}_{X}(D)\end{eqnarray}$$
$$\begin{eqnarray}f^{\ast }f_{\ast }{\mathcal{O}}_{X}(D)\rightarrow {\mathcal{O}}_{X}(D)\end{eqnarray}$$is surjective.
Proof. See, for example, [Reference NakayamaN, Chapter VI. 1.13. Lemma]. ◻
 We close this subsection with an easy example. It is well known that  $\operatorname{NE}(X)$ is spanned by the numerical equivalence classes of torus invariant irreducible curves. However, the dual cone
$\operatorname{NE}(X)$ is spanned by the numerical equivalence classes of torus invariant irreducible curves. However, the dual cone  $\operatorname{Nef}(X)$ of
$\operatorname{Nef}(X)$ of  $\operatorname{NE}(X)$ is not always spanned by the numerical equivalence classes of torus invariant prime divisors.
$\operatorname{NE}(X)$ is not always spanned by the numerical equivalence classes of torus invariant prime divisors.
Example 2.2.6. We consider  $\mathbb{P}^{1}\times \mathbb{P}^{1}$. Let
$\mathbb{P}^{1}\times \mathbb{P}^{1}$. Let  $p_{i}:\mathbb{P}^{1}\times \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ be the
$p_{i}:\mathbb{P}^{1}\times \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}$ be the  $i$th projection for
$i$th projection for  $i=1,2$. Let
$i=1,2$. Let  $D_{1},D_{2}$ (resp.
$D_{1},D_{2}$ (resp.  $D_{3},D_{4}$) be the torus invariant curves in the fibers of
$D_{3},D_{4}$) be the torus invariant curves in the fibers of  $p_{1}$ (resp.
$p_{1}$ (resp.  $p_{2}$). Let
$p_{2}$). Let  $X\rightarrow \mathbb{P}^{1}\times \mathbb{P}^{1}$ be the blow-up at the point
$X\rightarrow \mathbb{P}^{1}\times \mathbb{P}^{1}$ be the blow-up at the point  $P=D_{1}\cap D_{3}$ and let
$P=D_{1}\cap D_{3}$ and let  $E$ be the exceptional curve on
$E$ be the exceptional curve on  $X$. Let
$X$. Let  $D_{i}^{\prime }$ denote the strict transform of
$D_{i}^{\prime }$ denote the strict transform of  $D_{i}$ on
$D_{i}$ on  $X$ for all
$X$ for all  $i$. Then
$i$. Then  $\operatorname{NE}(X)$ is spanned by the numerical equivalence classes of
$\operatorname{NE}(X)$ is spanned by the numerical equivalence classes of  $E,D_{1}^{\prime }$, and
$E,D_{1}^{\prime }$, and  $D_{3}^{\prime }$. On the other hand,
$D_{3}^{\prime }$. On the other hand,  $\operatorname{Nef}(X)\subset N^{1}(X)$ is spanned by
$\operatorname{Nef}(X)\subset N^{1}(X)$ is spanned by  $D_{2}^{\prime },D_{4}^{\prime }$, and
$D_{2}^{\prime },D_{4}^{\prime }$, and  $D_{1}^{\prime }+D_{3}^{\prime }+E$. Therefore, the extremal ray of
$D_{1}^{\prime }+D_{3}^{\prime }+E$. Therefore, the extremal ray of  $\operatorname{Nef}(X)$ is not necessarily spanned by a torus invariant prime divisor.
$\operatorname{Nef}(X)$ is not necessarily spanned by a torus invariant prime divisor.
2.3 Subadjunction
 In this subsection, we quickly explain subadjunction for  $\mathbb{Q}$-factorial toric varieties for the reader’s convenience. We note that subadjunction plays an important role in the theory of minimal models (see, for example, [Reference FujinoF7, Section 14. Shokurov’s differents]).
$\mathbb{Q}$-factorial toric varieties for the reader’s convenience. We note that subadjunction plays an important role in the theory of minimal models (see, for example, [Reference FujinoF7, Section 14. Shokurov’s differents]).
Lemma 2.3.1. (Subadjunction)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-factorial toric variety and let
$\mathbb{Q}$-factorial toric variety and let  $\{{D_{i}\}}_{i\in I}$ be the set of all torus invariant prime divisors on
$\{{D_{i}\}}_{i\in I}$ be the set of all torus invariant prime divisors on  $X$. We consider
$X$. We consider  $D=\sum _{i\in I}d_{i}D_{i}$, where
$D=\sum _{i\in I}d_{i}D_{i}$, where  $d_{i}\in \mathbb{Q}$ and
$d_{i}\in \mathbb{Q}$ and  $0\leqslant d_{i}\leqslant 1$ for every
$0\leqslant d_{i}\leqslant 1$ for every  $i$. Since
$i$. Since  $X$ is a toric variety, we can put
$X$ is a toric variety, we can put  $K_{X}=-\!\sum _{i\in I}D_{i}$. We assume
$K_{X}=-\!\sum _{i\in I}D_{i}$. We assume  $d_{i_{0}}=1$ for some
$d_{i_{0}}=1$ for some  $i_{0}\in I$. We put
$i_{0}\in I$. We put  $S=D_{i_{0}}$. Let
$S=D_{i_{0}}$. Let  $\{{B_{j}\}}_{j\in J}$ be the set of all torus invariant prime divisors on
$\{{B_{j}\}}_{j\in J}$ be the set of all torus invariant prime divisors on  $S$. Then the following formula
$S$. Then the following formula 
 $$\begin{eqnarray}(K_{X}+D)|_{S}=K_{S}+\mathop{\sum }_{j\in J}b_{j}B_{i}\end{eqnarray}$$
$$\begin{eqnarray}(K_{X}+D)|_{S}=K_{S}+\mathop{\sum }_{j\in J}b_{j}B_{i}\end{eqnarray}$$ holds, where  $K_{S}=-\!\sum _{j\in J}B_{j}$,
$K_{S}=-\!\sum _{j\in J}B_{j}$,  $b_{j}\in \mathbb{Q}$ and
$b_{j}\in \mathbb{Q}$ and  $0\leqslant b_{j}\leqslant 1$ for every
$0\leqslant b_{j}\leqslant 1$ for every  $j$. Moreover,
$j$. Moreover,  $b_{j}=1$ holds in (2.1) if and only if there exists
$b_{j}=1$ holds in (2.1) if and only if there exists  $i(j)\in I$ such that
$i(j)\in I$ such that  $d_{i(j)}=1$ and that
$d_{i(j)}=1$ and that  $B_{j}=D_{i(j)}\cap S$. We note that
$B_{j}=D_{i(j)}\cap S$. We note that  $\sum _{j\in J}b_{j}B_{j}$ in (2.1) is usually called a different.
$\sum _{j\in J}b_{j}B_{j}$ in (2.1) is usually called a different.
Proof. We note that
 $$\begin{eqnarray}K_{X}+D=K_{X}+\mathop{\sum }_{i\in I}D_{i}-\mathop{\sum }_{i\in I}(1-d_{i})D_{i}=-\!\mathop{\sum }_{i\in I}(1-d_{i})D_{i}.\end{eqnarray}$$
$$\begin{eqnarray}K_{X}+D=K_{X}+\mathop{\sum }_{i\in I}D_{i}-\mathop{\sum }_{i\in I}(1-d_{i})D_{i}=-\!\mathop{\sum }_{i\in I}(1-d_{i})D_{i}.\end{eqnarray}$$Therefore, we have
 $$\begin{eqnarray}(K_{X}+D)|_{S}=-\!\mathop{\sum }_{i\in I}(1-d_{i})D_{i}\cdot S=K_{S}+\mathop{\sum }_{j\in J}B_{j}-\mathop{\sum }_{i\in I}(1-d_{i})D_{i}\cdot S.\end{eqnarray}$$
$$\begin{eqnarray}(K_{X}+D)|_{S}=-\!\mathop{\sum }_{i\in I}(1-d_{i})D_{i}\cdot S=K_{S}+\mathop{\sum }_{j\in J}B_{j}-\mathop{\sum }_{i\in I}(1-d_{i})D_{i}\cdot S.\end{eqnarray}$$We put
 $$\begin{eqnarray}\mathop{\sum }_{j\in J}b_{j}B_{j}=\mathop{\sum }_{j\in J}B_{j}-\mathop{\sum }_{i\in I}(1-d_{i})D_{i}\cdot S.\end{eqnarray}$$
$$\begin{eqnarray}\mathop{\sum }_{j\in J}b_{j}B_{j}=\mathop{\sum }_{j\in J}B_{j}-\mathop{\sum }_{i\in I}(1-d_{i})D_{i}\cdot S.\end{eqnarray}$$ Then we obtain  $b_{j}\in \mathbb{Q}$ and
$b_{j}\in \mathbb{Q}$ and  $0\leqslant b_{j}\leqslant 1$ for every
$0\leqslant b_{j}\leqslant 1$ for every  $j$ by 2.1.5. By (2.2), it is easy to see that
$j$ by 2.1.5. By (2.2), it is easy to see that  $b_{j}=1$ holds if and only if there exists
$b_{j}=1$ holds if and only if there exists  $i(j)\in I$ such that
$i(j)\in I$ such that  $d_{i(j)}=1$ and
$d_{i(j)}=1$ and  $D_{i(j)}\cap S=B_{j}$.◻
$D_{i(j)}\cap S=B_{j}$.◻
3 Lengths of extremal rays
In this section, we discuss some estimates of lengths of extremal rays of projective toric morphisms.
3.1 Quick review of the known estimates
In this subsection, we recall the known estimates of lengths of extremal rays for toric varieties. The first result is [Reference FujinoF1, Theorem 0.1] (see also [Reference FujinoF2, Theorem 3.13]).
Theorem 3.1.1. Let  $f:X\rightarrow Y$ be a projective toric morphism with
$f:X\rightarrow Y$ be a projective toric morphism with  $\dim X=n$ and let
$\dim X=n$ and let  $\unicode[STIX]{x1D6E5}=\sum \unicode[STIX]{x1D6FF}_{i}\unicode[STIX]{x1D6E5}_{i}$ be an
$\unicode[STIX]{x1D6E5}=\sum \unicode[STIX]{x1D6FF}_{i}\unicode[STIX]{x1D6E5}_{i}$ be an  $\mathbb{R}$-divisor on
$\mathbb{R}$-divisor on  $X$ such that
$X$ such that  $\unicode[STIX]{x1D6E5}_{i}$ is a torus invariant prime divisor and
$\unicode[STIX]{x1D6E5}_{i}$ is a torus invariant prime divisor and  $0\leqslant \unicode[STIX]{x1D6FF}_{i}\leqslant 1$ for every
$0\leqslant \unicode[STIX]{x1D6FF}_{i}\leqslant 1$ for every  $i$. Assume that
$i$. Assume that  $K_{X}+\unicode[STIX]{x1D6E5}$ is
$K_{X}+\unicode[STIX]{x1D6E5}$ is  $\mathbb{R}$-Cartier. Let
$\mathbb{R}$-Cartier. Let  $R$ be an extremal ray of
$R$ be an extremal ray of  $\operatorname{NE}(X/Y)$. Then there exists a curve
$\operatorname{NE}(X/Y)$. Then there exists a curve  $C$ on
$C$ on  $X$ such that
$X$ such that  $[C]\in R$ and
$[C]\in R$ and 
 $$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant n+1.\end{eqnarray}$$
$$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant n+1.\end{eqnarray}$$ More precisely, we can choose  $C$ such that
$C$ such that 
 $$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant n\end{eqnarray}$$
$$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant n\end{eqnarray}$$ unless  $X\simeq \mathbb{P}^{n}$ and
$X\simeq \mathbb{P}^{n}$ and  $\sum \unicode[STIX]{x1D6FF}_{i}<1$. We note that if
$\sum \unicode[STIX]{x1D6FF}_{i}<1$. We note that if  $X$ is complete then we can make
$X$ is complete then we can make  $C$ a torus invariant curve on
$C$ a torus invariant curve on  $X$.
$X$.
Our proof of Theorems 3.1.1 and 3.2.1 heavily depends on Reid’s description of toric extremal contraction morphisms (see [Reference ReidR] and [Reference MatsukiMa, Chapter 14]).
3.1.2. (Reid’s description of toric extremal contraction morphisms)
 Let  $f:X\rightarrow Y$ be a projective surjective toric morphism from a complete
$f:X\rightarrow Y$ be a projective surjective toric morphism from a complete  $\mathbb{Q}$-factorial toric
$\mathbb{Q}$-factorial toric  $n$-fold and let
$n$-fold and let  $R$ be an extremal ray of
$R$ be an extremal ray of  $\operatorname{NE}(X/Y)$. Let
$\operatorname{NE}(X/Y)$. Let  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the extremal contraction associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the extremal contraction associated to  $R$. We write
$R$. We write 
 $$\begin{eqnarray}\begin{array}{@{}cccc@{}} & A & \longrightarrow & B\\ & \cap & & \cap \\ \unicode[STIX]{x1D711}_{R}: & X & \longrightarrow & W,\\ \end{array}\end{eqnarray}$$
$$\begin{eqnarray}\begin{array}{@{}cccc@{}} & A & \longrightarrow & B\\ & \cap & & \cap \\ \unicode[STIX]{x1D711}_{R}: & X & \longrightarrow & W,\\ \end{array}\end{eqnarray}$$ where  $A$ is the exceptional locus of
$A$ is the exceptional locus of  $\unicode[STIX]{x1D711}_{R}$ and
$\unicode[STIX]{x1D711}_{R}$ and  $B$ is the image of
$B$ is the image of  $A$ by
$A$ by  $\unicode[STIX]{x1D711}_{R}$. Then there exist torus invariant prime divisors
$\unicode[STIX]{x1D711}_{R}$. Then there exist torus invariant prime divisors  $E_{1},\ldots ,E_{\unicode[STIX]{x1D6FC}}$ on
$E_{1},\ldots ,E_{\unicode[STIX]{x1D6FC}}$ on  $X$ with
$X$ with  $0\leqslant \unicode[STIX]{x1D6FC}\leqslant n-1$ such that
$0\leqslant \unicode[STIX]{x1D6FC}\leqslant n-1$ such that  $E_{i}$ is negative on
$E_{i}$ is negative on  $R$ for
$R$ for  $1\leqslant i\leqslant \unicode[STIX]{x1D6FC}$ and that
$1\leqslant i\leqslant \unicode[STIX]{x1D6FC}$ and that  $A$ is
$A$ is  $E_{1}\cap \cdots \cap E_{\unicode[STIX]{x1D6FC}}$. In particular,
$E_{1}\cap \cdots \cap E_{\unicode[STIX]{x1D6FC}}$. In particular,  $A$ is an irreducible torus invariant subvariety of
$A$ is an irreducible torus invariant subvariety of  $X$ with
$X$ with  $\dim A=n-\unicode[STIX]{x1D6FC}$. Note that
$\dim A=n-\unicode[STIX]{x1D6FC}$. Note that  $\unicode[STIX]{x1D6FC}=0$ if and only if
$\unicode[STIX]{x1D6FC}=0$ if and only if  $A=X$, that is,
$A=X$, that is,  $\unicode[STIX]{x1D711}_{R}$ is a Fano contraction. There are torus invariant prime divisors
$\unicode[STIX]{x1D711}_{R}$ is a Fano contraction. There are torus invariant prime divisors  $E_{\unicode[STIX]{x1D6FD}+1},\ldots ,E_{n+1}$ on
$E_{\unicode[STIX]{x1D6FD}+1},\ldots ,E_{n+1}$ on  $X$ with
$X$ with  $\unicode[STIX]{x1D6FC}\leqslant \unicode[STIX]{x1D6FD}\leqslant n-1$ such that
$\unicode[STIX]{x1D6FC}\leqslant \unicode[STIX]{x1D6FD}\leqslant n-1$ such that  $E_{i}$ is positive on
$E_{i}$ is positive on  $R$ for
$R$ for  $\unicode[STIX]{x1D6FD}+1\leqslant i\leqslant n+1$. Let
$\unicode[STIX]{x1D6FD}+1\leqslant i\leqslant n+1$. Let  $F$ be a general fiber of
$F$ be a general fiber of  $A\rightarrow B$. Then
$A\rightarrow B$. Then  $F$ is a
$F$ is a  $\mathbb{Q}$-factorial toric Fano variety with
$\mathbb{Q}$-factorial toric Fano variety with  $\unicode[STIX]{x1D70C}(F)=1$ and
$\unicode[STIX]{x1D70C}(F)=1$ and  $\dim F=n-\unicode[STIX]{x1D6FD}$. The divisors
$\dim F=n-\unicode[STIX]{x1D6FD}$. The divisors  $E_{\unicode[STIX]{x1D6FD}+1}|_{F},\ldots ,E_{n+1}|_{F}$ define all the torus invariant prime divisors on
$E_{\unicode[STIX]{x1D6FD}+1}|_{F},\ldots ,E_{n+1}|_{F}$ define all the torus invariant prime divisors on  $F$. In particular,
$F$. In particular,  $B$ is an irreducible torus invariant subvariety of
$B$ is an irreducible torus invariant subvariety of  $W$ with
$W$ with  $\dim B=\unicode[STIX]{x1D6FD}-\unicode[STIX]{x1D6FC}$. When
$\dim B=\unicode[STIX]{x1D6FD}-\unicode[STIX]{x1D6FC}$. When  $X$ is not complete, we can reduce it to the case where
$X$ is not complete, we can reduce it to the case where  $X$ is complete by the equivariant completion theorem in [Reference FujinoF2]. For the details, see [Reference SatoS].
$X$ is complete by the equivariant completion theorem in [Reference FujinoF2]. For the details, see [Reference SatoS].
3.1.3. We quickly review the idea of the proof of Theorem 3.1.1 in [Reference FujinoF1]. We will use the same idea in the proof of Theorem 3.2.1. By replacing  $X$ with its projective
$X$ with its projective  $\mathbb{Q}$-factorialization, we may assume that
$\mathbb{Q}$-factorialization, we may assume that  $X$ is
$X$ is  $\mathbb{Q}$-factorial. Let
$\mathbb{Q}$-factorial. Let  $R$ be an extremal ray of
$R$ be an extremal ray of  $\operatorname{NE}(X/Y)$. Then we consider the extremal contraction
$\operatorname{NE}(X/Y)$. Then we consider the extremal contraction  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to  $R$. If
$R$. If  $X$ is not projective, then we can reduce it to the case where
$X$ is not projective, then we can reduce it to the case where  $X$ is projective by the equivariant completion theorem (see [Reference FujinoF2]). By Reid’s combinatorial description of
$X$ is projective by the equivariant completion theorem (see [Reference FujinoF2]). By Reid’s combinatorial description of  $\unicode[STIX]{x1D711}_{R}$, any fiber
$\unicode[STIX]{x1D711}_{R}$, any fiber  $F$ of
$F$ of  $\unicode[STIX]{x1D711}_{R}$ is a
$\unicode[STIX]{x1D711}_{R}$ is a  $\mathbb{Q}$-factorial projective toric variety with
$\mathbb{Q}$-factorial projective toric variety with  $\unicode[STIX]{x1D70C}(F)=1$. By subadjunction (see Lemma 2.3.1), we can compare
$\unicode[STIX]{x1D70C}(F)=1$. By subadjunction (see Lemma 2.3.1), we can compare  $-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C$ with
$-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C$ with  $-K_{F}\cdot C$, where
$-K_{F}\cdot C$, where  $C$ is a curve on
$C$ is a curve on  $F$. So, the key ingredient of the proof of Theorem 3.1.1 is the following proposition.
$F$. So, the key ingredient of the proof of Theorem 3.1.1 is the following proposition.
Proposition 3.1.4. Let  $X$ be a
$X$ be a  $\mathbb{Q}$-factorial projective toric
$\mathbb{Q}$-factorial projective toric  $n$-fold with
$n$-fold with  $\unicode[STIX]{x1D70C}(X)=1$. Assume that
$\unicode[STIX]{x1D70C}(X)=1$. Assume that  $-K_{X}\cdot C>n$ for every integral curve
$-K_{X}\cdot C>n$ for every integral curve  $C$ on
$C$ on  $X$. Then
$X$. Then  $X\simeq \mathbb{P}^{n}$.
$X\simeq \mathbb{P}^{n}$.
For the proof, see [Reference FujinoF1, Proposition 2.9]. Our proof heavily depends on the calculation described in 3.1.8.
3.1.5. (Supplements to [Reference FujinoF4])
By the same arguments as in the proof of Proposition 3.1.4, we can obtain the next proposition, which is nothing but [Reference FujinoF4, Proposition 2.1].
Proposition 3.1.6. Let  $X$ be a
$X$ be a  $\mathbb{Q}$-factorial projective toric
$\mathbb{Q}$-factorial projective toric  $n$-fold with
$n$-fold with  $\unicode[STIX]{x1D70C}(X)=1$ such that
$\unicode[STIX]{x1D70C}(X)=1$ such that  $X\not \simeq \mathbb{P}^{n}$. Assume that
$X\not \simeq \mathbb{P}^{n}$. Assume that  $-K_{X}\cdot C\geqslant n$ for every integral curve
$-K_{X}\cdot C\geqslant n$ for every integral curve  $C$ on
$C$ on  $X$. Then
$X$. Then  $X$ is isomorphic to the weighted projective space
$X$ is isomorphic to the weighted projective space  $\mathbb{P}(1,1,2,\ldots ,2)$.
$\mathbb{P}(1,1,2,\ldots ,2)$.
The following proposition, which is missing in [Reference FujinoF4], is a characterization of hyperquadrics for toric varieties (see Corollary of [Reference Kobayashi and OchiaiKO, Theorem 2.1]). This proposition says that the results in [Reference FujinoF4] are compatible with [Reference FujitaFuj, Theorem 2(a)].
Proposition 3.1.7. Let  $X$ be a projective toric
$X$ be a projective toric  $n$-fold with
$n$-fold with  $n\geqslant 2$. We assume that
$n\geqslant 2$. We assume that  $-K_{X}\equiv nD$ for some Cartier divisor
$-K_{X}\equiv nD$ for some Cartier divisor  $D$ on
$D$ on  $X$ and
$X$ and  $\unicode[STIX]{x1D70C}(X)=1$. Then
$\unicode[STIX]{x1D70C}(X)=1$. Then  $D$ is very ample and
$D$ is very ample and  $\unicode[STIX]{x1D6F7}_{|D|}:X{\hookrightarrow}\mathbb{P}^{n+1}$ embeds
$\unicode[STIX]{x1D6F7}_{|D|}:X{\hookrightarrow}\mathbb{P}^{n+1}$ embeds  $X$ into
$X$ into  $\mathbb{P}^{n+1}$ as a hyperquadric.
$\mathbb{P}^{n+1}$ as a hyperquadric.
Proof. By [Reference FujinoF4, Theorem 3.2, Remark 3.3, and Theorem 3.4], there exists a crepant toric resolution  $\unicode[STIX]{x1D711}:Y\rightarrow X$, where
$\unicode[STIX]{x1D711}:Y\rightarrow X$, where  $Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(2))$ or
$Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(2))$ or  $Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1)\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1))$. We note that
$Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1)\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1))$. We note that  $X=\mathbb{P}(1,1,2,\ldots ,2)$ when
$X=\mathbb{P}(1,1,2,\ldots ,2)$ when  $Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(2))$. We also note that
$Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(2))$. We also note that  $X$ is not
$X$ is not  $\mathbb{Q}$-factorial if
$\mathbb{Q}$-factorial if  $Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1)\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1))$. Let
$Y=\mathbb{P}_{\mathbb{P}^{1}}({\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,\cdots \,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1)\,\oplus \,{\mathcal{O}}_{\mathbb{P}^{1}}(1))$. Let  ${\mathcal{O}}_{Y}(1)$ be the tautological line bundle of the
${\mathcal{O}}_{Y}(1)$ be the tautological line bundle of the  $\mathbb{P}^{n-1}$-bundle
$\mathbb{P}^{n-1}$-bundle  $Y$ over
$Y$ over  $\mathbb{P}^{1}$. Then we have
$\mathbb{P}^{1}$. Then we have  ${\mathcal{O}}_{Y}(-K_{Y})\simeq {\mathcal{O}}_{Y}(n)$. We can directly check that
${\mathcal{O}}_{Y}(-K_{Y})\simeq {\mathcal{O}}_{Y}(n)$. We can directly check that  $\dim H^{0}(Y,{\mathcal{O}}_{Y}(1))=n+2$. We consider
$\dim H^{0}(Y,{\mathcal{O}}_{Y}(1))=n+2$. We consider  $\unicode[STIX]{x1D6F7}_{|{\mathcal{O}}_{Y}(1)|}:Y\rightarrow \mathbb{P}^{n+1}$. By construction,
$\unicode[STIX]{x1D6F7}_{|{\mathcal{O}}_{Y}(1)|}:Y\rightarrow \mathbb{P}^{n+1}$. By construction, 
 $$\begin{eqnarray}\unicode[STIX]{x1D6F7}_{|{\mathcal{O}}_{Y}(1)|}:Y\overset{\unicode[STIX]{x1D711}}{\longrightarrow }X\overset{\unicode[STIX]{x1D70B}}{\longrightarrow }\mathbb{P}^{n+1}\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D6F7}_{|{\mathcal{O}}_{Y}(1)|}:Y\overset{\unicode[STIX]{x1D711}}{\longrightarrow }X\overset{\unicode[STIX]{x1D70B}}{\longrightarrow }\mathbb{P}^{n+1}\end{eqnarray}$$ is the Stein factorization of  $\unicode[STIX]{x1D6F7}_{|{\mathcal{O}}_{Y}(1)|}:Y\rightarrow \mathbb{P}^{n+1}$. By construction again, we have
$\unicode[STIX]{x1D6F7}_{|{\mathcal{O}}_{Y}(1)|}:Y\rightarrow \mathbb{P}^{n+1}$. By construction again, we have  ${\mathcal{O}}_{Y}(1)\simeq \unicode[STIX]{x1D711}^{\ast }{\mathcal{O}}_{X}(D)$. Since we can directly check that
${\mathcal{O}}_{Y}(1)\simeq \unicode[STIX]{x1D711}^{\ast }{\mathcal{O}}_{X}(D)$. Since we can directly check that 
 $$\begin{eqnarray}\text{Sym}^{k}H^{0}(Y,{\mathcal{O}}_{Y}(1))\rightarrow H^{0}(Y,{\mathcal{O}}_{Y}(k))\end{eqnarray}$$
$$\begin{eqnarray}\text{Sym}^{k}H^{0}(Y,{\mathcal{O}}_{Y}(1))\rightarrow H^{0}(Y,{\mathcal{O}}_{Y}(k))\end{eqnarray}$$ is surjective for every  $k\in \mathbb{Z}_{{>}0}$, we see that
$k\in \mathbb{Z}_{{>}0}$, we see that 
 $$\begin{eqnarray}\text{Sym}^{k}H^{0}(X,{\mathcal{O}}_{X}(D))\rightarrow H^{0}(X,{\mathcal{O}}_{X}(kD))\end{eqnarray}$$
$$\begin{eqnarray}\text{Sym}^{k}H^{0}(X,{\mathcal{O}}_{X}(D))\rightarrow H^{0}(X,{\mathcal{O}}_{X}(kD))\end{eqnarray}$$ is also surjective for every  $k\in \mathbb{Z}_{{>}0}$. This means that
$k\in \mathbb{Z}_{{>}0}$. This means that  ${\mathcal{O}}_{X}(D)$ is very ample. In particular,
${\mathcal{O}}_{X}(D)$ is very ample. In particular,  $\unicode[STIX]{x1D70B}:X\rightarrow \mathbb{P}^{n+1}$ is nothing but the embedding
$\unicode[STIX]{x1D70B}:X\rightarrow \mathbb{P}^{n+1}$ is nothing but the embedding  $\unicode[STIX]{x1D6F7}_{|D|}:X{\hookrightarrow}\mathbb{P}^{n+1}$. Since
$\unicode[STIX]{x1D6F7}_{|D|}:X{\hookrightarrow}\mathbb{P}^{n+1}$. Since  $D^{n}=({\mathcal{O}}_{Y}(1))^{n}=2$,
$D^{n}=({\mathcal{O}}_{Y}(1))^{n}=2$,  $X$ is a hyperquadric in
$X$ is a hyperquadric in  $\mathbb{P}^{n+1}$.◻
$\mathbb{P}^{n+1}$.◻
As was mentioned above, the following calculation plays an important role in the proof of Proposition 3.1.4.
3.1.8. (Fake weighted projective spaces)
 Now we fix  $N\simeq \mathbb{Z}^{n}$. Let
$N\simeq \mathbb{Z}^{n}$. Let  $\{v_{1},\ldots ,v_{n+1}\}$ be a set of primitive vectors of
$\{v_{1},\ldots ,v_{n+1}\}$ be a set of primitive vectors of  $N$ such that
$N$ such that  $N_{\mathbb{R}}=\sum _{i}\mathbb{R}_{{\geqslant}0}v_{i}$. We define
$N_{\mathbb{R}}=\sum _{i}\mathbb{R}_{{\geqslant}0}v_{i}$. We define  $n$-dimensional cones
$n$-dimensional cones 
 $$\begin{eqnarray}\unicode[STIX]{x1D70E}_{i}:=\langle v_{1},\ldots ,v_{i-1},v_{i+1},\ldots ,v_{n+1}\rangle\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70E}_{i}:=\langle v_{1},\ldots ,v_{i-1},v_{i+1},\ldots ,v_{n+1}\rangle\end{eqnarray}$$ for  $1\leqslant i\leqslant n+1$. Let
$1\leqslant i\leqslant n+1$. Let  $\unicode[STIX]{x1D6F4}$ be the complete fan generated by
$\unicode[STIX]{x1D6F4}$ be the complete fan generated by  $n$-dimensional cones
$n$-dimensional cones  $\unicode[STIX]{x1D70E}_{i}$ and their faces for all
$\unicode[STIX]{x1D70E}_{i}$ and their faces for all  $i$. Then we obtain a complete toric variety
$i$. Then we obtain a complete toric variety  $X=X(\unicode[STIX]{x1D6F4})$ with Picard number
$X=X(\unicode[STIX]{x1D6F4})$ with Picard number  $\unicode[STIX]{x1D70C}(X)=1$. We call it a
$\unicode[STIX]{x1D70C}(X)=1$. We call it a  $\mathbb{Q}$-factorial toric Fano variety with Picard number one. It is sometimes called a fake weighted projective space. We define
$\mathbb{Q}$-factorial toric Fano variety with Picard number one. It is sometimes called a fake weighted projective space. We define  $(n-1)$-dimensional cones
$(n-1)$-dimensional cones  $\unicode[STIX]{x1D707}_{i,j}=\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}$ for
$\unicode[STIX]{x1D707}_{i,j}=\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}$ for  $i\neq j$. We can write
$i\neq j$. We can write  $\sum _{i}a_{i}v_{i}=0$, where
$\sum _{i}a_{i}v_{i}=0$, where  $a_{i}\in \mathbb{Z}_{{>}0}$,
$a_{i}\in \mathbb{Z}_{{>}0}$,  $\gcd (a_{1},\ldots ,a_{n+1})=1$, and
$\gcd (a_{1},\ldots ,a_{n+1})=1$, and  $a_{1}\leqslant a_{2}\leqslant \cdots \leqslant a_{n+1}$ by changing the order. Then we obtain
$a_{1}\leqslant a_{2}\leqslant \cdots \leqslant a_{n+1}$ by changing the order. Then we obtain 
 $$\begin{eqnarray}\displaystyle & \displaystyle 0<V(v_{n+1})\cdot V(\unicode[STIX]{x1D707}_{n,n+1})=\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}\leqslant 1, & \displaystyle \nonumber\\ \displaystyle & \displaystyle V(v_{i})\cdot V(\unicode[STIX]{x1D707}_{n,n+1})=\frac{a_{i}}{a_{n+1}}\cdot \frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}, & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & \displaystyle 0<V(v_{n+1})\cdot V(\unicode[STIX]{x1D707}_{n,n+1})=\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}\leqslant 1, & \displaystyle \nonumber\\ \displaystyle & \displaystyle V(v_{i})\cdot V(\unicode[STIX]{x1D707}_{n,n+1})=\frac{a_{i}}{a_{n+1}}\cdot \frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}, & \displaystyle \nonumber\end{eqnarray}$$and
 $$\begin{eqnarray}\displaystyle -K_{X}\cdot V(\unicode[STIX]{x1D707}_{n,n+1}) & = & \displaystyle \mathop{\sum }_{i=1}^{n+1}V(v_{i})\cdot V(\unicode[STIX]{x1D707}_{n,n+1})\nonumber\\ \displaystyle & = & \displaystyle \frac{1}{a_{n+1}}\biggl(\mathop{\sum }_{i=1}^{n+1}a_{i}\biggr)\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}\leqslant n+1.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle -K_{X}\cdot V(\unicode[STIX]{x1D707}_{n,n+1}) & = & \displaystyle \mathop{\sum }_{i=1}^{n+1}V(v_{i})\cdot V(\unicode[STIX]{x1D707}_{n,n+1})\nonumber\\ \displaystyle & = & \displaystyle \frac{1}{a_{n+1}}\biggl(\mathop{\sum }_{i=1}^{n+1}a_{i}\biggr)\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}\leqslant n+1.\nonumber\end{eqnarray}$$We note that
 $$\begin{eqnarray}\frac{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}\in \mathbb{Z}_{{>}0}.\end{eqnarray}$$
$$\begin{eqnarray}\frac{\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})}{\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})}\in \mathbb{Z}_{{>}0}.\end{eqnarray}$$ For the procedure to compute intersection numbers, see 2.1.5 or [Reference FultonFul, page 100]. If  $-K_{X}\cdot V(\unicode[STIX]{x1D707}_{n,n+1})=n+1$, then
$-K_{X}\cdot V(\unicode[STIX]{x1D707}_{n,n+1})=n+1$, then  $a_{i}=1$ for every
$a_{i}=1$ for every  $i$ and
$i$ and  $\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})$.
$\operatorname{mult}(\unicode[STIX]{x1D707}_{n,n+1})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{n})$.
We note that the above calculation plays crucial roles in [Reference FujinoF1, Reference FujinoF4, Reference Fujino and IshitsukaFI], and this paper (see the proof of Theorem 3.2.1, and so on).
Lemma 3.1.9. We use the same notation as in 3.1.8. We consider the sublattice  $N^{\prime }$ of
$N^{\prime }$ of  $N$ spanned by
$N$ spanned by  $\{v_{1},\ldots ,v_{n+1}\}$. Then the natural inclusion
$\{v_{1},\ldots ,v_{n+1}\}$. Then the natural inclusion  $N^{\prime }\rightarrow N$ induces a finite toric morphism
$N^{\prime }\rightarrow N$ induces a finite toric morphism  $f:X^{\prime }\rightarrow X$ from a weighted projective space
$f:X^{\prime }\rightarrow X$ from a weighted projective space  $X^{\prime }$ such that
$X^{\prime }$ such that  $f$ is étale in codimension one. In particular,
$f$ is étale in codimension one. In particular,  $X(\unicode[STIX]{x1D6F4})$ is a weighted projective space if and only if
$X(\unicode[STIX]{x1D6F4})$ is a weighted projective space if and only if  $\{v_{1},\ldots ,v_{n+1}\}$ generates
$\{v_{1},\ldots ,v_{n+1}\}$ generates  $N$.
$N$.
We note the above elementary lemma. Example 3.1.10 shows that there are many fake weighted projective spaces which are not weighted projective spaces.
Example 3.1.10. We put  $N=\mathbb{Z}^{3}$. Let
$N=\mathbb{Z}^{3}$. Let  $\{e_{1},e_{2},e_{3}\}$ be the standard basis of
$\{e_{1},e_{2},e_{3}\}$ be the standard basis of  $N$. We put
$N$. We put  $v_{1}=e_{1}$,
$v_{1}=e_{1}$,  $v_{2}=e_{2}$,
$v_{2}=e_{2}$,  $v_{3}=e_{3}$, and
$v_{3}=e_{3}$, and  $v_{4}=-e_{1}-e_{2}-e_{3}$. The fan
$v_{4}=-e_{1}-e_{2}-e_{3}$. The fan  $\unicode[STIX]{x1D6F4}$ is the subdivision of
$\unicode[STIX]{x1D6F4}$ is the subdivision of  $N_{\mathbb{R}}$ by
$N_{\mathbb{R}}$ by  $\{v_{1},v_{2},v_{3},v_{4}\}$. Then
$\{v_{1},v_{2},v_{3},v_{4}\}$. Then  $Y=X(\unicode[STIX]{x1D6F4})\simeq \mathbb{P}^{3}$. We consider a new lattice
$Y=X(\unicode[STIX]{x1D6F4})\simeq \mathbb{P}^{3}$. We consider a new lattice 
 $$\begin{eqnarray}N^{\dagger }=N+({\textstyle \frac{1}{2}},{\textstyle \frac{1}{2}},0)\mathbb{Z}.\end{eqnarray}$$
$$\begin{eqnarray}N^{\dagger }=N+({\textstyle \frac{1}{2}},{\textstyle \frac{1}{2}},0)\mathbb{Z}.\end{eqnarray}$$ The natural inclusion  $N\rightarrow N^{\dagger }$ induces a finite toric morphism
$N\rightarrow N^{\dagger }$ induces a finite toric morphism  $Y\rightarrow X$, which is étale in codimension one. It is easy to see that
$Y\rightarrow X$, which is étale in codimension one. It is easy to see that  $K_{X}$ is Cartier and
$K_{X}$ is Cartier and  $-K_{X}\sim 4D_{4}$, where
$-K_{X}\sim 4D_{4}$, where  $D_{4}=V(v_{4})$ is not Cartier but
$D_{4}=V(v_{4})$ is not Cartier but  $2D_{4}$ is Cartier. Since
$2D_{4}$ is Cartier. Since  $\{v_{1},v_{2},v_{3},v_{4}\}$ does not span the lattice
$\{v_{1},v_{2},v_{3},v_{4}\}$ does not span the lattice  $N^{\dagger }$,
$N^{\dagger }$,  $X$ is not a weighted projective space. Of course,
$X$ is not a weighted projective space. Of course,  $X$ is a fake weighted projective space.
$X$ is a fake weighted projective space.
3.2 New estimate of lengths of extremal rays
 The following theorem is one of the main theorems of this paper, in which we prove new estimates of  $K_{X}$-negative extremal rays of birational type. We will see that they are the best by Examples 3.3.1 and 3.3.2.
$K_{X}$-negative extremal rays of birational type. We will see that they are the best by Examples 3.3.1 and 3.3.2.
Theorem 3.2.1. (Lengths of extremal rays of birational type, Theorem 1.2)
 Let  $f:X\rightarrow Y$ be a projective toric morphism with
$f:X\rightarrow Y$ be a projective toric morphism with  $\dim X=n$. Assume that
$\dim X=n$. Assume that  $K_{X}$ is
$K_{X}$ is  $\mathbb{Q}$-Cartier. Let
$\mathbb{Q}$-Cartier. Let  $R$ be a
$R$ be a  $K_{X}$-negative extremal ray of
$K_{X}$-negative extremal ray of  $\operatorname{NE}(X/Y)$ and let
$\operatorname{NE}(X/Y)$ and let  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the contraction morphism associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the contraction morphism associated to  $R$. We put
$R$. We put 
 $$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)\end{eqnarray}$$
$$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)\end{eqnarray}$$ and call it the length of  $R$. Assume that
$R$. Assume that  $\unicode[STIX]{x1D711}_{R}$ is birational. Then we obtain
$\unicode[STIX]{x1D711}_{R}$ is birational. Then we obtain 
 $$\begin{eqnarray}l(R)<d+1,\end{eqnarray}$$
$$\begin{eqnarray}l(R)<d+1,\end{eqnarray}$$where
 $$\begin{eqnarray}d=\max _{w\in W}\dim \unicode[STIX]{x1D711}_{R}^{-1}(w)\leqslant n-1.\end{eqnarray}$$
$$\begin{eqnarray}d=\max _{w\in W}\dim \unicode[STIX]{x1D711}_{R}^{-1}(w)\leqslant n-1.\end{eqnarray}$$ When  $d=n-1$, we have a sharper inequality
$d=n-1$, we have a sharper inequality 
 $$\begin{eqnarray}l(R)\leqslant d=n-1.\end{eqnarray}$$
$$\begin{eqnarray}l(R)\leqslant d=n-1.\end{eqnarray}$$ In particular, if  $l(R)=n-1$, then
$l(R)=n-1$, then  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ can be described as follows. There exists a torus invariant smooth point
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ can be described as follows. There exists a torus invariant smooth point  $P\in W$ such that
$P\in W$ such that  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at  $P$ with the weight
$P$ with the weight  $(1,a,\ldots ,a)$ for some positive integer
$(1,a,\ldots ,a)$ for some positive integer  $a$. In this case, the exceptional locus
$a$. In this case, the exceptional locus  $E$ of
$E$ of  $\unicode[STIX]{x1D711}_{R}$ is a torus invariant prime divisor and is isomorphic to
$\unicode[STIX]{x1D711}_{R}$ is a torus invariant prime divisor and is isomorphic to  $\mathbb{P}^{n-1}$. Moreover,
$\mathbb{P}^{n-1}$. Moreover,  $X$ is
$X$ is  $\mathbb{Q}$-factorial in a neighborhood of
$\mathbb{Q}$-factorial in a neighborhood of  $E$.
$E$.
The idea of the proof of Theorem 3.2.1 is the same as that of Theorem 3.1.1.
Proof of Theorem 3.2.1.
 In Step 1, we will explain how to reduce problems to the case where  $X$ is
$X$ is  $\mathbb{Q}$-factorial. Then we will prove the inequality
$\mathbb{Q}$-factorial. Then we will prove the inequality  $l(R)<d+1$ in Step 2. In Step 3, we will treat the case where
$l(R)<d+1$ in Step 2. In Step 3, we will treat the case where  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $l(R)\geqslant n-1$. Finally, in Step 4, we will treat the case where
$l(R)\geqslant n-1$. Finally, in Step 4, we will treat the case where  $l(R)\geqslant n-1$ under the assumption that
$l(R)\geqslant n-1$ under the assumption that  $X$ is not necessarily
$X$ is not necessarily  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
Step 1. In this step, we will explain how to reduce problems to the case where  $X$ is
$X$ is  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
 Without loss of generality, we may assume that  $W=Y$. Let
$W=Y$. Let  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ be a small projective
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ be a small projective  $\mathbb{Q}$-factorialization (see, for example, [Reference FujinoF1, Corollary 5.9]). Then we can take an extremal ray
$\mathbb{Q}$-factorialization (see, for example, [Reference FujinoF1, Corollary 5.9]). Then we can take an extremal ray  $\widetilde{R}$ of
$\widetilde{R}$ of  $\operatorname{NE}(\widetilde{X}/W)$ and construct the following commutative diagram
$\operatorname{NE}(\widetilde{X}/W)$ and construct the following commutative diagram

 where  $\unicode[STIX]{x1D711}_{\widetilde{R}}$ is the contraction morphism associated to
$\unicode[STIX]{x1D711}_{\widetilde{R}}$ is the contraction morphism associated to  $\widetilde{R}$. We note that
$\widetilde{R}$. We note that  $\unicode[STIX]{x1D711}_{\widetilde{R}}$ must be small when
$\unicode[STIX]{x1D711}_{\widetilde{R}}$ must be small when  $\unicode[STIX]{x1D711}_{R}$ is small, because the composition of small morphisms
$\unicode[STIX]{x1D711}_{R}$ is small, because the composition of small morphisms  $\unicode[STIX]{x1D70B}$ and
$\unicode[STIX]{x1D70B}$ and  $\unicode[STIX]{x1D711}_{R}$ is also a small morphism. We write
$\unicode[STIX]{x1D711}_{R}$ is also a small morphism. We write

 where  $\widetilde{A}$ is the exceptional locus of
$\widetilde{A}$ is the exceptional locus of  $\unicode[STIX]{x1D711}_{\widetilde{R}}$ and
$\unicode[STIX]{x1D711}_{\widetilde{R}}$ and  $\widetilde{B}$ is the image of
$\widetilde{B}$ is the image of  $\widetilde{A}$. Let
$\widetilde{A}$. Let  $\widetilde{F}$ be a general fiber of
$\widetilde{F}$ be a general fiber of  $\widetilde{A}\rightarrow \widetilde{B}$. Then
$\widetilde{A}\rightarrow \widetilde{B}$. Then  $\widetilde{F}$ is a fake weighted projective space as in 3.1.2, that is,
$\widetilde{F}$ is a fake weighted projective space as in 3.1.2, that is,  $\widetilde{F}$ is a
$\widetilde{F}$ is a  $\mathbb{Q}$-factorial toric Fano variety with Picard number one. Since
$\mathbb{Q}$-factorial toric Fano variety with Picard number one. Since  $\unicode[STIX]{x1D70C}(\widetilde{F})=1$,
$\unicode[STIX]{x1D70C}(\widetilde{F})=1$,  $\unicode[STIX]{x1D70B}:\widetilde{F}\rightarrow F:=\unicode[STIX]{x1D70B}(\widetilde{F})$ is finite. Therefore, by definition,
$\unicode[STIX]{x1D70B}:\widetilde{F}\rightarrow F:=\unicode[STIX]{x1D70B}(\widetilde{F})$ is finite. Therefore, by definition,  $\dim \widetilde{F}=\dim F\leqslant d$ since
$\dim \widetilde{F}=\dim F\leqslant d$ since  $\unicode[STIX]{x1D711}_{R}(F)$ is a point. Let
$\unicode[STIX]{x1D711}_{R}(F)$ is a point. Let  $\widetilde{C}$ be a curve in
$\widetilde{C}$ be a curve in  $\widetilde{F}$ and let
$\widetilde{F}$ and let  $C$ be the image of
$C$ be the image of  $\widetilde{C}$ by
$\widetilde{C}$ by  $\unicode[STIX]{x1D70B}$ with the reduced scheme structure. Then we obtain
$\unicode[STIX]{x1D70B}$ with the reduced scheme structure. Then we obtain 
 $$\begin{eqnarray}-K_{\widetilde{X}}\cdot \widetilde{C}=-\unicode[STIX]{x1D70B}^{\ast }K_{X}\cdot \widetilde{C}=-mK_{X}\cdot C,\end{eqnarray}$$
$$\begin{eqnarray}-K_{\widetilde{X}}\cdot \widetilde{C}=-\unicode[STIX]{x1D70B}^{\ast }K_{X}\cdot \widetilde{C}=-mK_{X}\cdot C,\end{eqnarray}$$ where  $m$ is the mapping degree of
$m$ is the mapping degree of  $\widetilde{C}\rightarrow C$. Thus, if
$\widetilde{C}\rightarrow C$. Thus, if  $-K_{\widetilde{X}}\cdot \widetilde{C}$ satisfies the desired inequality, then
$-K_{\widetilde{X}}\cdot \widetilde{C}$ satisfies the desired inequality, then  $-K_{X}\cdot C$ also satisfies the same inequality. Therefore, for the proof of
$-K_{X}\cdot C$ also satisfies the same inequality. Therefore, for the proof of  $l(R)<d+1$, we may assume that
$l(R)<d+1$, we may assume that  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $W=Y$ by replacing
$W=Y$ by replacing  $X$ and
$X$ and  $Y$ with
$Y$ with  $\widetilde{X}$ and
$\widetilde{X}$ and  $\widetilde{W}$, respectively.
$\widetilde{W}$, respectively.
Step 2. In this step, we will prove the desired inequality  $l(R)<d+1$ under the assumption that
$l(R)<d+1$ under the assumption that  $X$ is
$X$ is  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
We write
 $$\begin{eqnarray}\begin{array}{@{}cccc@{}} & A & \longrightarrow & B\\ & \cap & & \cap \\ \unicode[STIX]{x1D711}_{R}: & X & \longrightarrow & W,\\ \end{array}\end{eqnarray}$$
$$\begin{eqnarray}\begin{array}{@{}cccc@{}} & A & \longrightarrow & B\\ & \cap & & \cap \\ \unicode[STIX]{x1D711}_{R}: & X & \longrightarrow & W,\\ \end{array}\end{eqnarray}$$ where  $A$ is the exceptional locus of
$A$ is the exceptional locus of  $\unicode[STIX]{x1D711}_{R}$ and
$\unicode[STIX]{x1D711}_{R}$ and  $B$ is the image of
$B$ is the image of  $A$. We note that
$A$. We note that  $A$ is irreducible (see 3.1.2). We put
$A$ is irreducible (see 3.1.2). We put  $\dim A=n-\unicode[STIX]{x1D6FC}$ and
$\dim A=n-\unicode[STIX]{x1D6FC}$ and  $\dim B=\unicode[STIX]{x1D6FD}-\unicode[STIX]{x1D6FC}$ as in 3.1.2. Let
$\dim B=\unicode[STIX]{x1D6FD}-\unicode[STIX]{x1D6FC}$ as in 3.1.2. Let  $F$ be a general fiber of
$F$ be a general fiber of  $A\rightarrow B$. Then we know that
$A\rightarrow B$. Then we know that  $F$ is a
$F$ is a  $\mathbb{Q}$-factorial toric Fano variety with Picard number one and that there exist torus invariant prime divisors
$\mathbb{Q}$-factorial toric Fano variety with Picard number one and that there exist torus invariant prime divisors  $E_{1},\ldots ,E_{\unicode[STIX]{x1D6FC}}$ on
$E_{1},\ldots ,E_{\unicode[STIX]{x1D6FC}}$ on  $X$ such that
$X$ such that  $E_{i}$ is negative on
$E_{i}$ is negative on  $R$ for every
$R$ for every  $i$ and
$i$ and  $A$ is
$A$ is  $E_{1}\cap \cdots \cap E_{\unicode[STIX]{x1D6FC}}$ (see 3.1.2). By using subadjunction (see Lemma 2.3.1) repeatedly, we have
$E_{1}\cap \cdots \cap E_{\unicode[STIX]{x1D6FC}}$ (see 3.1.2). By using subadjunction (see Lemma 2.3.1) repeatedly, we have 
 $$\begin{eqnarray}(K_{X}+E_{1}+\cdots +E_{\unicode[STIX]{x1D6FC}})|_{A}=K_{A}+D\end{eqnarray}$$
$$\begin{eqnarray}(K_{X}+E_{1}+\cdots +E_{\unicode[STIX]{x1D6FC}})|_{A}=K_{A}+D\end{eqnarray}$$ for some effective  $\mathbb{Q}$-divisor
$\mathbb{Q}$-divisor  $D$ on
$D$ on  $A$. Let
$A$. Let  $C$ be a curve in
$C$ be a curve in  $F$. Then
$F$. Then 
 $$\begin{eqnarray}\begin{array}{@{}rcl@{}}-K_{X}\cdot C\; & =\; & -(K_{A}+D)\cdot C+E_{1}\cdot C+\cdots +E_{\unicode[STIX]{x1D6FC}}\cdot C\\ \; & {<}\; & -(K_{A}+D)\cdot C=-(K_{F}+D|_{F})\cdot C\leqslant -K_{F}\cdot C.\end{array}\end{eqnarray}$$
$$\begin{eqnarray}\begin{array}{@{}rcl@{}}-K_{X}\cdot C\; & =\; & -(K_{A}+D)\cdot C+E_{1}\cdot C+\cdots +E_{\unicode[STIX]{x1D6FC}}\cdot C\\ \; & {<}\; & -(K_{A}+D)\cdot C=-(K_{F}+D|_{F})\cdot C\leqslant -K_{F}\cdot C.\end{array}\end{eqnarray}$$ We note that  $D|_{F}$ is effective and
$D|_{F}$ is effective and  $K_{A}|_{F}=K_{F}$ holds since
$K_{A}|_{F}=K_{F}$ holds since  $F$ is a general fiber of
$F$ is a general fiber of  $A\rightarrow B$. We also note that
$A\rightarrow B$. We also note that  $D|_{F}\cdot C\geqslant 0$ since
$D|_{F}\cdot C\geqslant 0$ since  $\unicode[STIX]{x1D70C}(F)=1$. By [Reference FujinoF1, Proposition 2.9] (see also 3.1.8), there exists a torus invariant curve
$\unicode[STIX]{x1D70C}(F)=1$. By [Reference FujinoF1, Proposition 2.9] (see also 3.1.8), there exists a torus invariant curve  $C$ on
$C$ on  $F$ such that
$F$ such that  $-K_{F}\cdot C\leqslant \dim F+1=n-\unicode[STIX]{x1D6FD}+1$. Therefore, we obtain
$-K_{F}\cdot C\leqslant \dim F+1=n-\unicode[STIX]{x1D6FD}+1$. Therefore, we obtain 
 $$\begin{eqnarray}-K_{X}\cdot C<n-\unicode[STIX]{x1D6FD}+1=d+1\leqslant n\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C<n-\unicode[STIX]{x1D6FD}+1=d+1\leqslant n\end{eqnarray}$$ since  $\unicode[STIX]{x1D6FD}\geqslant \unicode[STIX]{x1D6FC}\geqslant 1$. This means that
$\unicode[STIX]{x1D6FD}\geqslant \unicode[STIX]{x1D6FC}\geqslant 1$. This means that  $l(R)<d+1$. By combining it with Step 1, we have
$l(R)<d+1$. By combining it with Step 1, we have  $l(R)<d+1$ without assuming that
$l(R)<d+1$ without assuming that  $X$ is
$X$ is  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
We close this step with easy useful remarks.
Remark 3.2.2. We note that if  $F\not \simeq \mathbb{P}^{n-\unicode[STIX]{x1D6FD}}$ in the above argument, then we can choose
$F\not \simeq \mathbb{P}^{n-\unicode[STIX]{x1D6FD}}$ in the above argument, then we can choose  $C$ such that
$C$ such that  $-K_{F}\cdot C\leqslant \dim F=n-\unicode[STIX]{x1D6FD}$ (see Theorem 3.1.1).
$-K_{F}\cdot C\leqslant \dim F=n-\unicode[STIX]{x1D6FD}$ (see Theorem 3.1.1).
Remark 3.2.3. If  $X$ is Gorenstein, then
$X$ is Gorenstein, then  $-K_{X}\cdot C<n$ implies
$-K_{X}\cdot C<n$ implies  $-K_{X}\cdot C\leqslant n-1$. Therefore, by combining it with Step 1, we can easily see that the estimate
$-K_{X}\cdot C\leqslant n-1$. Therefore, by combining it with Step 1, we can easily see that the estimate  $l(R)\leqslant n-1$ always holds for Gorenstein (not necessarily
$l(R)\leqslant n-1$ always holds for Gorenstein (not necessarily  $\mathbb{Q}$-factorial) toric varieties.
$\mathbb{Q}$-factorial) toric varieties.
 If  $\unicode[STIX]{x1D711}_{R}$ is small, then we can find
$\unicode[STIX]{x1D711}_{R}$ is small, then we can find  $C$ such that
$C$ such that  $-K_{X}\cdot C<n-1$ and
$-K_{X}\cdot C<n-1$ and  $[C]\in R$ since we know
$[C]\in R$ since we know  $\unicode[STIX]{x1D6FD}\geqslant \unicode[STIX]{x1D6FC}\geqslant 2$. Therefore, by combining it with Step 1, the estimate
$\unicode[STIX]{x1D6FD}\geqslant \unicode[STIX]{x1D6FC}\geqslant 2$. Therefore, by combining it with Step 1, the estimate  $l(R)<n-1$ always holds for (not necessarily
$l(R)<n-1$ always holds for (not necessarily  $\mathbb{Q}$-factorial) toric varieties, when
$\mathbb{Q}$-factorial) toric varieties, when  $\unicode[STIX]{x1D711}_{R}$ is small.
$\unicode[STIX]{x1D711}_{R}$ is small.
Step 3. In this step, we will investigate the case where  $l(R)\geqslant n-1$ under the assumption that
$l(R)\geqslant n-1$ under the assumption that  $X$ is
$X$ is  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
 We will use the same notation as in Step 2. In this case, we see that  $-K_{X}\cdot C\geqslant n-1$ for every curve
$-K_{X}\cdot C\geqslant n-1$ for every curve  $C$ on
$C$ on  $F$. Then, we see that
$F$. Then, we see that  $\dim A=\dim F=n-1$,
$\dim A=\dim F=n-1$,  $F\simeq \mathbb{P}^{n-1}$ and
$F\simeq \mathbb{P}^{n-1}$ and  $\dim B=0$ (see Remark 3.2.2). Equivalently,
$\dim B=0$ (see Remark 3.2.2). Equivalently,  $\unicode[STIX]{x1D711}_{R}$ contracts
$\unicode[STIX]{x1D711}_{R}$ contracts  $F\simeq \mathbb{P}^{n-1}$ to a torus invariant point
$F\simeq \mathbb{P}^{n-1}$ to a torus invariant point  $P\in W$. Let
$P\in W$. Let  $\langle e_{1},\ldots ,e_{n}\rangle$ be the
$\langle e_{1},\ldots ,e_{n}\rangle$ be the  $n$-dimensional cone corresponding to
$n$-dimensional cone corresponding to  $P\in W$. Then
$P\in W$. Then  $X$ is obtained by the star subdivision of
$X$ is obtained by the star subdivision of  $\langle e_{1},\ldots ,e_{n}\rangle$ by
$\langle e_{1},\ldots ,e_{n}\rangle$ by  $e_{n+1}$, where
$e_{n+1}$, where  $be_{n+1}=a_{1}e_{1}+\cdots +a_{n}e_{n}$,
$be_{n+1}=a_{1}e_{1}+\cdots +a_{n}e_{n}$,  $b\in \mathbb{Z}_{{>}0}$ and
$b\in \mathbb{Z}_{{>}0}$ and  $a_{i}\in \mathbb{Z}_{{>}0}$ for all
$a_{i}\in \mathbb{Z}_{{>}0}$ for all  $i$. We may assume that
$i$. We may assume that  $\gcd (b,a_{1},\ldots ,a_{n})=1$,
$\gcd (b,a_{1},\ldots ,a_{n})=1$,  $\gcd (b,a_{1},\ldots ,a_{i-1},a_{i+1},\ldots a_{n})=1$ for all
$\gcd (b,a_{1},\ldots ,a_{i-1},a_{i+1},\ldots a_{n})=1$ for all  $i$, and
$i$, and  $\gcd (a_{1},\ldots ,a_{n})=1$. Without loss of generality, we may assume that
$\gcd (a_{1},\ldots ,a_{n})=1$. Without loss of generality, we may assume that  $a_{1}\leqslant \cdots \leqslant a_{n}$ by changing the order. We write
$a_{1}\leqslant \cdots \leqslant a_{n}$ by changing the order. We write  $\unicode[STIX]{x1D70E}_{i}=\langle e_{1},\ldots ,e_{i-1},e_{i+1},\ldots ,e_{n+1}\rangle$ for all
$\unicode[STIX]{x1D70E}_{i}=\langle e_{1},\ldots ,e_{i-1},e_{i+1},\ldots ,e_{n+1}\rangle$ for all  $i$ and
$i$ and  $\unicode[STIX]{x1D707}_{k,l}=\unicode[STIX]{x1D70E}_{k}\cap \unicode[STIX]{x1D70E}_{l}$ for
$\unicode[STIX]{x1D707}_{k,l}=\unicode[STIX]{x1D70E}_{k}\cap \unicode[STIX]{x1D70E}_{l}$ for  $k\neq l$. Then
$k\neq l$. Then 
 $$\begin{eqnarray}-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,n})=\frac{1}{a_{n}}\biggl(\mathop{\sum }_{i=1}^{n}a_{i}-b\biggr)\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{k,n})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})}\geqslant n-1\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,n})=\frac{1}{a_{n}}\biggl(\mathop{\sum }_{i=1}^{n}a_{i}-b\biggr)\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{k,n})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})}\geqslant n-1\end{eqnarray}$$ for  $1\leqslant k\leqslant n-1$. Then
$1\leqslant k\leqslant n-1$. Then  $\operatorname{mult}(\unicode[STIX]{x1D707}_{k,n})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})$ for
$\operatorname{mult}(\unicode[STIX]{x1D707}_{k,n})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})$ for  $1\leqslant k\leqslant n-1$. Thus,
$1\leqslant k\leqslant n-1$. Thus,  $a_{k}$ divides
$a_{k}$ divides  $a_{n}$ for
$a_{n}$ for  $1\leqslant k\leqslant n-1$.
$1\leqslant k\leqslant n-1$.
Case 1. If  $a_{1}=a_{n}$, then
$a_{1}=a_{n}$, then  $a_{1}=\cdots =a_{n}=1$. In this case
$a_{1}=\cdots =a_{n}=1$. In this case  $-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,n})\geqslant n-1$ implies
$-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,n})\geqslant n-1$ implies  $b=1$. And we have
$b=1$. And we have  $\operatorname{mult}(\unicode[STIX]{x1D707}_{k,l})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})$ for
$\operatorname{mult}(\unicode[STIX]{x1D707}_{k,l})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})$ for  $1\leqslant k\leqslant n$,
$1\leqslant k\leqslant n$,  $1\leqslant l\leqslant n$, and
$1\leqslant l\leqslant n$, and  $k\neq l$. In particular,
$k\neq l$. In particular,  $\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=\operatorname{mult}(\unicode[STIX]{x1D707}_{1,l})$ for
$\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=\operatorname{mult}(\unicode[STIX]{x1D707}_{1,l})$ for  $2\leqslant l\leqslant n$. This implies
$2\leqslant l\leqslant n$. This implies  $\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=1$. Since
$\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=1$. Since  $e_{n+1}=e_{1}+\cdots +e_{n}$,
$e_{n+1}=e_{1}+\cdots +e_{n}$,  $\langle e_{1},\ldots ,e_{n}\rangle$ is a nonsingular cone. Therefore,
$\langle e_{1},\ldots ,e_{n}\rangle$ is a nonsingular cone. Therefore,  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a blow-up at a smooth point
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a blow-up at a smooth point  $P$. Of course,
$P$. Of course,  $l(R)=n-1$.
$l(R)=n-1$.
Case 2. Assume that  $a_{1}\neq a_{n}$. If
$a_{1}\neq a_{n}$. If  $a_{2}\neq a_{n}$, then
$a_{2}\neq a_{n}$, then  $a_{1}/a_{n}\leqslant \frac{1}{2}$ and
$a_{1}/a_{n}\leqslant \frac{1}{2}$ and  $a_{2}/a_{n}\leqslant \frac{1}{2}$. This contradicts
$a_{2}/a_{n}\leqslant \frac{1}{2}$. This contradicts  $-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,l})\geqslant n-1$. Therefore,
$-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,l})\geqslant n-1$. Therefore,  $a_{1}=1$ and
$a_{1}=1$ and  $a_{2}=\cdots =a_{n}=a$ for some positive integer
$a_{2}=\cdots =a_{n}=a$ for some positive integer  $a\geqslant 2$. The condition
$a\geqslant 2$. The condition  $-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,n})\geqslant n-1$  implies
$-K_{X}\cdot V(\unicode[STIX]{x1D707}_{k,n})\geqslant n-1$  implies  $b=1$. Thus,
$b=1$. Thus,  $\operatorname{mult}(\unicode[STIX]{x1D707}_{k,l})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})$ for
$\operatorname{mult}(\unicode[STIX]{x1D707}_{k,l})=\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})$ for  $1\leqslant k\leqslant n$,
$1\leqslant k\leqslant n$,  $2\leqslant l\leqslant n$, and
$2\leqslant l\leqslant n$, and  $k\neq l$. In particular,
$k\neq l$. In particular,  $\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=\operatorname{mult}(\unicode[STIX]{x1D707}_{1,l})$ for
$\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=\operatorname{mult}(\unicode[STIX]{x1D707}_{1,l})$ for  $2\leqslant l\leqslant n$. Thus,
$2\leqslant l\leqslant n$. Thus,  $\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=1$. Since
$\operatorname{mult}(\unicode[STIX]{x1D70E}_{1})=1$. Since 
 $$\begin{eqnarray}e_{n+1}=e_{1}+ae_{2}+\cdots +ae_{n},\end{eqnarray}$$
$$\begin{eqnarray}e_{n+1}=e_{1}+ae_{2}+\cdots +ae_{n},\end{eqnarray}$$ $\langle e_{1},\ldots ,e_{n}\rangle$ is a nonsingular cone. Therefore,
$\langle e_{1},\ldots ,e_{n}\rangle$ is a nonsingular cone. Therefore,  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at a smooth point
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at a smooth point  $P\in W$ with the weight
$P\in W$ with the weight  $(1,a,\ldots ,a)$. In this case,
$(1,a,\ldots ,a)$. In this case,  $K_{X}=\unicode[STIX]{x1D711}_{R}^{\ast }K_{W}+(n-1)aE$, where
$K_{X}=\unicode[STIX]{x1D711}_{R}^{\ast }K_{W}+(n-1)aE$, where  $E\simeq \mathbb{P}^{n-1}$ is the exceptional divisor and
$E\simeq \mathbb{P}^{n-1}$ is the exceptional divisor and  $l(R)=n-1$ (see Proposition 3.2.6).
$l(R)=n-1$ (see Proposition 3.2.6).
 Anyway, when  $X$ is
$X$ is  $\mathbb{Q}$-factorial, we obtain that
$\mathbb{Q}$-factorial, we obtain that  $l(R)\geqslant n-1$ implies
$l(R)\geqslant n-1$ implies  $l(R)=n-1$. Therefore, the estimate
$l(R)=n-1$. Therefore, the estimate  $l(R)\leqslant n-1$ always holds when
$l(R)\leqslant n-1$ always holds when  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $\unicode[STIX]{x1D711}_{R}$ is birational.
$\unicode[STIX]{x1D711}_{R}$ is birational.
Step 4. In this final step, we will treat the case where  $l(R)\geqslant n-1$ under the assumption that
$l(R)\geqslant n-1$ under the assumption that  $X$ is not necessarily
$X$ is not necessarily  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
 Let  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ be a small projective
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ be a small projective  $\mathbb{Q}$-factorialization as in Step 1. By the argument in Step 1, we can find a
$\mathbb{Q}$-factorialization as in Step 1. By the argument in Step 1, we can find a  $K_{\widetilde{X}}$-negative extremal ray
$K_{\widetilde{X}}$-negative extremal ray  $\widetilde{R}$ of
$\widetilde{R}$ of  $\operatorname{NE}(\widetilde{X}/W)$ such that
$\operatorname{NE}(\widetilde{X}/W)$ such that  $l(\widetilde{R})\geqslant n-1$. Therefore, by Step 3, the associated contraction morphism
$l(\widetilde{R})\geqslant n-1$. Therefore, by Step 3, the associated contraction morphism  $\unicode[STIX]{x1D711}_{\widetilde{R}}:\widetilde{X}\rightarrow \widetilde{W}$ is a weighted blow-up at a smooth point
$\unicode[STIX]{x1D711}_{\widetilde{R}}:\widetilde{X}\rightarrow \widetilde{W}$ is a weighted blow-up at a smooth point  $\widetilde{P}\in \widetilde{W}$ with the weight
$\widetilde{P}\in \widetilde{W}$ with the weight  $(1,a,\ldots ,a)$ for some positive integer
$(1,a,\ldots ,a)$ for some positive integer  $a$. Let
$a$. Let  $\widetilde{E}$
$\widetilde{E}$ $(\simeq \mathbb{P}^{n-1})$ be the
$(\simeq \mathbb{P}^{n-1})$ be the  $\unicode[STIX]{x1D711}_{\widetilde{R}}$-exceptional divisor on
$\unicode[STIX]{x1D711}_{\widetilde{R}}$-exceptional divisor on  $\widetilde{X}$. We put
$\widetilde{X}$. We put  $E=\unicode[STIX]{x1D70B}(\widetilde{E})$. Then it is easy to see that
$E=\unicode[STIX]{x1D70B}(\widetilde{E})$. Then it is easy to see that  $E\simeq \mathbb{P}^{n-1}$ and that
$E\simeq \mathbb{P}^{n-1}$ and that  $\unicode[STIX]{x1D70B}:\widetilde{E}\rightarrow E$ is an isomorphism.
$\unicode[STIX]{x1D70B}:\widetilde{E}\rightarrow E$ is an isomorphism.
Lemma 3.2.4.  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is an isomorphism over some open neighborhood of
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is an isomorphism over some open neighborhood of  $E$.
$E$.
Proof of Lemma 3.2.4.
 We will get a contradiction by assuming that  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is not an isomorphism over any open neighborhood of
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is not an isomorphism over any open neighborhood of  $E$. Since
$E$. Since  $\unicode[STIX]{x1D711}_{\widetilde{R}}$ is a weighted blow-up as described in the case where
$\unicode[STIX]{x1D711}_{\widetilde{R}}$ is a weighted blow-up as described in the case where  $X$ is
$X$ is  $\mathbb{Q}$-factorial (see Step 3) and
$\mathbb{Q}$-factorial (see Step 3) and  $\unicode[STIX]{x1D70B}$ is a crepant small toric morphism by construction, the fan of
$\unicode[STIX]{x1D70B}$ is a crepant small toric morphism by construction, the fan of  $\widetilde{X}$ contains
$\widetilde{X}$ contains  $n$-dimensional cones
$n$-dimensional cones 
 $$\begin{eqnarray}\unicode[STIX]{x1D70E}_{i}:=\langle \{e_{1},\ldots ,e_{n+1}\}\setminus \{e_{i}\}\rangle ,\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D70E}_{i}:=\langle \{e_{1},\ldots ,e_{n+1}\}\setminus \{e_{i}\}\rangle ,\end{eqnarray}$$ for  $1\leqslant i\leqslant n$, where
$1\leqslant i\leqslant n$, where  $\{e_{1},\ldots ,e_{n}\}$ is the standard basis of
$\{e_{1},\ldots ,e_{n}\}$ is the standard basis of  $N=\mathbb{Z}^{n}$ and
$N=\mathbb{Z}^{n}$ and  $e_{n+1}:=e_{1}+ae_{2}+\cdots +ae_{n}$ with
$e_{n+1}:=e_{1}+ae_{2}+\cdots +ae_{n}$ with  $a\in \mathbb{Z}_{{>}0}$. Since we assume that
$a\in \mathbb{Z}_{{>}0}$. Since we assume that  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is not an isomorphism over any open neighborhood of
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is not an isomorphism over any open neighborhood of  $E$, there exists at least one nonsimplicial
$E$, there exists at least one nonsimplicial  $n$-dimensional cone
$n$-dimensional cone  $\unicode[STIX]{x1D70E}$ in the fan of
$\unicode[STIX]{x1D70E}$ in the fan of  $X$ such that
$X$ such that  $\unicode[STIX]{x1D70E}$ contains one of the above
$\unicode[STIX]{x1D70E}$ contains one of the above  $n$-dimensional cones. By symmetry, it is sufficient to consider the two cases where
$n$-dimensional cones. By symmetry, it is sufficient to consider the two cases where  $\unicode[STIX]{x1D70E}$ contains
$\unicode[STIX]{x1D70E}$ contains  $\unicode[STIX]{x1D70E}_{n}$ or
$\unicode[STIX]{x1D70E}_{n}$ or  $\unicode[STIX]{x1D70E}_{1}$.
$\unicode[STIX]{x1D70E}_{1}$.
 First, we suppose  $\unicode[STIX]{x1D70E}_{n}\subset \unicode[STIX]{x1D70E}$. Let
$\unicode[STIX]{x1D70E}_{n}\subset \unicode[STIX]{x1D70E}$. Let  $x=x_{1}e_{1}+\cdots +x_{n}e_{n}\in N$ be the primitive generator for some one-dimensional face of
$x=x_{1}e_{1}+\cdots +x_{n}e_{n}\in N$ be the primitive generator for some one-dimensional face of  $\unicode[STIX]{x1D70E}$ which is not contained in
$\unicode[STIX]{x1D70E}$ which is not contained in  $\unicode[STIX]{x1D70E}_{n}$. Then, by considering the facets of
$\unicode[STIX]{x1D70E}_{n}$. Then, by considering the facets of  $\unicode[STIX]{x1D70E}_{n}$, we have the inequalities
$\unicode[STIX]{x1D70E}_{n}$, we have the inequalities  $ax_{1}-x_{n}\geqslant 0$,
$ax_{1}-x_{n}\geqslant 0$,  $x_{i}-x_{n}\geqslant 0$ for
$x_{i}-x_{n}\geqslant 0$ for  $2\leqslant i\leqslant n-1$, and
$2\leqslant i\leqslant n-1$, and  $x_{n}<0$. If
$x_{n}<0$. If  $x_{1}-x_{n}<0$, then
$x_{1}-x_{n}<0$, then  $x_{1}<x_{n}<0$. This means that
$x_{1}<x_{n}<0$. This means that  $ax_{1}-x_{n}\leqslant x_{1}-x_{n}<0$. This is a contradiction. Therefore, the inequality
$ax_{1}-x_{n}\leqslant x_{1}-x_{n}<0$. This is a contradiction. Therefore, the inequality  $x_{1}-x_{n}\geqslant 0$ also holds.
$x_{1}-x_{n}\geqslant 0$ also holds.
Claim.  $x_{i}\leqslant 0$ for every
$x_{i}\leqslant 0$ for every  $i\neq n$.
$i\neq n$.
Proof of Claim.
 Suppose  $x_{i}>0$ for some
$x_{i}>0$ for some  $i\neq n$. We note that
$i\neq n$. We note that  $x$ must be contained in the hyperplane passing through the points
$x$ must be contained in the hyperplane passing through the points  $e_{1},\ldots ,e_{n-1},e_{n+1}$ since
$e_{1},\ldots ,e_{n-1},e_{n+1}$ since  $\unicode[STIX]{x1D70B}$ is crepant, that is,
$\unicode[STIX]{x1D70B}$ is crepant, that is,  $K_{\widetilde{X}}=\unicode[STIX]{x1D70B}^{\ast }K_{X}$. So the equality
$K_{\widetilde{X}}=\unicode[STIX]{x1D70B}^{\ast }K_{X}$. So the equality 
 $$\begin{eqnarray}\displaystyle 1 & = & \displaystyle x_{1}+\cdots +x_{n-1}-(n-2)x_{n}\nonumber\\ \displaystyle & = & \displaystyle (x_{1}-x_{n})+\cdots +(x_{i-1}-x_{n})+x_{i}+(x_{i+1}-x_{n})+\cdots +(x_{n-1}-x_{n})\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle 1 & = & \displaystyle x_{1}+\cdots +x_{n-1}-(n-2)x_{n}\nonumber\\ \displaystyle & = & \displaystyle (x_{1}-x_{n})+\cdots +(x_{i-1}-x_{n})+x_{i}+(x_{i+1}-x_{n})+\cdots +(x_{n-1}-x_{n})\nonumber\end{eqnarray}$$ holds. Therefore,  $x_{j}-x_{n}=0$ must hold for every
$x_{j}-x_{n}=0$ must hold for every  $j\neq i$, and
$j\neq i$, and  $x_{i}=1$. If
$x_{i}=1$. If  $i\neq 1$, then we have
$i\neq 1$, then we have  $a=1$ since
$a=1$ since  $ax_{1}-x_{n}=(a-1)x_{n}\geqslant 0$ and
$ax_{1}-x_{n}=(a-1)x_{n}\geqslant 0$ and  $x_{n}<0$. However, the linear relation
$x_{n}<0$. However, the linear relation 
 $$\begin{eqnarray}x+(-x_{n})e_{n+1}=(1-x_{n})e_{i}\end{eqnarray}$$
$$\begin{eqnarray}x+(-x_{n})e_{n+1}=(1-x_{n})e_{i}\end{eqnarray}$$ means that  $\unicode[STIX]{x1D70B}$ contracts a divisor
$\unicode[STIX]{x1D70B}$ contracts a divisor  $V(e_{i})$. This is a contradiction because
$V(e_{i})$. This is a contradiction because  $\unicode[STIX]{x1D70B}$ is small by construction. If
$\unicode[STIX]{x1D70B}$ is small by construction. If  $i=1$, then we have
$i=1$, then we have  $ax_{1}-x_{n}=a-x_{n}>0$ since
$ax_{1}-x_{n}=a-x_{n}>0$ since  $a>0$ and
$a>0$ and  $-x_{n}>0$. However, the linear relation
$-x_{n}>0$. However, the linear relation 
 $$\begin{eqnarray}ax+(-x_{n})e_{n+1}=(a-x_{n})e_{1}\end{eqnarray}$$
$$\begin{eqnarray}ax+(-x_{n})e_{n+1}=(a-x_{n})e_{1}\end{eqnarray}$$ means that  $\unicode[STIX]{x1D70B}$ contracts a divisor
$\unicode[STIX]{x1D70B}$ contracts a divisor  $V(e_{1})$. This is a contradiction because
$V(e_{1})$. This is a contradiction because  $\unicode[STIX]{x1D70B}$ is small by construction. In any case, we obtain that
$\unicode[STIX]{x1D70B}$ is small by construction. In any case, we obtain that  $x_{i}\leqslant 0$ holds for
$x_{i}\leqslant 0$ holds for  $1\leqslant i\leqslant n-1$.◻
$1\leqslant i\leqslant n-1$.◻
Therefore, the linear relation
 $$\begin{eqnarray}(-x_{1})e_{1}+\cdots +(-x_{n})e_{n}+x=0\end{eqnarray}$$
$$\begin{eqnarray}(-x_{1})e_{1}+\cdots +(-x_{n})e_{n}+x=0\end{eqnarray}$$ says that the cone  $\langle e_{1},\ldots ,e_{n},x\rangle$ contains a positive dimensional linear subspace of
$\langle e_{1},\ldots ,e_{n},x\rangle$ contains a positive dimensional linear subspace of  $N_{\mathbb{R}}$ because
$N_{\mathbb{R}}$ because  $-x_{i}\geqslant 0$ for
$-x_{i}\geqslant 0$ for  $1\leqslant i\leqslant n-1$ and
$1\leqslant i\leqslant n-1$ and  $-x_{n}>0$. Since
$-x_{n}>0$. Since  $\langle e_{1},\ldots ,e_{n},x\rangle$ must be contained in a strongly convex cone in the fan of
$\langle e_{1},\ldots ,e_{n},x\rangle$ must be contained in a strongly convex cone in the fan of  $W$, this is a contradiction.
$W$, this is a contradiction.
 Next, we suppose  $\unicode[STIX]{x1D70E}_{1}\subset \unicode[STIX]{x1D70E}$. We can apply the same argument as above. Let
$\unicode[STIX]{x1D70E}_{1}\subset \unicode[STIX]{x1D70E}$. We can apply the same argument as above. Let  $x=x_{1}e_{1}+\cdots +x_{n}e_{n}\in N$ be the primitive generator for some one-dimensional face of
$x=x_{1}e_{1}+\cdots +x_{n}e_{n}\in N$ be the primitive generator for some one-dimensional face of  $\unicode[STIX]{x1D70E}$ which is not contained in
$\unicode[STIX]{x1D70E}$ which is not contained in  $\unicode[STIX]{x1D70E}_{1}$. In this case, we can obtain the inequalities
$\unicode[STIX]{x1D70E}_{1}$. In this case, we can obtain the inequalities  $x_{i}-ax_{1}\geqslant 0$ for
$x_{i}-ax_{1}\geqslant 0$ for  $2\leqslant i\leqslant n$, and
$2\leqslant i\leqslant n$, and  $x_{1}<0$ by considering the facets of
$x_{1}<0$ by considering the facets of  $\unicode[STIX]{x1D70E}_{1}$, and the equality
$\unicode[STIX]{x1D70E}_{1}$, and the equality  $(1-(n-1)a)x_{1}+x_{2}+\cdots +x_{n}=1$ by the fact that
$(1-(n-1)a)x_{1}+x_{2}+\cdots +x_{n}=1$ by the fact that  $\unicode[STIX]{x1D70B}$ is crepant. If
$\unicode[STIX]{x1D70B}$ is crepant. If  $x_{i}>0$ for some
$x_{i}>0$ for some  $2\leqslant i\leqslant n$, then the equality
$2\leqslant i\leqslant n$, then the equality 
 $$\begin{eqnarray}\displaystyle 1 & = & \displaystyle (1-(n-1)a)x_{1}+x_{2}+\cdots +x_{n}\nonumber\\ \displaystyle & = & \displaystyle (1-a)x_{1}+(x_{2}-ax_{1})+\cdots +(x_{i-1}-ax_{1})+x_{i}\nonumber\\ \displaystyle & & \displaystyle +\,(x_{i+1}-ax_{1})+\cdots +(x_{n}-ax_{1})\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle 1 & = & \displaystyle (1-(n-1)a)x_{1}+x_{2}+\cdots +x_{n}\nonumber\\ \displaystyle & = & \displaystyle (1-a)x_{1}+(x_{2}-ax_{1})+\cdots +(x_{i-1}-ax_{1})+x_{i}\nonumber\\ \displaystyle & & \displaystyle +\,(x_{i+1}-ax_{1})+\cdots +(x_{n}-ax_{1})\nonumber\end{eqnarray}$$ tells us that  $a=1$ because
$a=1$ because  $x_{1}<0$, and that
$x_{1}<0$, and that  $x_{j}-x_{1}=0$ for every
$x_{j}-x_{1}=0$ for every  $j\neq i$ and
$j\neq i$ and  $x_{i}=1$. Therefore, as in the proof of claim, we get a contradiction by the linear relation
$x_{i}=1$. Therefore, as in the proof of claim, we get a contradiction by the linear relation 
 $$\begin{eqnarray}x+(-x_{1})e_{n+1}=(1-x_{1})e_{i}.\end{eqnarray}$$
$$\begin{eqnarray}x+(-x_{1})e_{n+1}=(1-x_{1})e_{i}.\end{eqnarray}$$ So we obtain that  $x_{i}\leqslant 0$ holds for
$x_{i}\leqslant 0$ holds for  $2\leqslant i\leqslant n$. Thus we get a linear relation
$2\leqslant i\leqslant n$. Thus we get a linear relation 
 $$\begin{eqnarray}(-x_{1})e_{1}+\cdots +(-x_{n})e_{n}+x=0\end{eqnarray}$$
$$\begin{eqnarray}(-x_{1})e_{1}+\cdots +(-x_{n})e_{n}+x=0\end{eqnarray}$$ as above, where  $-x_{i}\geqslant 0$ for
$-x_{i}\geqslant 0$ for  $2\leqslant i\leqslant n$ and
$2\leqslant i\leqslant n$ and  $-x_{1}>0$. This means that the cone
$-x_{1}>0$. This means that the cone  $\langle e_{1},\ldots ,e_{n},x\rangle$ contains a positive dimensional linear subspace of
$\langle e_{1},\ldots ,e_{n},x\rangle$ contains a positive dimensional linear subspace of  $N_{\mathbb{R}}$. This is a contradiction as explained above.
$N_{\mathbb{R}}$. This is a contradiction as explained above.
 In any case, we get a contradiction. Therefore,  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is an isomorphism over some open neighborhood of
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is an isomorphism over some open neighborhood of  $E$.◻
$E$.◻
 Since  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is an isomorphism over some open neighborhood of
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ is an isomorphism over some open neighborhood of  $E$ by Lemma 3.2.4, we see that
$E$ by Lemma 3.2.4, we see that  $E$ is
$E$ is  $\mathbb{Q}$-Cartier. Therefore, the exceptional locus of
$\mathbb{Q}$-Cartier. Therefore, the exceptional locus of  $\unicode[STIX]{x1D711}_{R}$ coincides with
$\unicode[STIX]{x1D711}_{R}$ coincides with  $E\simeq \mathbb{P}^{n-1}$. Thus
$E\simeq \mathbb{P}^{n-1}$. Thus  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at a torus invariant smooth point
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a weighted blow-up at a torus invariant smooth point  $P\in W$ with the weight
$P\in W$ with the weight  $(1,a,\ldots ,a)$ for some positive integer
$(1,a,\ldots ,a)$ for some positive integer  $a$.
$a$.
So, we complete the proof of Theorem 3.2.1. ◻
Remark 3.2.5. If  $B$ is complete, then we can make
$B$ is complete, then we can make  $C$ a torus invariant curve on
$C$ a torus invariant curve on  $X$ in Theorem 3.2.1. For the details, see the proof of [Reference FujinoF1, Theorem 0.1].
$X$ in Theorem 3.2.1. For the details, see the proof of [Reference FujinoF1, Theorem 0.1].
We explicitly state the basic properties of the weighted blow-up in Theorem 3.2.1 for the reader’s convenience.
Proposition 3.2.6. Let  $\unicode[STIX]{x1D711}:X\rightarrow \mathbb{A}^{n}$ be the weighted blow-up at
$\unicode[STIX]{x1D711}:X\rightarrow \mathbb{A}^{n}$ be the weighted blow-up at  $0\in \mathbb{A}^{n}$ with the weight
$0\in \mathbb{A}^{n}$ with the weight  $(1,a,\ldots ,a)$ for some positive integer
$(1,a,\ldots ,a)$ for some positive integer  $a$. If
$a$. If  $a=1$, then
$a=1$, then  $\unicode[STIX]{x1D711}$ is the standard blow-up at
$\unicode[STIX]{x1D711}$ is the standard blow-up at  $0$. In particular,
$0$. In particular,  $X$ is smooth. If
$X$ is smooth. If  $a\geqslant 2$, then
$a\geqslant 2$, then  $X$ has only canonical Gorenstein singularities which are not terminal singularities. Furthermore, the exceptional locus
$X$ has only canonical Gorenstein singularities which are not terminal singularities. Furthermore, the exceptional locus  $E$ of
$E$ of  $\unicode[STIX]{x1D711}$ is isomorphic to
$\unicode[STIX]{x1D711}$ is isomorphic to  $\mathbb{P}(1,a,\ldots ,a)\simeq \mathbb{P}^{n-1}$ and
$\mathbb{P}(1,a,\ldots ,a)\simeq \mathbb{P}^{n-1}$ and 
 $$\begin{eqnarray}K_{X}=\unicode[STIX]{x1D711}^{\ast }K_{\mathbb{ A}^{n}}+(n-1)aE.\end{eqnarray}$$
$$\begin{eqnarray}K_{X}=\unicode[STIX]{x1D711}^{\ast }K_{\mathbb{ A}^{n}}+(n-1)aE.\end{eqnarray}$$ We note that  $E$ is not Cartier on
$E$ is not Cartier on  $X$ if
$X$ if  $a\neq 1$. However,
$a\neq 1$. However,  $aE$ is a Cartier divisor on
$aE$ is a Cartier divisor on  $X$.
$X$.
Proof. We can check the statements by direct calculation. ◻
Let us see an important related example.
Example 3.2.7. We fix  $N=\mathbb{Z}^{n}$ and let
$N=\mathbb{Z}^{n}$ and let  $\{e_{1},\ldots ,e_{n}\}$ be the standard basis of
$\{e_{1},\ldots ,e_{n}\}$ be the standard basis of  $N$. We consider the cone
$N$. We consider the cone  $\unicode[STIX]{x1D70E}=\langle e_{1},\ldots ,e_{n}\rangle$ in
$\unicode[STIX]{x1D70E}=\langle e_{1},\ldots ,e_{n}\rangle$ in  $N^{\prime }=N+\mathbb{Z}e_{n+1}$, where
$N^{\prime }=N+\mathbb{Z}e_{n+1}$, where  $e_{n+1}=(1/b)(1,a,\ldots ,a)$. Here,
$e_{n+1}=(1/b)(1,a,\ldots ,a)$. Here,  $a$ and
$a$ and  $b$ are positive integers such that
$b$ are positive integers such that  $\gcd (a,b)=1$. We put
$\gcd (a,b)=1$. We put  $Y=X(\unicode[STIX]{x1D70E})$ is the associated affine toric variety which has only one singular point
$Y=X(\unicode[STIX]{x1D70E})$ is the associated affine toric variety which has only one singular point  $P$. We take a weighted blow-up of
$P$. We take a weighted blow-up of  $Y$ at
$Y$ at  $P$ with the weight
$P$ with the weight  $(1/b)(1,a,\ldots ,a)$. This means that we divide
$(1/b)(1,a,\ldots ,a)$. This means that we divide  $\unicode[STIX]{x1D70E}$ by
$\unicode[STIX]{x1D70E}$ by  $e_{n+1}$ and obtain a fan
$e_{n+1}$ and obtain a fan  $\unicode[STIX]{x1D6F4}$ of
$\unicode[STIX]{x1D6F4}$ of  $N_{\mathbb{R}}^{\prime }$. We define
$N_{\mathbb{R}}^{\prime }$. We define  $X=X(\unicode[STIX]{x1D6F4})$. Then the induced projective birational toric morphism
$X=X(\unicode[STIX]{x1D6F4})$. Then the induced projective birational toric morphism  $f:X\rightarrow Y$ is the desired weighted blow-up. It is obvious that
$f:X\rightarrow Y$ is the desired weighted blow-up. It is obvious that  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $\unicode[STIX]{x1D70C}(X/Y)=1$. We can easily obtain
$\unicode[STIX]{x1D70C}(X/Y)=1$. We can easily obtain 
 $$\begin{eqnarray}K_{X}=f^{\ast }K_{Y}+\biggl(\frac{1+(n-1)a}{b}-1\biggr)E,\end{eqnarray}$$
$$\begin{eqnarray}K_{X}=f^{\ast }K_{Y}+\biggl(\frac{1+(n-1)a}{b}-1\biggr)E,\end{eqnarray}$$ where  $E=V(e_{n+1})\simeq \mathbb{P}^{n-1}$ is the exceptional divisor of
$E=V(e_{n+1})\simeq \mathbb{P}^{n-1}$ is the exceptional divisor of  $f$, and
$f$, and 
 $$\begin{eqnarray}-K_{X}\cdot C=(n-1)-\frac{b-1}{a},\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C=(n-1)-\frac{b-1}{a},\end{eqnarray}$$ where  $C=V(\langle e_{2},\ldots ,e_{n-1},e_{n+1}\rangle )$ is a torus invariant irreducible curve on
$C=V(\langle e_{2},\ldots ,e_{n-1},e_{n+1}\rangle )$ is a torus invariant irreducible curve on  $E$. We note that
$E$. We note that 
 $$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6FF}E)\cdot C>n-1\end{eqnarray}$$
$$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6FF}E)\cdot C>n-1\end{eqnarray}$$if and only if
 $$\begin{eqnarray}\unicode[STIX]{x1D6FF}>\frac{b-1}{b}\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D6FF}>\frac{b-1}{b}\end{eqnarray}$$ since  $E\cdot C=-b/a$.
$E\cdot C=-b/a$.
In Section 3.3, we will see more sophisticated examples (see Examples 3.3.1 and 3.3.2), which show the estimates obtained in Theorem 3.2.1 are the best.
By the proof of Theorem 3.2.1, we can prove the following theorem.
Theorem 3.2.8. Let  $f:X\rightarrow Y$ be a projective toric morphism with
$f:X\rightarrow Y$ be a projective toric morphism with  $\dim X=n$ and let
$\dim X=n$ and let  $\unicode[STIX]{x1D6E5}=\sum \unicode[STIX]{x1D6FF}_{i}\unicode[STIX]{x1D6E5}_{i}$ be an effective
$\unicode[STIX]{x1D6E5}=\sum \unicode[STIX]{x1D6FF}_{i}\unicode[STIX]{x1D6E5}_{i}$ be an effective  $\mathbb{R}$-divisor on
$\mathbb{R}$-divisor on  $X$, where
$X$, where  $\unicode[STIX]{x1D6E5}_{i}$ is a torus invariant prime divisor and
$\unicode[STIX]{x1D6E5}_{i}$ is a torus invariant prime divisor and  $0\leqslant \unicode[STIX]{x1D6FF}_{i}\leqslant 1$ for every
$0\leqslant \unicode[STIX]{x1D6FF}_{i}\leqslant 1$ for every  $i$. Let
$i$. Let  $R$ be an extremal ray of
$R$ be an extremal ray of  $\operatorname{NE}(X/Y)$ and let
$\operatorname{NE}(X/Y)$ and let  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the extremal contraction morphism associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ be the extremal contraction morphism associated to  $R$. Assume that
$R$. Assume that  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $\unicode[STIX]{x1D711}_{R}$ is birational. If
$\unicode[STIX]{x1D711}_{R}$ is birational. If 
 $$\begin{eqnarray}\min _{[C]\in R}(-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C)>n-1,\end{eqnarray}$$
$$\begin{eqnarray}\min _{[C]\in R}(-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C)>n-1,\end{eqnarray}$$ then  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is the weighted blow-up described in Example 3.2.7 and
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is the weighted blow-up described in Example 3.2.7 and  $\operatorname{Supp}\unicode[STIX]{x1D6E5}\supset E$, where
$\operatorname{Supp}\unicode[STIX]{x1D6E5}\supset E$, where  $E\simeq \mathbb{P}^{n-1}$ is the exceptional divisor of
$E\simeq \mathbb{P}^{n-1}$ is the exceptional divisor of  $\unicode[STIX]{x1D711}_{R}$.
$\unicode[STIX]{x1D711}_{R}$.
Proof. We use the same notation as in Step 2 in the proof of Theorem 3.2.1. Since
 $$\begin{eqnarray}(E_{1}+\cdots +E_{\unicode[STIX]{x1D6FC}}-\unicode[STIX]{x1D6E5})\cdot C\leqslant 0,\end{eqnarray}$$
$$\begin{eqnarray}(E_{1}+\cdots +E_{\unicode[STIX]{x1D6FC}}-\unicode[STIX]{x1D6E5})\cdot C\leqslant 0,\end{eqnarray}$$we obtain
 $$\begin{eqnarray}\displaystyle -(K_{X}+\unicode[STIX]{x1D6E5})\cdot C & = & \displaystyle -(K_{A}+D)\cdot C+(E_{1}+\cdots +E_{\unicode[STIX]{x1D6FC}}-\unicode[STIX]{x1D6E5})\cdot C\nonumber\\ \displaystyle & {\leqslant} & \displaystyle -(K_{A}+D)\cdot C\nonumber\\ \displaystyle & {\leqslant} & \displaystyle -K_{F}\cdot C\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle -(K_{X}+\unicode[STIX]{x1D6E5})\cdot C & = & \displaystyle -(K_{A}+D)\cdot C+(E_{1}+\cdots +E_{\unicode[STIX]{x1D6FC}}-\unicode[STIX]{x1D6E5})\cdot C\nonumber\\ \displaystyle & {\leqslant} & \displaystyle -(K_{A}+D)\cdot C\nonumber\\ \displaystyle & {\leqslant} & \displaystyle -K_{F}\cdot C\nonumber\end{eqnarray}$$ (see (3.1)). By assumption,  $-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C>n-1$. This implies that
$-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C>n-1$. This implies that  $n-1<-K_{F}\cdot C$. Therefore, we obtain
$n-1<-K_{F}\cdot C$. Therefore, we obtain  $\dim A=\dim F=n-1$,
$\dim A=\dim F=n-1$,  $F\simeq \mathbb{P}^{n-1}$ and
$F\simeq \mathbb{P}^{n-1}$ and  $\dim B=0$. In this situation,
$\dim B=0$. In this situation, 
 $$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant -(K_{X}+A)\cdot C\end{eqnarray}$$
$$\begin{eqnarray}-(K_{X}+\unicode[STIX]{x1D6E5})\cdot C\leqslant -(K_{X}+A)\cdot C\end{eqnarray}$$always holds. Thus we have
 $$\begin{eqnarray}-(K_{X}+A)\cdot V(\unicode[STIX]{x1D707}_{k,n})=\frac{1}{a_{n}}\biggl(\mathop{\sum }_{i=1}^{n}a_{i}\biggr)\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{k,n})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})}>n-1\end{eqnarray}$$
$$\begin{eqnarray}-(K_{X}+A)\cdot V(\unicode[STIX]{x1D707}_{k,n})=\frac{1}{a_{n}}\biggl(\mathop{\sum }_{i=1}^{n}a_{i}\biggr)\frac{\operatorname{mult}(\unicode[STIX]{x1D707}_{k,n})}{\operatorname{mult}(\unicode[STIX]{x1D70E}_{k})}>n-1\end{eqnarray}$$ for  $1\leqslant k\leqslant n-1$ (see (3.2)). We note that
$1\leqslant k\leqslant n-1$ (see (3.2)). We note that  $A=V(e_{n+1})$. Thus, by the same arguments as in the proof of Theorem 3.2.1, we see that
$A=V(e_{n+1})$. Thus, by the same arguments as in the proof of Theorem 3.2.1, we see that  $\unicode[STIX]{x1D711}_{R}$ is the weighted blow-up described in Example 3.2.7. More precisely, we obtain that
$\unicode[STIX]{x1D711}_{R}$ is the weighted blow-up described in Example 3.2.7. More precisely, we obtain that  $(a_{1},\ldots ,a_{n})=(1,\ldots ,1)$ or
$(a_{1},\ldots ,a_{n})=(1,\ldots ,1)$ or  $(1,a,\ldots ,a)$ and that
$(1,a,\ldots ,a)$ and that  $\unicode[STIX]{x1D70E}_{1}$ is a nonsingular cone. However,
$\unicode[STIX]{x1D70E}_{1}$ is a nonsingular cone. However,  $b$ is not necessarily
$b$ is not necessarily  $1$ in the proof of Theorem 3.2.1. By direct calculation, we have
$1$ in the proof of Theorem 3.2.1. By direct calculation, we have  $\operatorname{Supp}\unicode[STIX]{x1D6E5}\supset E$, where
$\operatorname{Supp}\unicode[STIX]{x1D6E5}\supset E$, where  $E(=A=F)$ is the exceptional divisor of
$E(=A=F)$ is the exceptional divisor of  $\unicode[STIX]{x1D711}_{R}$.◻
$\unicode[STIX]{x1D711}_{R}$.◻
Finally, we prove the following theorem.
Theorem 3.2.9. (Theorem 1.3)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-Gorenstein projective toric
$\mathbb{Q}$-Gorenstein projective toric  $n$-fold with
$n$-fold with  $\unicode[STIX]{x1D70C}(X)\geqslant 2$. Let
$\unicode[STIX]{x1D70C}(X)\geqslant 2$. Let  $R$ be a
$R$ be a  $K_{X}$-negative extremal ray of
$K_{X}$-negative extremal ray of  $\operatorname{NE}(X)$ such that
$\operatorname{NE}(X)$ such that 
 $$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)>n-1.\end{eqnarray}$$
$$\begin{eqnarray}l(R)=\min _{[C]\in R}(-K_{X}\cdot C)>n-1.\end{eqnarray}$$ Then the extremal contraction  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to  $R$ is a
$R$ is a  $\mathbb{P}^{n-1}$-bundle over
$\mathbb{P}^{n-1}$-bundle over  $\mathbb{P}^{1}$.
$\mathbb{P}^{1}$.
Proof. We divide the proof into several steps. From Step 1 to Step 4, we will prove this theorem under the extra assumption that  $X$ is
$X$ is  $\mathbb{Q}$-factorial. In Step 5, we will prove that
$\mathbb{Q}$-factorial. In Step 5, we will prove that  $X$ is always
$X$ is always  $\mathbb{Q}$-factorial if there exists an extremal ray
$\mathbb{Q}$-factorial if there exists an extremal ray  $R$ with
$R$ with  $l(R)>n-1$.
$l(R)>n-1$.
Step 1. We consider the contraction morphism  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ associated to  $R$. By Theorem 3.2.1,
$R$. By Theorem 3.2.1,  $\unicode[STIX]{x1D711}_{R}$ is a Fano contraction, that is,
$\unicode[STIX]{x1D711}_{R}$ is a Fano contraction, that is,  $\dim W<\dim X$. Let
$\dim W<\dim X$. Let  $F$ be a general fiber of
$F$ be a general fiber of  $\unicode[STIX]{x1D711}_{R}$ and let
$\unicode[STIX]{x1D711}_{R}$ and let  $C$ be a curve on
$C$ be a curve on  $F$. Then, by adjunction, we have
$F$. Then, by adjunction, we have 
 $$\begin{eqnarray}-K_{X}\cdot C=-K_{F}\cdot C.\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C=-K_{F}\cdot C.\end{eqnarray}$$ We note that  $F$ is a fake weighted projective space. By Theorem 3.1.1,
$F$ is a fake weighted projective space. By Theorem 3.1.1,  $F\simeq \mathbb{P}^{n-1}$,
$F\simeq \mathbb{P}^{n-1}$,  $W=\mathbb{P}^{1}$, and
$W=\mathbb{P}^{1}$, and  $\unicode[STIX]{x1D70C}(X)=2$.
$\unicode[STIX]{x1D70C}(X)=2$.
Step 2. Without loss of generality,  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is induced by the projection
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is induced by the projection  $\unicode[STIX]{x1D70B}:N=\mathbb{Z}^{n}\rightarrow \mathbb{Z},(x_{1},\ldots ,x_{n})\mapsto x_{n}$. We put
$\unicode[STIX]{x1D70B}:N=\mathbb{Z}^{n}\rightarrow \mathbb{Z},(x_{1},\ldots ,x_{n})\mapsto x_{n}$. We put 
 $$\begin{eqnarray}\displaystyle & \displaystyle v_{1}=(1,0,\ldots ,0),\qquad v_{2}=(0,1,0,\ldots ,0),\ldots , & \displaystyle \nonumber\\ \displaystyle & \displaystyle v_{n-1}=(0,\ldots ,0,1,0),\qquad v_{n}=(-1,\ldots ,-1,0), & \displaystyle \nonumber\\ \displaystyle & \displaystyle v_{+}=(b_{1},\ldots ,b_{n-1},a_{+}),\qquad v_{-}=(c_{1},\ldots ,c_{n-1},-a_{-}), & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & \displaystyle v_{1}=(1,0,\ldots ,0),\qquad v_{2}=(0,1,0,\ldots ,0),\ldots , & \displaystyle \nonumber\\ \displaystyle & \displaystyle v_{n-1}=(0,\ldots ,0,1,0),\qquad v_{n}=(-1,\ldots ,-1,0), & \displaystyle \nonumber\\ \displaystyle & \displaystyle v_{+}=(b_{1},\ldots ,b_{n-1},a_{+}),\qquad v_{-}=(c_{1},\ldots ,c_{n-1},-a_{-}), & \displaystyle \nonumber\end{eqnarray}$$ where  $a_{+}$ and
$a_{+}$ and  $a_{-}$ are positive integers. More precisely,
$a_{-}$ are positive integers. More precisely,  $v_{i}$ denotes the vector with a
$v_{i}$ denotes the vector with a  $1$ in the
$1$ in the  $i$th coordinate and
$i$th coordinate and  $0$’s elsewhere for
$0$’s elsewhere for  $1\leqslant i\leqslant n-1$. We may assume that the fan
$1\leqslant i\leqslant n-1$. We may assume that the fan  $\unicode[STIX]{x1D6F4}$ corresponding to the toric variety
$\unicode[STIX]{x1D6F4}$ corresponding to the toric variety  $X$ is the subdivision of
$X$ is the subdivision of  $N_{\mathbb{R}}$ by
$N_{\mathbb{R}}$ by  $v_{1},\ldots ,v_{n},v_{+}$, and
$v_{1},\ldots ,v_{n},v_{+}$, and  $v_{-}$. We note that the following equalities
$v_{-}$. We note that the following equalities 
 $$\begin{eqnarray}\left\{\begin{array}{@{}l@{}}D_{1}-D_{n}+b_{1}D_{+}+c_{1}D_{-}=0\quad \\ D_{2}-D_{n}+b_{2}D_{+}+c_{2}D_{-}=0\quad \\ \qquad \qquad \vdots \quad \\ D_{n-1}-D_{n}+b_{n-1}D_{+}+c_{n-1}D_{-}=0\quad \\ a_{+}D_{+}-a_{-}D_{-}=0\quad \end{array}\right.\end{eqnarray}$$
$$\begin{eqnarray}\left\{\begin{array}{@{}l@{}}D_{1}-D_{n}+b_{1}D_{+}+c_{1}D_{-}=0\quad \\ D_{2}-D_{n}+b_{2}D_{+}+c_{2}D_{-}=0\quad \\ \qquad \qquad \vdots \quad \\ D_{n-1}-D_{n}+b_{n-1}D_{+}+c_{n-1}D_{-}=0\quad \\ a_{+}D_{+}-a_{-}D_{-}=0\quad \end{array}\right.\end{eqnarray}$$ hold, where  $D_{i}=V(v_{i})$ for every
$D_{i}=V(v_{i})$ for every  $i$ and
$i$ and  $D_{\pm }=V(v_{\pm })$. We note that it is sufficient to prove that
$D_{\pm }=V(v_{\pm })$. We note that it is sufficient to prove that  $a_{+}=a_{-}=1$.
$a_{+}=a_{-}=1$.
Step 3. In this step, we will prove that  $a_{+}=1$ holds.
$a_{+}=1$ holds.
By taking a suitable coordinate change, we may assume that
 $$\begin{eqnarray}0\leqslant b_{1},\ldots ,b_{n-1}<a_{+}\end{eqnarray}$$
$$\begin{eqnarray}0\leqslant b_{1},\ldots ,b_{n-1}<a_{+}\end{eqnarray}$$ holds. If  $b_{i}=0$ for every
$b_{i}=0$ for every  $i$, then
$i$, then  $a_{+}=1$ since
$a_{+}=1$ since  $v_{+}$ is a primitive vector of
$v_{+}$ is a primitive vector of  $N$. From now on, we assume that
$N$. From now on, we assume that  $b_{i_{0}}\neq 0$ for some
$b_{i_{0}}\neq 0$ for some  $i_{0}$. Without loss of generality, we may assume that
$i_{0}$. Without loss of generality, we may assume that  $b_{1}\neq 0$. We put
$b_{1}\neq 0$. We put 
 $$\begin{eqnarray}C=V(\langle v_{2},\ldots ,v_{n-1},v_{+}\rangle ).\end{eqnarray}$$
$$\begin{eqnarray}C=V(\langle v_{2},\ldots ,v_{n-1},v_{+}\rangle ).\end{eqnarray}$$ Then  $C$ is a torus invariant curve contained in a fiber of
$C$ is a torus invariant curve contained in a fiber of  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$. We have
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$. We have 
 $$\begin{eqnarray}D_{1}\cdot C=\frac{\operatorname{mult}(\langle v_{2},\ldots ,v_{n-1},v_{+}\rangle )}{\operatorname{mult}(\langle v_{1},\ldots ,v_{n-1},v_{+}\rangle )}=\frac{\gcd (a_{+},b_{1})}{a_{+}}\end{eqnarray}$$
$$\begin{eqnarray}D_{1}\cdot C=\frac{\operatorname{mult}(\langle v_{2},\ldots ,v_{n-1},v_{+}\rangle )}{\operatorname{mult}(\langle v_{1},\ldots ,v_{n-1},v_{+}\rangle )}=\frac{\gcd (a_{+},b_{1})}{a_{+}}\end{eqnarray}$$ (see 2.1.5) and  $D_{+}\cdot C=D_{-}\cdot C=0$. We note that
$D_{+}\cdot C=D_{-}\cdot C=0$. We note that  $D_{i}\cdot C=D_{1}\cdot C$ for every
$D_{i}\cdot C=D_{1}\cdot C$ for every  $i$ by (3.3). Therefore, we obtain
$i$ by (3.3). Therefore, we obtain 
 $$\begin{eqnarray}-K_{X}\cdot C=\frac{n\gcd (a_{+},b_{1})}{a_{+}}.\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C=\frac{n\gcd (a_{+},b_{1})}{a_{+}}.\end{eqnarray}$$ Since  $0<b_{1}<a_{+}$, we see
$0<b_{1}<a_{+}$, we see  $\gcd (a_{+},b_{1})<a_{+}$. Thus, the following inequality
$\gcd (a_{+},b_{1})<a_{+}$. Thus, the following inequality 
 $$\begin{eqnarray}\frac{\gcd (a_{+},b_{1})}{a_{+}}\leqslant \frac{1}{2}\end{eqnarray}$$
$$\begin{eqnarray}\frac{\gcd (a_{+},b_{1})}{a_{+}}\leqslant \frac{1}{2}\end{eqnarray}$$holds. This means that
 $$\begin{eqnarray}-K_{X}\cdot C\leqslant \frac{n}{2}\leqslant n-1.\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C\leqslant \frac{n}{2}\leqslant n-1.\end{eqnarray}$$ This is a contradiction. Therefore,  $b_{i}=0$ for every
$b_{i}=0$ for every  $i$ and
$i$ and  $a_{+}=1$.
$a_{+}=1$.
Step 4. By the same argument, we get  $a_{-}=1$. Thus, we see that
$a_{-}=1$. Thus, we see that  $\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a
$\unicode[STIX]{x1D711}_{R}:X\rightarrow W$ is a  $\mathbb{P}^{n-1}$-bundle over
$\mathbb{P}^{n-1}$-bundle over  $\mathbb{P}^{1}$.
$\mathbb{P}^{1}$.
Step 5. In this step, we will prove that  $X$ is
$X$ is  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
 We assume that  $X$ is not
$X$ is not  $\mathbb{Q}$-factorial. Let
$\mathbb{Q}$-factorial. Let  $\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ be a small projective
$\unicode[STIX]{x1D70B}:\widetilde{X}\rightarrow X$ be a small projective  $\mathbb{Q}$-factorialization. We note that
$\mathbb{Q}$-factorialization. We note that  $\unicode[STIX]{x1D70C}(\widetilde{X})>\unicode[STIX]{x1D70C}(X)\geqslant 2$ since
$\unicode[STIX]{x1D70C}(\widetilde{X})>\unicode[STIX]{x1D70C}(X)\geqslant 2$ since  $X$ is not
$X$ is not  $\mathbb{Q}$-factorial. By the argument in Step 1 in the proof of Theorem 3.2.1, there exists an extremal ray
$\mathbb{Q}$-factorial. By the argument in Step 1 in the proof of Theorem 3.2.1, there exists an extremal ray  $\widetilde{R}$ of
$\widetilde{R}$ of  $\operatorname{NE}(\widetilde{X}/W)$ with
$\operatorname{NE}(\widetilde{X}/W)$ with  $l(\widetilde{R})>n-1$. Let
$l(\widetilde{R})>n-1$. Let  $\unicode[STIX]{x1D711}_{\widetilde{R}}:\widetilde{X}\rightarrow \widetilde{W}$ be the contraction morphism associated to
$\unicode[STIX]{x1D711}_{\widetilde{R}}:\widetilde{X}\rightarrow \widetilde{W}$ be the contraction morphism associated to  $\widetilde{R}$. Then, by the argument in Step 1, we see that
$\widetilde{R}$. Then, by the argument in Step 1, we see that  $\unicode[STIX]{x1D70C}(\widetilde{X})=2$ and that
$\unicode[STIX]{x1D70C}(\widetilde{X})=2$ and that  $\unicode[STIX]{x1D711}_{\widetilde{R}}$ is nothing but
$\unicode[STIX]{x1D711}_{\widetilde{R}}$ is nothing but  $\unicode[STIX]{x1D711}_{R}\circ \unicode[STIX]{x1D70B}$. This is a contradiction because
$\unicode[STIX]{x1D711}_{R}\circ \unicode[STIX]{x1D70B}$. This is a contradiction because  $\unicode[STIX]{x1D70C}(\widetilde{X})>2$. This means that
$\unicode[STIX]{x1D70C}(\widetilde{X})>2$. This means that  $X$ is always
$X$ is always  $\mathbb{Q}$-factorial.
$\mathbb{Q}$-factorial.
Therefore, we get the desired statement. ◻
We close this subsection with an easy example, which shows that Theorem 3.2.9 is sharp.
Example 3.2.10. We consider  $N=\mathbb{Z}^{2}$,
$N=\mathbb{Z}^{2}$,  $v_{1}=(0,1),v_{2}=(0,-1),v_{+}=(2,1),v_{-}=(-1,0)$ and the projection
$v_{1}=(0,1),v_{2}=(0,-1),v_{+}=(2,1),v_{-}=(-1,0)$ and the projection  $\unicode[STIX]{x1D70B}:N=\mathbb{Z}^{2}\rightarrow \mathbb{Z},(x_{1},x_{2})\mapsto x_{1}$. Let
$\unicode[STIX]{x1D70B}:N=\mathbb{Z}^{2}\rightarrow \mathbb{Z},(x_{1},x_{2})\mapsto x_{1}$. Let  $\unicode[STIX]{x1D6F4}$ be the fan obtained by subdividing
$\unicode[STIX]{x1D6F4}$ be the fan obtained by subdividing  $N_{\mathbb{R}}$ by
$N_{\mathbb{R}}$ by  $\{v_{1},v_{2},v_{+},v_{-}\}$. Then
$\{v_{1},v_{2},v_{+},v_{-}\}$. Then  $X=X(\unicode[STIX]{x1D6F4})$ is a projective toric surface with
$X=X(\unicode[STIX]{x1D6F4})$ is a projective toric surface with  $\unicode[STIX]{x1D70C}(X)=2$. The map
$\unicode[STIX]{x1D70C}(X)=2$. The map  $\unicode[STIX]{x1D70B}:N\rightarrow \mathbb{Z}$ induces a Fano contraction morphism
$\unicode[STIX]{x1D70B}:N\rightarrow \mathbb{Z}$ induces a Fano contraction morphism  $\unicode[STIX]{x1D711}:X\rightarrow \mathbb{P}^{1}$. Let
$\unicode[STIX]{x1D711}:X\rightarrow \mathbb{P}^{1}$. Let  $R$ be the corresponding extremal ray of
$R$ be the corresponding extremal ray of  $\operatorname{NE}(X)$. Then
$\operatorname{NE}(X)$. Then  $l(R)=1=2-1$. Note that
$l(R)=1=2-1$. Note that  $X$ is not a
$X$ is not a  $\mathbb{P}^{1}$-bundle over
$\mathbb{P}^{1}$-bundle over  $\mathbb{P}^{1}$.
$\mathbb{P}^{1}$.
 The reader can find a generalization of Theorem 3.2.9, that is, a characterization of toric projective bundles for  $\mathbb{Q}$-factorial projective toric varieties, in [Reference Fujino and SatoFS3].
$\mathbb{Q}$-factorial projective toric varieties, in [Reference Fujino and SatoFS3].
3.3 Examples
In this subsection, we will see that the estimates in Theorem 3.2.1 are the best by the following examples.
Example 3.3.1. We use the same notation as in Example 3.2.7. In Example 3.2.7, we put  $a=k^{2}$ and
$a=k^{2}$ and  $b=mk+1$ for any positive integers
$b=mk+1$ for any positive integers  $k$ and
$k$ and  $m$. Then it is obvious that
$m$. Then it is obvious that  $\gcd (a,b)=1$. So, we can apply the construction in Example 3.2.7. Then we obtain a toric projective birational morphism
$\gcd (a,b)=1$. So, we can apply the construction in Example 3.2.7. Then we obtain a toric projective birational morphism  $f:X\rightarrow Y$ such that
$f:X\rightarrow Y$ such that  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $\unicode[STIX]{x1D70C}(X/Y)=1$. We can easily check that
$\unicode[STIX]{x1D70C}(X/Y)=1$. We can easily check that 
 $$\begin{eqnarray}K_{X}=f^{\ast }K_{Y}+\biggl(\frac{1+k^{2}(n-1)}{mk+1}-1\biggr)E\end{eqnarray}$$
$$\begin{eqnarray}K_{X}=f^{\ast }K_{Y}+\biggl(\frac{1+k^{2}(n-1)}{mk+1}-1\biggr)E\end{eqnarray}$$and
 $$\begin{eqnarray}-K_{X}\cdot C=n-1-\frac{m}{k}.\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C=n-1-\frac{m}{k}.\end{eqnarray}$$ Therefore, we see that the minimal lengths of extremal rays do not satisfy the ascending chain condition in this birational setting. More precisely, the minimal lengths of extremal rays can take any values in  $\mathbb{Q}\cap (0,n-1)$. For a related topic, see [Reference Fujino and IshitsukaFI].
$\mathbb{Q}\cap (0,n-1)$. For a related topic, see [Reference Fujino and IshitsukaFI].
Let us construct small contraction morphisms with a long extremal ray.
Example 3.3.2. We fix  $N=\mathbb{Z}^{n}$ with
$N=\mathbb{Z}^{n}$ with  $n\geqslant 3$. Let
$n\geqslant 3$. Let  $\{v_{1},\ldots ,v_{n}\}$ be the standard basis of
$\{v_{1},\ldots ,v_{n}\}$ be the standard basis of  $N$. We put
$N$. We put 
 $$\begin{eqnarray}v_{n+1}=(\underbrace{a,\ldots ,a}_{n-k+1},\underbrace{-1,\ldots ,-1}_{k-1})\end{eqnarray}$$
$$\begin{eqnarray}v_{n+1}=(\underbrace{a,\ldots ,a}_{n-k+1},\underbrace{-1,\ldots ,-1}_{k-1})\end{eqnarray}$$ with  $2\leqslant k\leqslant n-1$, where
$2\leqslant k\leqslant n-1$, where  $a$ is any positive integer. Let
$a$ is any positive integer. Let  $\unicode[STIX]{x1D6F4}^{+}$ be the fan in
$\unicode[STIX]{x1D6F4}^{+}$ be the fan in  $\mathbb{R}^{n}$ such that the set of maximal cones of
$\mathbb{R}^{n}$ such that the set of maximal cones of  $\unicode[STIX]{x1D6F4}^{+}$ is
$\unicode[STIX]{x1D6F4}^{+}$ is 
 $$\begin{eqnarray}\{\langle \{v_{1},\ldots ,v_{n+1}\}\setminus \{v_{i}\}\rangle \mid n-k+2\leqslant i\leqslant n+1\}.\end{eqnarray}$$
$$\begin{eqnarray}\{\langle \{v_{1},\ldots ,v_{n+1}\}\setminus \{v_{i}\}\rangle \mid n-k+2\leqslant i\leqslant n+1\}.\end{eqnarray}$$ Let us consider the smooth toric variety  $X^{+}=X(\unicode[STIX]{x1D6F4}^{+})$ associated to the fan
$X^{+}=X(\unicode[STIX]{x1D6F4}^{+})$ associated to the fan  $\unicode[STIX]{x1D6F4}^{+}$. We note that the equality
$\unicode[STIX]{x1D6F4}^{+}$. We note that the equality 
 $$\begin{eqnarray}v_{n-k+2}+\cdots +v_{n}+v_{n+1}=av_{1}+\cdots +av_{n-k+1}\end{eqnarray}$$
$$\begin{eqnarray}v_{n-k+2}+\cdots +v_{n}+v_{n+1}=av_{1}+\cdots +av_{n-k+1}\end{eqnarray}$$ holds. We can get an antiflipping contraction  $\unicode[STIX]{x1D711}^{+}:X^{+}\rightarrow W$, that is, a
$\unicode[STIX]{x1D711}^{+}:X^{+}\rightarrow W$, that is, a  $K_{X^{+}}$-positive small contraction morphism, when
$K_{X^{+}}$-positive small contraction morphism, when 
 $$\begin{eqnarray}a>\frac{k}{n-k+1}.\end{eqnarray}$$
$$\begin{eqnarray}a>\frac{k}{n-k+1}.\end{eqnarray}$$In this case, we have the following flipping diagram

 By construction,  $\unicode[STIX]{x1D711}:X\rightarrow W$ is a flipping contraction whose exceptional locus is isomorphic to
$\unicode[STIX]{x1D711}:X\rightarrow W$ is a flipping contraction whose exceptional locus is isomorphic to  $\mathbb{P}^{n-k}$. The exceptional locus of
$\mathbb{P}^{n-k}$. The exceptional locus of  $\unicode[STIX]{x1D711}^{+}$ is isomorphic to
$\unicode[STIX]{x1D711}^{+}$ is isomorphic to  $\mathbb{P}^{k-1}$. Of course,
$\mathbb{P}^{k-1}$. Of course,  $\unicode[STIX]{x1D711}$ (resp.
$\unicode[STIX]{x1D711}$ (resp.  $\unicode[STIX]{x1D711}^{+}$) contracts
$\unicode[STIX]{x1D711}^{+}$) contracts  $\mathbb{P}^{n-k}$ (resp.
$\mathbb{P}^{n-k}$ (resp.  $\mathbb{P}^{k-1}$) to a point in
$\mathbb{P}^{k-1}$) to a point in  $W$. We can directly check that
$W$. We can directly check that 
 $$\begin{eqnarray}-K_{X}\cdot C=n-k+1-\frac{k}{a}\end{eqnarray}$$
$$\begin{eqnarray}-K_{X}\cdot C=n-k+1-\frac{k}{a}\end{eqnarray}$$ for every torus invariant curve  $C$ in the
$C$ in the  $\unicode[STIX]{x1D711}$-exceptional locus
$\unicode[STIX]{x1D711}$-exceptional locus  $\mathbb{P}^{n-k}$.
$\mathbb{P}^{n-k}$.
Example 3.3.2 shows that the estimate for small contractions in Theorem 3.2.1 is sharp.
Remark 3.3.3. If  $(n,k)=(3,2)$ and
$(n,k)=(3,2)$ and  $a\geqslant 2$ in Example 3.3.2, then
$a\geqslant 2$ in Example 3.3.2, then  $\unicode[STIX]{x1D711}:X\rightarrow W$ is a threefold toric flipping contraction whose length of the extremal ray is
$\unicode[STIX]{x1D711}:X\rightarrow W$ is a threefold toric flipping contraction whose length of the extremal ray is  ${\geqslant}3-2=1$. We note that the lengths of extremal rays of three-dimensional terminal (not necessarily toric) flipping contractions are less than one.
${\geqslant}3-2=1$. We note that the lengths of extremal rays of three-dimensional terminal (not necessarily toric) flipping contractions are less than one.
4 Basepoint-free theorems
This section is a supplement to Fujita’s freeness conjecture for toric varieties (see [Reference FujinoF1, Reference FujitaFuj, Reference LaterveerLat, Reference LinLi, Reference MustaţǎMu, Reference PayneP]) and Fulton’s book: [Reference FultonFul].
4.1 Variants of Fujita’s conjectures for toric varieties
One of the most general formulations of Fujita’s freeness conjecture for toric varieties is [Reference FujinoF1, Corollary 0.2]. However, it does not cover the first part of [Reference LinLi, Main theorem A]. So, we give a generalization here with a very simple proof. It is an easy application of the vanishing theorem (see [Reference FujinoF5, Reference FujinoF6]).
Theorem 4.1.1. (Basepoint-freeness)
 Let  $g:Z\rightarrow X$ be a proper toric morphism and let
$g:Z\rightarrow X$ be a proper toric morphism and let  $A$ and
$A$ and  $B$ be reduced torus invariant Weil divisors on
$B$ be reduced torus invariant Weil divisors on  $Z$ without common irreducible components. Let
$Z$ without common irreducible components. Let  $f:X\rightarrow Y$ be a proper surjective toric morphism and let
$f:X\rightarrow Y$ be a proper surjective toric morphism and let  $D$ be an
$D$ be an  $f$-ample Cartier divisor on
$f$-ample Cartier divisor on  $X$. Then
$X$. Then 
 $$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\end{eqnarray}$$
$$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\end{eqnarray}$$ is  $f$-free, that is,
$f$-free, that is, 
 $$\begin{eqnarray}\displaystyle & & \displaystyle f^{\ast }f_{\ast }(R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD))\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow \,R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle f^{\ast }f_{\ast }(R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD))\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow \,R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\nonumber\end{eqnarray}$$ is surjective for every  $a\geqslant 0$,
$a\geqslant 0$,  $q\geqslant 0$, and
$q\geqslant 0$, and  $k\geqslant \max _{y\in Y}\dim f^{-1}(y)+1$.
$k\geqslant \max _{y\in Y}\dim f^{-1}(y)+1$.
As a very special case, we can recover the following result.
Corollary 4.1.2. (cf. [Reference LinLi, Main theorem A])
 Let  $X$ be an
$X$ be an  $n$-dimensional projective toric variety and let
$n$-dimensional projective toric variety and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. Then the reflexive sheaf
$X$. Then the reflexive sheaf  ${\mathcal{O}}_{X}(K_{X}+(n+1)D)$ is generated by its global sections.
${\mathcal{O}}_{X}(K_{X}+(n+1)D)$ is generated by its global sections.
Proof. In Theorem 4.1.1, we assume that  $g:Z\rightarrow X$ is the identity,
$g:Z\rightarrow X$ is the identity,  $A=B=0$,
$A=B=0$,  $a=\dim X$,
$a=\dim X$,  $q=0$, and
$q=0$, and  $Y$ is a point. Then we obtain the desired statement.◻
$Y$ is a point. Then we obtain the desired statement.◻
Example 4.1.3. Let us consider  $X=\mathbb{P}(1,1,1,2)$. Let
$X=\mathbb{P}(1,1,1,2)$. Let  $P$ be the unique
$P$ be the unique  $\frac{1}{2}(1,1,1)$-singular point of
$\frac{1}{2}(1,1,1)$-singular point of  $X$ and let
$X$ and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. We can find a torus invariant curve
$X$. We can find a torus invariant curve  $C$ on
$C$ on  $X$ such that
$X$ such that 
 $$\begin{eqnarray}K_{X}\cdot C\in {\textstyle \frac{1}{2}}\mathbb{Z}\setminus \mathbb{Z}.\end{eqnarray}$$
$$\begin{eqnarray}K_{X}\cdot C\in {\textstyle \frac{1}{2}}\mathbb{Z}\setminus \mathbb{Z}.\end{eqnarray}$$ Therefore, for every effective Weil divisor  $E$ on
$E$ on  $X$ such that
$X$ such that  $E\sim K_{X}+4D$, we have
$E\sim K_{X}+4D$, we have  $P\in \operatorname{Supp}E$. On the other hand, by Corollary 4.1.2, the reflexive sheaf
$P\in \operatorname{Supp}E$. On the other hand, by Corollary 4.1.2, the reflexive sheaf  ${\mathcal{O}}_{X}(K_{X}+4D)$ is generated by its global sections.
${\mathcal{O}}_{X}(K_{X}+4D)$ is generated by its global sections.
 Before proving Theorem 4.1.1, let us recall the definition of the reflexive sheaf  $\widetilde{\unicode[STIX]{x1D6FA}}_{X}^{a}(\log (A+B))(-A)$ and the vanishing theorem in [Reference FujinoF6].
$\widetilde{\unicode[STIX]{x1D6FA}}_{X}^{a}(\log (A+B))(-A)$ and the vanishing theorem in [Reference FujinoF6].
Definition 4.1.4. Let  $W$ be any Zariski open set of
$W$ be any Zariski open set of  $Z$ such that
$Z$ such that  $W$ is smooth and
$W$ is smooth and  $\operatorname{codim}_{Z}(Z\setminus W)\geqslant 2$. In this case,
$\operatorname{codim}_{Z}(Z\setminus W)\geqslant 2$. In this case,  $A+B$ is a simple normal crossing divisor on
$A+B$ is a simple normal crossing divisor on  $W$. On this assumption,
$W$. On this assumption,  $\unicode[STIX]{x1D6FA}_{W}^{a}(\log (A+B))$ is a well-defined locally free sheaf on
$\unicode[STIX]{x1D6FA}_{W}^{a}(\log (A+B))$ is a well-defined locally free sheaf on  $W$. Let
$W$. Let  $\unicode[STIX]{x1D704}:W{\hookrightarrow}Z$ be the natural open immersion. Then we put
$\unicode[STIX]{x1D704}:W{\hookrightarrow}Z$ be the natural open immersion. Then we put 
 $$\begin{eqnarray}\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A)=\unicode[STIX]{x1D704}_{\ast }(\unicode[STIX]{x1D6FA}_{W}^{a}(\log (A+B))\otimes {\mathcal{O}}_{W}(-A))\end{eqnarray}$$
$$\begin{eqnarray}\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A)=\unicode[STIX]{x1D704}_{\ast }(\unicode[STIX]{x1D6FA}_{W}^{a}(\log (A+B))\otimes {\mathcal{O}}_{W}(-A))\end{eqnarray}$$ for every  $a\geqslant 0$. It is easy to see that the reflexive sheaf
$a\geqslant 0$. It is easy to see that the reflexive sheaf 
 $$\begin{eqnarray}\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A)\end{eqnarray}$$
$$\begin{eqnarray}\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A)\end{eqnarray}$$ on  $Z$ does not depend on the choice of
$Z$ does not depend on the choice of  $W$.
$W$.
The next theorem is one of the vanishing theorems obtained in [Reference FujinoF6]. For the proof and other vanishing theorems, see [Reference FujinoF5, Reference FujinoF6].
Theorem 4.1.5. [Reference FujinoF6, Theorem 4.3]
 Let  $g:Z\rightarrow X$ be a proper toric morphism and let
$g:Z\rightarrow X$ be a proper toric morphism and let  $A$ and
$A$ and  $B$ be reduced torus invariant Weil divisors on
$B$ be reduced torus invariant Weil divisors on  $Z$ without common irreducible components. Let
$Z$ without common irreducible components. Let  $f:X\rightarrow Y$ be a proper surjective toric morphism and let
$f:X\rightarrow Y$ be a proper surjective toric morphism and let  $L$ be an
$L$ be an  $f$-ample line bundle on
$f$-ample line bundle on  $X$. Then
$X$. Then 
 $$\begin{eqnarray}R^{p}f_{\ast }(R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes L)=0\end{eqnarray}$$
$$\begin{eqnarray}R^{p}f_{\ast }(R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes L)=0\end{eqnarray}$$ for every  $p>0$,
$p>0$,  $q\geqslant 0$, and
$q\geqslant 0$, and  $a\geqslant 0$.
$a\geqslant 0$.
Let us prove Theorem 4.1.1.
Proof of Theorem 4.1.1.
By the vanishing theorem: Theorem 4.1.5, we have
 $$\begin{eqnarray}R^{p}f_{\ast }(R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}((k-p)D))=0\end{eqnarray}$$
$$\begin{eqnarray}R^{p}f_{\ast }(R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}((k-p)D))=0\end{eqnarray}$$ for every  $p>0$,
$p>0$,  $q\geqslant 0$,
$q\geqslant 0$,  $a\geqslant 0$, and
$a\geqslant 0$, and  $k\geqslant \max _{y\in Y}\dim f^{-1}(y)+1$. Since
$k\geqslant \max _{y\in Y}\dim f^{-1}(y)+1$. Since  ${\mathcal{O}}_{X}(D)$ is
${\mathcal{O}}_{X}(D)$ is  $f$-free, we obtain that
$f$-free, we obtain that 
 $$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\end{eqnarray}$$
$$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\end{eqnarray}$$ is  $f$-free by the Castelnuovo–Mumford regularity (see, for example, [Reference LazarsfeldLaz, Example 1.8.24]).◻
$f$-free by the Castelnuovo–Mumford regularity (see, for example, [Reference LazarsfeldLaz, Example 1.8.24]).◻
Here, we treat some generalizations of Fujita’s very ampleness for toric varieties as applications of Theorem 4.1.5. For the details of Fujita’s very ampleness for toric varieties, see [Reference PayneP].
Theorem 4.1.6. Let  $f:X\rightarrow Y$ be a proper surjective toric morphism, let
$f:X\rightarrow Y$ be a proper surjective toric morphism, let  $\unicode[STIX]{x1D6E5}$ be a reduced torus invariant divisor on
$\unicode[STIX]{x1D6E5}$ be a reduced torus invariant divisor on  $X$ such that
$X$ such that  $K_{X}+\unicode[STIX]{x1D6E5}$ is Cartier, and let
$K_{X}+\unicode[STIX]{x1D6E5}$ is Cartier, and let  $D$ be an
$D$ be an  $f$-ample Cartier divisor on
$f$-ample Cartier divisor on  $X$. Then
$X$. Then  ${\mathcal{O}}_{X}(K_{X}+\unicode[STIX]{x1D6E5}+kD)$ is
${\mathcal{O}}_{X}(K_{X}+\unicode[STIX]{x1D6E5}+kD)$ is  $f$-very ample for every
$f$-very ample for every  $k\geqslant \max _{y\in Y}\dim f^{-1}(y)+2$.
$k\geqslant \max _{y\in Y}\dim f^{-1}(y)+2$.
Proof. It follows from the Castelnuovo–Mumford regularity by the vanishing theorem: Theorem 4.1.5. For the details, see [Reference LazarsfeldLaz, Example 1.8.22]. ◻
 The following corollary is a special case of the above theorem. This result was first proved by Hui-Wen Lin (see [Reference LinLi]) for the case where  $X$ is
$X$ is  $\mathbb{Q}$-factorial and
$\mathbb{Q}$-factorial and  $\dim X\leqslant 6$, and then completed by Payne (see [Reference PayneP]).
$\dim X\leqslant 6$, and then completed by Payne (see [Reference PayneP]).
Corollary 4.1.7. [Reference LinLi, Main Theorem B] and [Reference PayneP, Theorem 1]
 Let  $X$ be an
$X$ be an  $n$-dimensional projective Gorenstein toric variety and let
$n$-dimensional projective Gorenstein toric variety and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. Then
$X$. Then  ${\mathcal{O}}_{X}(K_{X}+(n+2)D)$ is very ample.
${\mathcal{O}}_{X}(K_{X}+(n+2)D)$ is very ample.
We think that the following theorem has not been stated explicitly in the literature.
Theorem 4.1.8. (Very ampleness)
 Let  $g:Z\rightarrow X$ be a proper toric morphism and let
$g:Z\rightarrow X$ be a proper toric morphism and let  $A$ and
$A$ and  $B$ be reduced torus invariant Weil divisors on
$B$ be reduced torus invariant Weil divisors on  $Z$ without common irreducible components. Let
$Z$ without common irreducible components. Let  $f:X\rightarrow Y$ be a proper surjective toric morphism and let
$f:X\rightarrow Y$ be a proper surjective toric morphism and let  $D$ be an
$D$ be an  $f$-ample Cartier divisor on
$f$-ample Cartier divisor on  $X$. Assume that
$X$. Assume that  $R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))$ is locally free. Then
$R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))$ is locally free. Then 
 $$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\end{eqnarray}$$
$$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\otimes {\mathcal{O}}_{X}(kD)\end{eqnarray}$$ is  $f$-very ample for every
$f$-very ample for every  $k\geqslant \max _{y\in Y}\dim f^{-1}(y)+2$.
$k\geqslant \max _{y\in Y}\dim f^{-1}(y)+2$.
Proof. The proof of Theorem 4.1.6 works for this theorem since
 $$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\end{eqnarray}$$
$$\begin{eqnarray}R^{q}g_{\ast }(\widetilde{\unicode[STIX]{x1D6FA}}_{Z}^{a}(\log (A+B))(-A))\end{eqnarray}$$is locally free by assumption (see [Reference LazarsfeldLaz, Example 1.8.22]). ◻
4.2 Lin’s problem
In this subsection, we treat Lin’s problem raised in [Reference LinLi]. In [Reference LinLi, Lemma 4.3], she claimed the following lemma, which is an exercise in [Reference FultonFul, page 90], without proof.
Lemma 4.2.1. Let  $X$ be a complete Gorenstein toric variety and let
$X$ be a complete Gorenstein toric variety and let  $D$ be an ample (Cartier) divisor. If
$D$ be an ample (Cartier) divisor. If  $\unicode[STIX]{x1D6E4}(X,K+D)\neq 0$ then
$\unicode[STIX]{x1D6E4}(X,K+D)\neq 0$ then  $K+D$ is generated by its global sections. In fact,
$K+D$ is generated by its global sections. In fact,  $P_{K+D}$ is the convex hull of
$P_{K+D}$ is the convex hull of  $\operatorname{Int}P_{D}\cap M$.
$\operatorname{Int}P_{D}\cap M$.
Payne pointed out that Lemma 4.2.1 does not seem to have a known valid proof (see [Reference LinLi, page 500 Added in proof]). Unfortunately, the following elementary example is a counterexample to Lemma 4.2.1. So, Lemma 4.2.1 is NOT true. Therefore, the alternative proof of Theorem A in [Reference LinLi] does not work.
Example 4.2.2. Let  $Y=\mathbb{P}^{n}$ and let
$Y=\mathbb{P}^{n}$ and let  $P\in Y$ be a torus invariant closed point. Let
$P\in Y$ be a torus invariant closed point. Let  $f:X\rightarrow Y$ be the blow-up at
$f:X\rightarrow Y$ be the blow-up at  $P$. We put
$P$. We put  $B=\sum _{i=1}^{n+1}B_{i}$, where
$B=\sum _{i=1}^{n+1}B_{i}$, where  $B_{i}$ is a torus invariant prime divisor on
$B_{i}$ is a torus invariant prime divisor on  $Y$ for every
$Y$ for every  $i$. Then it is well known that
$i$. Then it is well known that  ${\mathcal{O}}_{Y}(K_{Y})\simeq {\mathcal{O}}_{Y}(-B)$. We define
${\mathcal{O}}_{Y}(K_{Y})\simeq {\mathcal{O}}_{Y}(-B)$. We define  $D=f^{\ast }B-E$, where
$D=f^{\ast }B-E$, where  $E$ is the exceptional divisor of
$E$ is the exceptional divisor of  $f$. In this case, we have
$f$. In this case, we have 
 $$\begin{eqnarray}K_{X}=f^{\ast }K_{Y}+(n-1)E\end{eqnarray}$$
$$\begin{eqnarray}K_{X}=f^{\ast }K_{Y}+(n-1)E\end{eqnarray}$$ and it is not difficult to see that  $D$ is ample. Therefore,
$D$ is ample. Therefore, 
 $$\begin{eqnarray}K_{X}+(n-1)D=f^{\ast }(K_{Y}+(n-1)B)\end{eqnarray}$$
$$\begin{eqnarray}K_{X}+(n-1)D=f^{\ast }(K_{Y}+(n-1)B)\end{eqnarray}$$ is nef, that is,  ${\mathcal{O}}_{X}(K_{X}+(n-1)D)$ is generated by its global sections. We note that
${\mathcal{O}}_{X}(K_{X}+(n-1)D)$ is generated by its global sections. We note that  $H^{0}(X,{\mathcal{O}}_{X}(K_{X}+aD))\neq 0$ for every positive integer
$H^{0}(X,{\mathcal{O}}_{X}(K_{X}+aD))\neq 0$ for every positive integer  $a$. However,
$a$. However,  $K_{X}+aD$ is not nef for any real number
$K_{X}+aD$ is not nef for any real number  $a<n-1$. In particular,
$a<n-1$. In particular,  $H^{0}(X,{\mathcal{O}}_{X}(K_{X}+D))\neq 0$ but
$H^{0}(X,{\mathcal{O}}_{X}(K_{X}+D))\neq 0$ but  ${\mathcal{O}}_{X}(K_{X}+D)$ is not generated by its global sections.
${\mathcal{O}}_{X}(K_{X}+D)$ is not generated by its global sections.
The following theorem is the main theorem of this section. It follows from Theorem 3.2.1.
Theorem 4.2.3. (see Theorem 1.1)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-Gorenstein projective toric
$\mathbb{Q}$-Gorenstein projective toric  $n$-fold and let
$n$-fold and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. Then
$X$. Then  $K_{X}+(n-1)D$ is pseudo-effective if and only if
$K_{X}+(n-1)D$ is pseudo-effective if and only if  $K_{X}+(n-1)D$ is nef.
$K_{X}+(n-1)D$ is nef.
Proof. If  $K_{X}+(n-1)D$ is nef, then
$K_{X}+(n-1)D$ is nef, then  $K_{X}+(n-1)D$ is obviously pseudo-effective. So, all we have to do is to see that
$K_{X}+(n-1)D$ is obviously pseudo-effective. So, all we have to do is to see that  $K_{X}+(n-1)D$ is nef when it is pseudo-effective. From now on, we assume that
$K_{X}+(n-1)D$ is nef when it is pseudo-effective. From now on, we assume that  $K_{X}+(n-1)D$ is pseudo-effective. We take a positive rational number
$K_{X}+(n-1)D$ is pseudo-effective. We take a positive rational number  $\unicode[STIX]{x1D70F}$ such that
$\unicode[STIX]{x1D70F}$ such that  $K_{X}+\unicode[STIX]{x1D70F}D$ is nef but not ample. In some literature,
$K_{X}+\unicode[STIX]{x1D70F}D$ is nef but not ample. In some literature,  $1/\unicode[STIX]{x1D70F}$ is called the nef threshold of
$1/\unicode[STIX]{x1D70F}$ is called the nef threshold of  $D$with respect to
$D$with respect to  $X$. It is not difficult to see that
$X$. It is not difficult to see that  $\unicode[STIX]{x1D70F}$ is rational since the Kleiman–Mori cone is a rational polyhedral cone in our case. If
$\unicode[STIX]{x1D70F}$ is rational since the Kleiman–Mori cone is a rational polyhedral cone in our case. If  $\unicode[STIX]{x1D70F}\leqslant n-1$, then the theorem is obvious since
$\unicode[STIX]{x1D70F}\leqslant n-1$, then the theorem is obvious since 
 $$\begin{eqnarray}K_{X}+(n-1)D=K_{X}+\unicode[STIX]{x1D70F}D+(n-1-\unicode[STIX]{x1D70F})D\end{eqnarray}$$
$$\begin{eqnarray}K_{X}+(n-1)D=K_{X}+\unicode[STIX]{x1D70F}D+(n-1-\unicode[STIX]{x1D70F})D\end{eqnarray}$$ and  $D$ is ample. Therefore, we assume that
$D$ is ample. Therefore, we assume that  $\unicode[STIX]{x1D70F}>n-1$. We take a sufficiently large positive integer
$\unicode[STIX]{x1D70F}>n-1$. We take a sufficiently large positive integer  $m$ such that
$m$ such that  $m(K_{X}+\unicode[STIX]{x1D70F}D)$ is Cartier. We consider the toric morphism
$m(K_{X}+\unicode[STIX]{x1D70F}D)$ is Cartier. We consider the toric morphism  $f:=\unicode[STIX]{x1D6F7}_{|m(K_{X}+\unicode[STIX]{x1D70F}D)|}:X\rightarrow Y$. By the definition of
$f:=\unicode[STIX]{x1D6F7}_{|m(K_{X}+\unicode[STIX]{x1D70F}D)|}:X\rightarrow Y$. By the definition of  $\unicode[STIX]{x1D70F}$,
$\unicode[STIX]{x1D70F}$,  $f$ is not an isomorphism. Let
$f$ is not an isomorphism. Let  $R$ be an extremal ray of
$R$ be an extremal ray of  $\operatorname{NE}(X/Y)$. Let
$\operatorname{NE}(X/Y)$. Let  $C$ be any integral curve on
$C$ be any integral curve on  $X$ such that
$X$ such that  $[C]\in R$. Since
$[C]\in R$. Since  $(K_{X}+\unicode[STIX]{x1D70F}D)\cdot C=0$, we obtain
$(K_{X}+\unicode[STIX]{x1D70F}D)\cdot C=0$, we obtain  $-K_{X}\cdot C=\unicode[STIX]{x1D70F}D\cdot C>n-1$. Therefore,
$-K_{X}\cdot C=\unicode[STIX]{x1D70F}D\cdot C>n-1$. Therefore,  $f$ is not birational by Theorem 3.2.1. Equivalently,
$f$ is not birational by Theorem 3.2.1. Equivalently,  $K_{X}+\unicode[STIX]{x1D70F}D$ is not big. Thus, the numerical equivalence class of
$K_{X}+\unicode[STIX]{x1D70F}D$ is not big. Thus, the numerical equivalence class of  $K_{X}+\unicode[STIX]{x1D70F}D$ is on the boundary of the pseudo-effective cone
$K_{X}+\unicode[STIX]{x1D70F}D$ is on the boundary of the pseudo-effective cone  $\operatorname{PE}(X)$ of
$\operatorname{PE}(X)$ of  $X$. So,
$X$. So, 
 $$\begin{eqnarray}K_{X}+(n-1)D=K_{X}+\unicode[STIX]{x1D70F}D-(\unicode[STIX]{x1D70F}-(n-1))D\end{eqnarray}$$
$$\begin{eqnarray}K_{X}+(n-1)D=K_{X}+\unicode[STIX]{x1D70F}D-(\unicode[STIX]{x1D70F}-(n-1))D\end{eqnarray}$$ is outside  $\operatorname{PE}(X)$. This is a contradiction. Therefore,
$\operatorname{PE}(X)$. This is a contradiction. Therefore,  $K_{X}+(n-1)D$ is nef when
$K_{X}+(n-1)D$ is nef when  $K_{X}+(n-1)D$ is pseudo-effective.◻
$K_{X}+(n-1)D$ is pseudo-effective.◻
 As a corollary, we obtain the following result, which is a correction of Lemma 4.2.1. It is a variant of Fujita’s freeness conjecture for toric varieties. Example 4.2.2 shows that the constant  $n-1$ in Corollary 4.2.4 is the best.
$n-1$ in Corollary 4.2.4 is the best.
Corollary 4.2.4. (see Theorem 1.1)
 Let  $X$ be a Gorenstein projective toric
$X$ be a Gorenstein projective toric  $n$-fold and let
$n$-fold and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. If
$X$. If  $H^{0}(X,{\mathcal{O}}_{X}(K_{X}+(n-1)D))\neq 0$, then
$H^{0}(X,{\mathcal{O}}_{X}(K_{X}+(n-1)D))\neq 0$, then  ${\mathcal{O}}_{X}(K_{X}+(n-1)D)$ is generated by its global sections.
${\mathcal{O}}_{X}(K_{X}+(n-1)D)$ is generated by its global sections.
Proof. If  $H^{0}(X,{\mathcal{O}}_{X}(K_{X}+(n-1)D))\neq 0$, then
$H^{0}(X,{\mathcal{O}}_{X}(K_{X}+(n-1)D))\neq 0$, then  $K_{X}+(n-1)D$ is obviously pseudo-effective. Then, by Theorem 4.2.3,
$K_{X}+(n-1)D$ is obviously pseudo-effective. Then, by Theorem 4.2.3,  $K_{X}+(n-1)D$ is nef. If
$K_{X}+(n-1)D$ is nef. If  $K_{X}+(n-1)D$ is a nef Cartier divisor, then the complete linear system
$K_{X}+(n-1)D$ is a nef Cartier divisor, then the complete linear system  $|K_{X}+(n-1)D|$ is basepoint-free by Lemma 2.2.5.◻
$|K_{X}+(n-1)D|$ is basepoint-free by Lemma 2.2.5.◻
By Theorem 3.2.9, we can check the following result.
Corollary 4.2.5. (Corollary 1.4)
 Let  $X$ be a
$X$ be a  $\mathbb{Q}$-Gorenstein projective toric
$\mathbb{Q}$-Gorenstein projective toric  $n$-fold and let
$n$-fold and let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. If
$X$. If  $\unicode[STIX]{x1D70C}(X)\geqslant 3$, then
$\unicode[STIX]{x1D70C}(X)\geqslant 3$, then  $K_{X}+(n-1)D$ is always nef. More precisely, if
$K_{X}+(n-1)D$ is always nef. More precisely, if  $\unicode[STIX]{x1D70C}(X)\geqslant 2$ and
$\unicode[STIX]{x1D70C}(X)\geqslant 2$ and  $X$ is not a
$X$ is not a  $\mathbb{P}^{n-1}$-bundle over
$\mathbb{P}^{n-1}$-bundle over  $\mathbb{P}^{1}$, then
$\mathbb{P}^{1}$, then  $K_{X}+(n-1)D$ is nef.
$K_{X}+(n-1)D$ is nef.
Proof. By Theorem 3.2.9,  $K_{X}+(n-1)D$ is nef since
$K_{X}+(n-1)D$ is nef since  $\unicode[STIX]{x1D70C}(X)\geqslant 2$ and
$\unicode[STIX]{x1D70C}(X)\geqslant 2$ and  $X$ is not a
$X$ is not a  $\mathbb{P}^{n-1}$-bundle over
$\mathbb{P}^{n-1}$-bundle over  $\mathbb{P}^{1}$.◻
$\mathbb{P}^{1}$.◻
4.3 Supplements to Fujita’s paper
This subsection supplements Fujita’s paper: [Reference FujitaFuj].
We have never seen Corollary 4.2.4 in the literature. However, we believe that Fujita could prove Corollary 4.2.4 without any difficulties (see Theorem 4.3.2). We think that he was not interested in the toric geometry when he wrote [Reference FujitaFuj]. If he was familiar with the toric geometry, then he would have adopted Example 4.3.1 in [Reference FujitaFuj, (3.5) Remark]. This example supplements Fujita’s remark: [Reference FujitaFuj, (3.5) Remark]. We think that our example is much simpler.
Example 4.3.1. We fix  $N=\mathbb{Z}^{2}$. We put
$N=\mathbb{Z}^{2}$. We put  $e_{1}=(1,0)$,
$e_{1}=(1,0)$,  $e_{2}=(0,1)$,
$e_{2}=(0,1)$,  $e_{3}=(-1,-1)$, and
$e_{3}=(-1,-1)$, and  $e_{4}=(1,2)$. We consider the fan
$e_{4}=(1,2)$. We consider the fan  $\unicode[STIX]{x1D6F4}$ obtained by subdividing
$\unicode[STIX]{x1D6F4}$ obtained by subdividing  $N_{\mathbb{R}}$ with
$N_{\mathbb{R}}$ with  $e_{1}$,
$e_{1}$,  $e_{2}$,
$e_{2}$,  $e_{3}$, and
$e_{3}$, and  $e_{4}$. We write
$e_{4}$. We write  $X=X(\unicode[STIX]{x1D6F4})$, the associated toric variety. Then
$X=X(\unicode[STIX]{x1D6F4})$, the associated toric variety. Then  $X$ is Gorenstein and
$X$ is Gorenstein and  $-K_{X}$ is ample. We put
$-K_{X}$ is ample. We put  $D=-K_{X}$. It is obvious that
$D=-K_{X}$. It is obvious that  $K_{X}+D\sim 0$. It is easy to see that the Kleiman–Mori cone
$K_{X}+D\sim 0$. It is easy to see that the Kleiman–Mori cone  $\operatorname{NE}(X)$ is spanned by the two torus invariant curves
$\operatorname{NE}(X)$ is spanned by the two torus invariant curves  $E=V(e_{4})$ and
$E=V(e_{4})$ and  $E^{\prime }=V(e_{2})$. So, we have two extremal contractions. By removing
$E^{\prime }=V(e_{2})$. So, we have two extremal contractions. By removing  $e_{4}$ from
$e_{4}$ from  $\unicode[STIX]{x1D6F4}$, we obtain a contraction morphism
$\unicode[STIX]{x1D6F4}$, we obtain a contraction morphism  $f:X\rightarrow \mathbb{P}^{2}$. In this case,
$f:X\rightarrow \mathbb{P}^{2}$. In this case,  $E$ is not Cartier although
$E$ is not Cartier although  $2E$ is Cartier. We note that
$2E$ is Cartier. We note that  $-K_{X}\cdot E=1$. The morphism
$-K_{X}\cdot E=1$. The morphism  $f$ is the weighted blow-up with the weight
$f$ is the weighted blow-up with the weight  $(1,2)$ described in Proposition 3.2.6. Another contraction is obtained by removing
$(1,2)$ described in Proposition 3.2.6. Another contraction is obtained by removing  $e_{2}$. It is a contraction morphism from
$e_{2}$. It is a contraction morphism from  $X$ to
$X$ to  $\mathbb{P}(1,1,2)$. Note that
$\mathbb{P}(1,1,2)$. Note that  $E^{\prime }$ is a Cartier divisor on
$E^{\prime }$ is a Cartier divisor on  $X$.
$X$.
 We close this subsection with the following theorem. In Theorem 4.3.2, we treat normal Gorenstein projective varieties defined over  $\mathbb{C}$ with only rational singularities, which are not necessarily toric. So, the readers who are interested only in the toric geometry can skip this final theorem.
$\mathbb{C}$ with only rational singularities, which are not necessarily toric. So, the readers who are interested only in the toric geometry can skip this final theorem.
Theorem 4.3.2. (see [Reference FujitaFuj])
 Let  $X$ be a normal projective variety defined over
$X$ be a normal projective variety defined over  $\mathbb{C}$ with only rational Gorenstein singularities. Let
$\mathbb{C}$ with only rational Gorenstein singularities. Let  $D$ be an ample Cartier divisor on
$D$ be an ample Cartier divisor on  $X$. If
$X$. If  $K_{X}+(n-1)D$ is pseudo-effective with
$K_{X}+(n-1)D$ is pseudo-effective with  $n=\dim X$, then
$n=\dim X$, then  $K_{X}+(n-1)D$ is nef.
$K_{X}+(n-1)D$ is nef.
Proof. We take a positive rational number  $\unicode[STIX]{x1D70F}$ such that
$\unicode[STIX]{x1D70F}$ such that  $K_{X}+\unicode[STIX]{x1D70F}D$ is nef but not ample. It is well known that
$K_{X}+\unicode[STIX]{x1D70F}D$ is nef but not ample. It is well known that  $\unicode[STIX]{x1D70F}\leqslant n+1$ (see [Reference FujitaFuj, Theorem 1]). If
$\unicode[STIX]{x1D70F}\leqslant n+1$ (see [Reference FujitaFuj, Theorem 1]). If  $\unicode[STIX]{x1D70F}\leqslant n-1$, then the theorem is obvious. Therefore, we assume that
$\unicode[STIX]{x1D70F}\leqslant n-1$, then the theorem is obvious. Therefore, we assume that  $n-1<\unicode[STIX]{x1D70F}\leqslant n+1$. If
$n-1<\unicode[STIX]{x1D70F}\leqslant n+1$. If  $\unicode[STIX]{x1D70F}=n+1$, then
$\unicode[STIX]{x1D70F}=n+1$, then  $X\simeq \mathbb{P}^{n}$ and
$X\simeq \mathbb{P}^{n}$ and  ${\mathcal{O}}_{X}(D)\simeq {\mathcal{O}}_{\mathbb{P}^{n}}(1)$. In this case,
${\mathcal{O}}_{X}(D)\simeq {\mathcal{O}}_{\mathbb{P}^{n}}(1)$. In this case,  $K_{X}+(n-1)D$ is not pseudo-effective. Thus, we have
$K_{X}+(n-1)D$ is not pseudo-effective. Thus, we have  $n-1<\unicode[STIX]{x1D70F}\leqslant n$ by [Reference FujitaFuj, Theorem 1]. By [Reference FujitaFuj, Theorem 2] and its proof, it can be checked easily that
$n-1<\unicode[STIX]{x1D70F}\leqslant n$ by [Reference FujitaFuj, Theorem 1]. By [Reference FujitaFuj, Theorem 2] and its proof, it can be checked easily that  $\unicode[STIX]{x1D70F}=n$ and
$\unicode[STIX]{x1D70F}=n$ and  $K_{X}+\unicode[STIX]{x1D70F}D=K_{X}+nD$ is nef but is not big. Therefore,
$K_{X}+\unicode[STIX]{x1D70F}D=K_{X}+nD$ is nef but is not big. Therefore,  $K_{X}+nD$ is on the boundary of the pseudo-effective cone of
$K_{X}+nD$ is on the boundary of the pseudo-effective cone of  $X$. So,
$X$. So,  $K_{X}+(n-1)D=K_{X}+nD-D$ is not pseudo-effective. This is a contradiction. Anyway, we obtain that
$K_{X}+(n-1)D=K_{X}+nD-D$ is not pseudo-effective. This is a contradiction. Anyway, we obtain that  $K_{X}+(n-1)D$ is nef if
$K_{X}+(n-1)D$ is nef if  $K_{X}+(n-1)D$ is pseudo-effective.◻
$K_{X}+(n-1)D$ is pseudo-effective.◻
Acknowledgments
The first author was partially supported by JSPS KAKENHI Grant Numbers JP16H03925, JP16H06337. If the first author remembers correctly, he prepared a preliminary version of this paper around 2006 in Nagoya. Then his interests moved to the minimal model program. In 2011, he revised it in Kyoto. The current version was written in Osaka. He thanks the colleagues in Nagoya, Kyoto, and Osaka very much. The authors would like to thank the referee for useful comments.
 
 








