Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-09-24T23:50:12.684Z Has data issue: false hasContentIssue false

Kinematics, singularity, and workspace analysis of a balance rehabilitation parallel manipulator

Published online by Cambridge University Press:  24 September 2025

Kuo-Hua Chien*
Affiliation:
School of Automation Engineering, Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000, China Department of Mechanical and Electro-Mechanical Engineering, National Ilan University, Yilan 260, Taiwan (R.O.C.)
Zihan Chen
Affiliation:
School of Electric Power Engineering, Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000, China
Xiangfei Ren
Affiliation:
School of Automation Engineering, Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000, China
*
Corresponding author: Kuo-Hua Chien; Email: khchien@niu.edu.tw

Abstract

Rehabilitation treatment is often labor-intensive and time-consuming, but it also lacks quantitative and objective assessment. With regard to the matter of balance rehabilitation machines, the continuous advancement of parallel robot technology provides new solutions for balance rehabilitation. However, these robots have inherent limitations, including a confined workspace, excessive height, a complex structure, and unstable movement due to singularity in workspace. Therefore, this study presents a new 3-2PUS double-triangular construction mechanism with six degrees of freedom for use in balance rehabilitation therapy. First, the forward and inverse kinematic models are established, and then the Newton–Raphson method is employed to resolve the forward kinematics. Subsequently, the velocity model is analyzed and its singular configuration is determined. Finally, the workspace of the 3-2PUS parallel mechanism is delineated, and the findings indicate that its structure is compact and that the workspace is free of singularities. This ensures that the rehabilitative devices will remain stable throughout the rehabilitation process, thus preventing any additional injuries that might otherwise result from unstable movement. To validate the study of the full parallel mechanism, a series of simulations is conducted using computational analysis software. Based on the analysis results, a prototype of a balance rehabilitation parallel manipulator is presented.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Johnson, W., Onuma, O., Owolabi, M. and Sachdev, S., “Stroke: A global response is needed,” Bull. World Health Organ. 94(9), 634–634A (2016).10.2471/BLT.16.181636CrossRefGoogle ScholarPubMed
Katan, M. and Luft, A., “Global burden of stroke,” Semin. Neurol. 38, 208211 (2018).10.1055/s-0038-1649503CrossRefGoogle ScholarPubMed
Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M. and Murray, C., “The global burden of neurological disorders: Translating evidence into policy,” Lancet Neurol. 19(3), 255265 (2020).10.1016/S1474-4422(19)30411-9CrossRefGoogle ScholarPubMed
Feigin, V. L., Brainin, M., Norrving, B., Martins, S., Sacco, R. L., Hacke, W., Fisher, M., Pandian, J. and Lindsay, P., “World stroke organization (WSO): Global stroke fact sheet 2022,” Int. J. Stroke 17(1), 1829 (2022).10.1177/17474930211065917CrossRefGoogle ScholarPubMed
Feigin, V. L., Stark, B. A., Johnson, C. O., Roth, G. A., Bisignano, C., Abady, G. G., Abbasifard, M., Abbasi-Kangevari, M., Abd-Allah, F., Abedi, V. and Abualhasan, A., “Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the global burden of disease study 2019,” Lancet Neurol. 20(10), 795820 (2021).10.1016/S1474-4422(21)00252-0CrossRefGoogle Scholar
Cameron, M. H. and Nilsagard, Y., “Balance, gait, and falls in multiple sclerosis,” Handb. Clin. Neurol. 159, 237250 (2018).Google ScholarPubMed
Chastan, N., Do, M. C., Bonneville, F., Torny, F., Bloch, F., Westby, G. W., Dormont, D., Agid, Y. and Welter, M. L., “Gait and balance disorders in Parkinson’s disease: Impaired active braking of the fall of centre of gravity,” Mov. Disord. 24(2), 188195 (2009).10.1002/mds.22269CrossRefGoogle ScholarPubMed
Tyson, S. F., Hanley, M., Chillala, J., Selley, A. B. and Tallis, R. C., “The relationship between balance, disability, and recovery after stroke: Predictive validity of the brunel balance assessment,” Neurorehab. Neural Rep. 21(4), 341346 (2007).10.1177/1545968306296966CrossRefGoogle ScholarPubMed
Preston, E., Ada, L., Dean, C. M., Stanton, R. and Waddington, G., “What is the probability of patients who are nonambulatory after stroke regaining independent walking? A systematic review,” Int. J. Stroke 6(6), 531540 (2011).10.1111/j.1747-4949.2011.00668.xCrossRefGoogle Scholar
Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., Rumsey, J. M., Hicks, R., Cameron, J., Chen, D., Chen, W. G., Cohen, L. G., deCharms, C., Duffy, C. J., Eden, G. F., Fetz, E. E., Filart, R., Freund, M., Grant, S. J., Haber, S., Kalivas, P. W., Kolb, B., Kramer, A. F., Lynch, M., Mayberg, H. S., McQuillen, P. S., Nitkin, R., Pascual-Leone, A., Reuter-Lorenz, P., Schiff, N., Sharma, A., Shekim, L., Stryker, M., Sullivan, E. V. and Vinogradov, S., “Harnessing neuroplasticity for clinical applications,” Brain 134(6), 15911609 (2011).10.1093/brain/awr039CrossRefGoogle ScholarPubMed
Morone, G., Paolucci, S., Cherubini, A., De Angelis, D., Venturiero, V., Coiro, P. and Iosa, M., “Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics,” Neuropsych. Dis. Treat. 13, 13031311 (2017).10.2147/NDT.S114102CrossRefGoogle ScholarPubMed
Poli, P., Morone, G., Rosati, G. and Masiero, S., “Robotic technologies and rehabilitation: New tools for stroke patients’ therapy,” BioMed. Res. Int. 2013, 18 (2013).10.1155/2013/153872CrossRefGoogle ScholarPubMed
Ye, S., Tao, L., Gong, S., Ma, Y., Wu, J., Li, W., Kang, J., Tang, M., Zuo, G. and Shi, C., “Upper limb motor assessment for stroke with force, muscle activation and interhemispheric balance indices based on sEMG and fNIRS,” Front. Neurol. 15, 1337230–133 (2024).10.3389/fneur.2024.1337230CrossRefGoogle ScholarPubMed
Höhler, C., Trigili, E., Astarita, D., Hermsdörfer, J., Jahn, K. and Krewer, C., “The efficacy of hybrid neuroprostheses in the rehabilitation of upper limb impairment after stroke, a narrative and systematic review with a meta-analysis,” Artif. Organs 48(3), 232253 (2024).10.1111/aor.14618CrossRefGoogle ScholarPubMed
Gueye, T., Dedkova, M., Rogalewicz, V., Grunerova-Lippertova, M. and Angerova, Y., “Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: Equally efficient in older patients,” Neurol. Neurochir. Pol. 55(1), 9196 (2021).10.5603/PJNNS.a2020.0096CrossRefGoogle ScholarPubMed
Egger, M., Bergmann, J., Krewer, C., Jahn, K. and Müller, F., “Sensory stimulation and robot-assisted arm training after stroke: A randomized controlled trial,” J. Neurol. Phys. Ther. 48(4), 178187 (2024).10.1097/NPT.0000000000000486CrossRefGoogle ScholarPubMed
Miao, Q., Min, S., Wang, C. and Chen, Y. F., “Integrating subject-specific workspace constraint and performance-based control strategy in robot-assisted rehabilitation,” Front. Neurosci. 18, 1473755 (2024).10.3389/fnins.2024.1473755CrossRefGoogle ScholarPubMed
Kim, N., Park, J. and Shin, D., “Impedance for assistance: Upper-limb assistive soft robotic suit using linked-layer jamming mechanisms,” Soft Robot. 11(6), 970983 (2024).10.1089/soro.2023.0146CrossRefGoogle ScholarPubMed
Zuccon, G., Doria, A., Bottin, M., Minto, R. and Rosati, G., “Vibrations of cable-suspended rehabilitation robots,” Robotica 41(12), 37023723 (2023). doi: 10.1017/S0263574723001248.CrossRefGoogle Scholar
Khadem, M., Inel, F., Carbone, G. and Tich, A. S. T., “A novel pyramidal cable-driven robot for exercising and rehabilitation of writing tasks,” Robotica 41(11), 34633484 (2023). doi: 10.1017/S026357472300111X.CrossRefGoogle Scholar
Wang, F., Qian, Z., Lin, Y. and Zhang, W. C., “Design and rapid construction of a cost-effective virtual haptic device,” IEEE/ASME Trans. Mechatron. 26, 6677 (2021).Google Scholar
Jiang, T. T., Qian, Z. Q., Lin, Y., Bi, Z. M., Liu, Y. F. and Zhang, W. J.. Analysis of Virtual Environment Haptic Robotic Systems for a Rehabilitation of Post-Stroke Patients. In: 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada (2017) pp. 738742.Google Scholar
Zhang, X., Rong, X. and Luo, H., “Optimizing lower limb rehabilitation: The intersection of machine learning and rehabilitative robotics,” Front. Rehab. Sci. 5, 1246773 (2024).10.3389/fresc.2024.1246773CrossRefGoogle ScholarPubMed
Karasimav, Ö., Borman, P., Dalyan, M., Yalçin, E., Eliuz, Z. B., Poyraz, İ. and Türk, S., “Lower limb lymphedema disrupts both static and dynamic balance,” Clin. Biomech. (Bristol) 115, 106241 (2024).10.1016/j.clinbiomech.2024.106241CrossRefGoogle ScholarPubMed
Yu, F., Liu, Y., Wu, Z., Tan, M. and Yu, J., “Adaptive gait training of a lower limb rehabilitation robot based on Human–robot interaction force measurement,” Cyborg. Bion. Syst. 5, 0115 (2024).10.34133/cbsystems.0115CrossRefGoogle ScholarPubMed
Huo, C., Shao, G., Chen, T., Li, W., Wang, J., Xie, H., Wang, Y., Li, Z., Zheng, P., Li, L. and Li, L., “Effectiveness of unilateral lower-limb exoskeleton robot on balance and gait recovery and neuroplasticity in patients with subacute stroke: A randomized controlled trial,” J. Neuroeng. Rehab. 21(1), 213 (2024).10.1186/s12984-024-01493-9CrossRefGoogle ScholarPubMed
Zhang, B., Li, D., Liu, Y., Wang, J. and Xiao, Q., “Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis,” J. Adv. Nurs. 77(8), 32553273 (2021).10.1111/jan.14800CrossRefGoogle ScholarPubMed
Park, C., Son, H. and Yeo, B., “The effects of lower extremity cross-training on gait and balance in stroke patients: A double-blinded randomized controlled trial,” Eur. J. Phys. Rehab. Med. 57, 412 (2021).Google ScholarPubMed
Diquattro, E., Prill, R., Salzmann, M., Traina, F. and Becker, R., “High three-dimensional accuracy of component placement and lower limb alignment using a robotic arm-assisted system and gap-balancing instrument in total knee arthroplasty,” Knee Surg. Sports Traumatol. Arthrosc. 32(3), 685692 (2024).10.1002/ksa.12088CrossRefGoogle ScholarPubMed
Zhang, Y., Zhao, W., Wan, C., Wu, X., Huang, J., Wang, X., Huang, G., Ding, W., Chen, Y., Yang, J., Su, B., Xu, Y., Zhou, Z., Zhang, X., F.Miao, J. L. and Li, Y., “Exoskeleton rehabilitation robot training for balance and lower limb function in sub-acute stroke patients: A pilot, randomized controlled trial,” J. Neuroeng. Rehab. 21(1), 98 (2024).10.1186/s12984-024-01391-0CrossRefGoogle ScholarPubMed
Ersoy, T. and Hocaoglu, E., “A 3-DoF robotic platform for the rehabilitation and assessment of reaction time and balance skills of MS patients,” PLoS One 18(2), e0280505 (2023).10.1371/journal.pone.0280505CrossRefGoogle ScholarPubMed
Ishizaki, M. T., da Silva, A. R. F., de Almeida Moura, L., dos Reis, P. C., Lazzareschi, L., da Silva Boschi, S. R. M. and da Silva, A. P., “Development of a dynamic balance analysis and training system through posturography in a bipodal force platform with biaxial rotation,”Research,” Res. Biomed. Eng. 38(3), 839855 (2022).10.1007/s42600-022-00223-1CrossRefGoogle Scholar
Saglia, A., Tsagarakis, N. G., Dai, J. S. and Caldwell, D. G., “Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation,” Proc. Inst. Mech. Eng., Part I 223(1), 5370 (2008). doi: 10.1243/09596518JSCE622.Google Scholar
Centeno-Barreda, D., Salazar-Cruz, S., López-Gutiérrez, R., Rosales-Luengas, Y. and Lozano, R., “Lower limb exoskeleton for gait rehabilitation with adaptive nonsingular sliding mode control,” Robotica 42(11), 38193838 (2024). doi: 10.1017/S0263574724001668.CrossRefGoogle Scholar
Chen, X., Liu, J., an Dong, J., Zhang, Z., Guo, Y., Xiao, B. and Chen, Z., “Analysis and optimization design of motion characteristics for a 3-PUU/R parallel ankle joint rehabilitation mechanism, Robotica 42(10), 34503479 (2024). doi: 10.1017/S0263574724001462.CrossRefGoogle Scholar
Kapsalyamov, A., Hussain, S., Goecke, R., Brown, N. A. T. and Jamwal, P. K., “Customized stiffness control strategy for a six-bar linkage-based gait rehabilitation robot,” Robotica 42(10), 33983415(2024). doi: 10.1017/S0263574724001425.CrossRefGoogle Scholar
Stanton, R., Ada, L., Dean, C. M. and Preston, E., “Biofeedback improves activities of the lower limb after stroke: A systematic review,” J. Physiother. 57(3), 145155 (2011).10.1016/S1836-9553(11)70035-2CrossRefGoogle ScholarPubMed
Culhane, K. M., O’Connor, M., Lyons, D. and Lyons, G. M., “Accelerometers in rehabilitation medicine for older adults,” Age Ageing 34(6), 556560 (2005).10.1093/ageing/afi192CrossRefGoogle ScholarPubMed
Maggioni, S., Melendez-Calderon, A., van Asseldonk, E., Klamroth-Marganska, V., Lünenburger, L., Riener, R. and van der Kooij, H., “Robot-aided assessment of lower extremity functions: A review,” J. NeuroEng. Rehab. 13, 72 (2016).10.1186/s12984-016-0180-3CrossRefGoogle ScholarPubMed
Marques-Sule, E., Arnal-Gómez, A., Buitrago-Jiménez, G., Suso-Martí, L., Cuenca-Martínez, F. and Espí-López, G. V., “Effectiveness of nintendo wii and physical therapy in functionality, balance, and daily activities in chronic stroke patients,” J. Am. Med. Dir. Assoc. 22(5), 10731080 (2021).10.1016/j.jamda.2021.01.076CrossRefGoogle ScholarPubMed
Diego, P., Herrero, S., Macho, E., Corral, J., Diez, M., Campa, F. J. and Pinto, C., “Devices for gait and balance rehabilitation: general classification and a narrative review of end effector-based manipulators,” Appl. Sci., 14(10), 4147 (2024).10.3390/app14104147CrossRefGoogle Scholar
Bi, Z. M., Zhang, W. J., Chen, I.-M. and Lang, S. Y. T., “Automated geneartion of the D–H parameters for configuration design of modular manipulators,” Robot. Comput.-Integr. Manuf. 23(5), 553562 (2007). doi: 10.1016/j.rcim.2006.02.014.CrossRefGoogle Scholar
Yu, H., Qian, Z., Borugadda, A., Sun, W. and Zhang, W., “Partial shaking moment balancing of spherical parallel robots by a combined counterweight and adjusting kinematic parameters approach,” Machines 10(3), 2162022. doi: 10.3390/machines10030216.CrossRefGoogle Scholar
Dai, J. S., “Historical relation between mechanisms and screw theory and the development of finite displacement screws,” J. Mech. Eng. 51(13), 1326 (2015). doi: 10.3901/JME.2015.13.013.CrossRefGoogle Scholar
Russo, M., Zhang, D., Liu, X. J. and Xie, Z., “A review of parallel kinematic machine tools: Design, modeling, and applications,” Int. J. Mach. Tools Manuf. 196(104118 (2024). doi: 10.1016/j.ijmachtools.2024.104118.CrossRefGoogle Scholar
Thomas, M. J., Joy, M. L. and Sudheer, A. P., “Kinematic and dynamic analysis of a 3-PRUS spatial parallel manipulator,” Chin. J. Mech. Eng. 33(13), (2020). doi: 10.1186/s10033-020-0433-8.CrossRefGoogle Scholar
Tsai, L. W.. Robot Analysis: The Mechanics of Serial and Parallel Manipulators (John Wiley & Sons, Inc., New York, 1999).Google Scholar
Yee, C. S. and Lim, K. B., “Forward kinematics solution of Stewart platform using neural networks,” Neurocomputing 16, 333349 (1997).10.1016/S0925-2312(97)00048-9CrossRefGoogle Scholar
Boundreau, R., Levesque, G. and Darenfed, S., “Parallel manipulators kinematics learning using holographic neural network models,” Robot. Cim-INT Manuf. 14, 3744 (1998).10.1016/S0736-5845(97)00022-7CrossRefGoogle Scholar
Boundreau, R., Darenfed, S. and Gosselin, C. M., “On the compution of the direct kinematics of parallel manipulators using polynomial networks,”IEEE,” Trans. Syst., Man, Cybern.-Part A: Syst. Hum. 28(2), 213220 (1998).10.1109/3468.661148CrossRefGoogle Scholar
Parenti-Castelli, V. and Innocenti, C., “Forward displacement analysis of parallel mechanisms: Closed form solution of PRR-3S and PPR-3S structures,” ASME J. Mech. Des. 114, 6873 (1992).10.1115/1.2916927CrossRefGoogle Scholar
Gosselin, C. M. and Sefrioui, J.. Polynomial Solutions for the Direct Kinematic Problem of Planar Three-Degree-of-Freedom Parallel Manipulators. In: Fifth International Conference on Advanced Robotics ‘Robots in Unstructured Environments, Pisa (IEEE)1991) pp.11241129.Google Scholar
Shim, J. H., Kwon, D. S. and Cho, H. S., “Kinematic analysis and design of a six D.O.F. 3-PRPS in-parallel manipulator,” Robotica 17, 269281 (1999).10.1017/S0263574799001368CrossRefGoogle Scholar
Chuang, H. Y. and Chang, Y. C., “Evaluation of an adaptive weighting cross-coupled controller for a 3-PRPS platform,” JSME Int. J. Ser. C 44(1), 164170 (2001).10.1299/jsmec.44.164CrossRefGoogle Scholar
Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans, Robot. Autom. 6(3), 281290 (1990).10.1109/70.56660CrossRefGoogle Scholar
Gosselin, C. M., “Determination of the workspace of 6-DOF parallel manipulators,” J. Mech. Des. 112, 331336 (1990).10.1115/1.2912612CrossRefGoogle Scholar
Kumar, V., “Characterization of workspaces of parallel manipulators,” ASME J. Mech. Des. 114(3), 368375 (1992).10.1115/1.2926562CrossRefGoogle Scholar
Huang, T., Wang, J., Gosselin, C. M. and Whitehouse, D., “Determination of closed form solution to the 2-D-orientation workspace of gough-stewart parallel manipulators,” IEEE Trans. Robot. Autom. 15(6), 561565 (1999).10.1109/70.817675CrossRefGoogle Scholar
Majid, M. Z. A., Huang, Z. and Yao, Y. L., “Workspace analysis of a six-degrees of freedom, three-prismatic-prismatic-spheric-revolute parallel manipulator,” Int. J Adv. Manuf. Technol. 16, 44449 (2000).10.1007/s001700050176CrossRefGoogle Scholar
Bonev, I. A. and Ryu, J., “A new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mech. Mach. Theory 36, 1528 (2001).10.1016/S0094-114X(00)00032-XCrossRefGoogle Scholar
Dastjerdi, A. H., Sheikhi, M. M. and Masouleh, M. T., “A complete analytical solution for the dimensional synthesis of 3-DOF delta parallel robot for a prescribed workspace,” Mech. Mach. Theory 153, 1039901 (2020).10.1016/j.mechmachtheory.2020.103991CrossRefGoogle Scholar
Antonov, A., Glazunov, V., “Position, velocity, and workspace analysis of a novel 6-DOF parallel manipulator with “piercing” rods,” Mech. Mach. Theory 161, 104300 (2021).10.1016/j.mechmachtheory.2021.104300CrossRefGoogle Scholar
Gao, F., Li, J., Qian, Z. Q., Wang, X. J., Bi, Z. M. and Zhang, W. J.A Novel Approach to Embodiment Design of a Robotic System for Maximum Workspace.” In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand (2015) pp. 539544. doi: 10.1109/ICIEA.2015.7334170.Google Scholar