Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-09-24T23:50:13.053Z Has data issue: false hasContentIssue false

Human–machine coupling dynamics modeling and adaptive admittance control of lower limb rehabilitation robot

Published online by Cambridge University Press:  24 September 2025

Chao Gao
Affiliation:
School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
Chang Wang
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
Hui Li*
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
Jianhua Zhang
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
Xinpeng Du
Affiliation:
School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
Jianjun Zhang
Affiliation:
School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
*
Corresponding author: Hui Li; Email: 15704965986@163.com

Abstract

Human–machine compatibility and collaborative control for stroke patients utilizing lower limb rehabilitation robots have attracted considerable research attention. As a highly human–machine-coupled system, ensuring adequate compliance and safety is fundamental to efficient and comfortable rehabilitation. Therefore, this paper first quantifies human–machine contact interactions, proposes a human–machine coupling dynamics modeling method, and identifies the robot’s dynamic inertia parameters and human lower limb parameters. Second, a dual closed-loop controller for the rehabilitation robot is designed. Based on the bottom position control, an adaptive admittance control algorithm is proposed that employs the root-mean-square propagation (RMSprop) algorithm to tune the adaptive gain. In rehabilitation training, the controller can adaptively adjust the admittance parameters according to the human–machine interaction force to achieve responsiveness to the dynamic changes of the human–machine system. The experimental results of the control system show that the human–machine cooperative control performance is significantly improved, the maximum joint angle error is reduced by more than 40.9%, and the maximum human–machine interaction force is reduced by more than 19.4%.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Tan, K. S., Pandian, J. D., Liu, L., Toyoda, K., Leung, T. W. H., Uchiyama, S., Kuroda, S., Suwanwela, N. C., Aaron, S., Chang, H. M. and Venketasubramanian, N., “Stroke in Asia,” Cerebrovasc. Dis. Extra 14(1), 5875 (2024). doi: 10.1159/000538928.Google ScholarPubMed
Tu, L.-D. W. W.-J. and o. C. S. S. Report, S. W. G., “China stroke surveillance report 2021,” Mil. Med. Res. 10(1), 33 (2023). doi: 10.1186/s40779-023-00463-x.Google ScholarPubMed
Banyai, A. D. and Brişan, C., “Robotics in physical rehabilitation: Systematic review,” Healthcare 12(17), (2024). doi: 10.3390/healthcare12171720.CrossRefGoogle ScholarPubMed
Han, D., “Application effect of rehabilitation robots in rehabilitation of limb movement disorders based on neural network algorithms,” SLAS Technology 32, 100277 (2025). doi: 10.1016/j.slast.2025.100277.CrossRefGoogle ScholarPubMed
Hong, R., Li, B., Bao, Y., Liu, L. and Jin, L., “Therapeutic robots for post-stroke rehabilitation,” Med. Rev. 4(1), 5567 (2024). doi: 10.1515/mr-2023-0054.CrossRefGoogle ScholarPubMed
Tam, P. K., Tang, N., Kamsani, N. S. B., Yap, T. Y., Coffey-Aladdin, I., Goh, S. M., Tan, J. P. P., Lui, Y. C., Lee, R. L., Suresh, R. and Chew, E., “Overground robotic exoskeleton vs conventional therapy in inpatient stroke rehabilitation: Results from a pragmatic, multicentre implementation programme,” J. Neuroeng. Rehab. 22(1), 3 (2025). doi: 10.1186/s12984-024-01536-1.CrossRefGoogle ScholarPubMed
Park, Y.-H., Lee, D.-H. and Lee, J.-H., “A comprehensive review: Robot-assisted treatments for gait rehabilitation in stroke patients,” Medicina (Mex.) 60(4), 620 (2024). doi: 10.3390/medicina60040620.CrossRefGoogle ScholarPubMed
Zhang, X., Yue, Z. and Wang, J., “Robotics in lower-limb rehabilitation after stroke,” Behav Neurol 2017, 3731802 (2017). doi: 10.1155/2017/3731802.CrossRefGoogle ScholarPubMed
Rodriguez-Fernandez, A., Lobo-Prat, J. and Font-Llagunes, J. M., “Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments,” J. Neuroeng. Rehabil. 18(1), 22 (2021). doi: 10.1186/s12984-021-00815-5.CrossRefGoogle ScholarPubMed
Bettella, F., Tortora, S., Menegatti, E., Petrone, N. and Felice, A. D., “A scoping review on lower limb exoskeleton actuation’s description and characteristics,” Robotica 43, 118 (2025). doi: 10.1017/s0263574725000220.CrossRefGoogle Scholar
CalabrÒ, R. S., Sorrentino, G., Cassio, A., Mazzoli, D., Andrenelli, E., Bizzarini, E., Campanini, I., Carmignano, S. M., Cerulli, S., Chisari, C., Colombo, V., Dalise, S., FundarÒ, C., Gazzotti, V., Mazzoleni, D., Mazzucchelli, M., Melegari, C., Merlo, A., Stampacchia, G., Boldrini, P., Mazzoleni, S., Posteraro, F., Benanti, P., Castelli, E., Draicchio, F., Falabella, V., Galeri, S., Gimigliano, F., Grigioni, M., Mazzon, S., Molteni, F., Morone, G., Petrarca, M., Picelli, A., Senatore, M., Turchetti, G. and Bonaiuti, D., “Robotic-assisted gait rehabilitation following stroke: A systematic review of current guidelines and practical clinical recommendations,” Eur. J. Phys. Rehab. Med. 57(3), (2021). doi: 10.23736/s1973-9087.21.06887-8.Google ScholarPubMed
Li, X., Fang, F., Li, R. and Zhang, Y., “Functional brain controllability alterations in stroke,” Front. Bioeng. Biotechnol. 10, 925970 (2022). doi: 10.3389/fbioe.2022.925970.CrossRefGoogle ScholarPubMed
Zich, C., Ward, N. S., Forss, N., Bestmann, S., Quinn, A. J., Karhunen, E. and Laaksonen, K., “Post-stroke changes in brain structure and function can both influence acute upper limb function and subsequent recovery,” NeuroImage: Clin. 45, 103754 (2025). doi: 10.1016/j.nicl.2025.103754.CrossRefGoogle ScholarPubMed
Li, J., Zhou, Y., Dong, M., Rong, X. and Jiao, R. J. R., “Clinically oriented ankle rehabilitation robot with a novel R-2U-PSRR mechanism,” Robotica 41(1), 277291 (2023).10.1017/S026357472200128XCrossRefGoogle Scholar
Bouri, M., Abdi, E., Bleuler, H., Reynard, F. and Deriaz, O.. “Lower Limbs Robotic Rehabilitation Case Study with Clinical Trials.” In: New Trends in Medical and Service Robots: Challenges and Solutions (2014) pp. 3144.Google Scholar
Jezernik, S., Colombo, G., Keller, T., Frueh, H. and Morari, M., “Robotic orthosis lokomat: A rehabilitation and research tool,” Neuromodul.: Technol. Neural Interface 6(2), 108115 (2003). doi: 10.1046/j.1525-1403.2003.03017.x.CrossRefGoogle ScholarPubMed
Feng, Y., Wang, H., Lu, T., Vladareanuv, V., Li, Q. and Zhao, C., “Teaching training method of a lower limb rehabilitation robot,” Int. J. Adv. Robot Syst. 13(2), (2017). doi: 10.5772/62445.Google Scholar
Wang, X., Wang, H., Hu, X., Tian, Y., Lin, M., Yan, H., Niu, J. and Sun, L., “Adaptive direct teaching control with variable load of the lower limb rehabilitation robot (LLR-II),” Machines 9(8), 142 (2021). doi: 10.3390/machines9080142.CrossRefGoogle Scholar
Lu, H. and HWang, “Human–machine coupling dynamics modeling and active compliance control of lower limb rehabilitation robot,” J. Mech. Eng. 58(7), 3243 (2022).Google Scholar
Kapsalyamov, A., Hussain, S., Goecke, R., Brown, N. A. T. and Jamwal, P. K., “Customized stiffness control strategy for a six-bar linkage-based gait rehabilitation robot,” Robotica 42(10), 33983415 (2024). doi: 10.1017/s0263574724001425.CrossRefGoogle Scholar
Centeno-Barreda, D., Salazar-Cruz, S., López-Gutiérrez, R., Rosales-Luengas, Y. and Lozano, R. J. R., “Lower limb exoskeleton for gait rehabilitation with adaptive nonsingular sliding mode control,” Robotica 42(11), 38193838 (2024).10.1017/S0263574724001668CrossRefGoogle Scholar
Li, Z., Wei, H., Zhang, H. and Liu, C., “A variable admittance control strategy for stable and compliant human–robot physical interaction,” IEEE Robot. Autom. Lett. 10(2), 11381145 (2025). doi: 10.1109/lra.2024.3519885.CrossRefGoogle Scholar
Sun, J., Hu, F., Gao, K., Gao, F., Ma, C. and Wang, J. J. R., “Research and experiment on active training of lower limb based on five-bar mechanism of man-machine integration system,” Robotica 42(5), 14531475 (2024).10.1017/S0263574724000304CrossRefGoogle Scholar
Zhang, P., Zhang, J. and Elsabbagh, A. J. R., “Fuzzy radial-based impedance controller design for lower limb exoskeleton robot,” Robotica 41(1), 326345 (2022).10.1017/S0263574722001333CrossRefGoogle Scholar
Yang, Y., Yin, J., Qi, W., Li, Z., Zhou, Z., Liu, Z. and Xu, J. J. R., “Optimization and synthesis on the dynamics performance of the tensioning and relaxing wearable system in a novel knee exoskeleton using co-simulation,” Robotica 42(11), 39183933 (2024).10.1017/S0263574724001723CrossRefGoogle Scholar
Zhou, J., Yang, S. and Xue, Q., “Lower limb rehabilitation exoskeleton robot: A review,” Adv. Mech. Eng. 13(4), 16878140211011862 (2021). doi: 10.1177/16878140211011862.CrossRefGoogle Scholar
Zhu, Y., Wu, Q., Chen, B., Zhao, Z. and Liang, C., “Physical human–Robot interaction control of variable stiffness exoskeleton with sEMG-based torque estimation,” IEEE Trans. Ind. Inform. 19(10), 1060110612 (2023). doi: 10.1109/tii.2023.3240749.CrossRefGoogle Scholar
Sun, J., Kramer, E. H. and Rosen, J., “A safety-focused admittance control approach for physical human–Robot interaction with rigid multi-arm serial link exoskeletons,” IEEE/ASME Trans. Mechatron. 30(1), 414425 (2025). doi: 10.1109/tmech.2024.3389046.CrossRefGoogle Scholar
Wang, C. and Zhao, J., “Based on human-like variable admittance control for human–robot collaborative motion,” Robotica 41(7), 21552176 (2023).10.1017/S0263574723000383CrossRefGoogle Scholar
Aguirre-Ollinger, G., Colgate, J. E., Peshkin, M. A. and Goswami, A., “Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation,” Int. J. Robot. Res. 30(4), 486499 (2010). doi: 10.1177/0278364910385730.CrossRefGoogle Scholar
Chen, L., Wang, C., Song, X., Wang, J., Zhang, T. and Li, X., “Dynamic trajectory adjustment of lower limb exoskeleton in swing phase based on impedance control strategy,” Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng. 234(10), 11201132 (2020). doi: 10.1177/0959651820932026.Google Scholar
Schmidhuber, J., “A local learning algorithm for dynamic feedforward and recurrent networks,” Connect Sci. 1(4), 403412 (2007). doi: 10.1080/09540098908915650.CrossRefGoogle Scholar
Chen, J. and Ro, P. I., “Variable admittance control in sliding mode for robust physical human–Robot interaction,” Appl. Sci. 13(20), (2023). doi: 10.3390/app132011219.Google Scholar
Rodrigues, L. A. and Gonçalves, R. S., “Development of a novel body weight support system for gait rehabilitation,” Robotica 41(4), 12751294 (2023).10.1017/S0263574722001709CrossRefGoogle Scholar
Shafiei, M. and Behzadipour, S., “The effects of the connection stiffness of robotic exoskeletons on the gait quality and comfort,” J. Mech. Robot. 12(1), 011007 (2020). doi: 10.1115/1.4044841.CrossRefGoogle Scholar
Liang, X., Yan, Y., Wang, W., Su, T., He, G., Li, G. and Hou, Z.-G., “Adaptive human–Robot interaction torque estimation with high accuracy and strong tracking ability for a lower limb rehabilitation robot,” IEEE/ASME Trans. Mechatron. 29(6), 48144825 (2024). doi: 10.1109/tmech.2024.3394491.CrossRefGoogle Scholar
Hwang, B. and Jeon, D., “A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors ,” Sensors 15(4), 83378357 (2015). doi: 10.3390/s150408337.CrossRefGoogle ScholarPubMed
Zanotto, D., Akiyama, Y., Stegall, P. and Agrawal, S. K., “Knee joint misalignment in exoskeletons for the lower extremities: Effects on user’s gait,” IEEE Trans. Robot. 31(4), 978987 (2015). doi: 10.1109/tro.2015.2450414.CrossRefGoogle Scholar
Maita, D. and Venture, G.. “Influence of the Model’s Degree of Freedom on Human Body Dynamics Identification,” In: Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013) pp. 46094612.Google Scholar
Tran, H.-T., Cheng, H., Lin, X., Duong, M.-K. and Huang, R., “The relationship between physical human-exoskeleton interaction and dynamic factors: Using a learning approach for control applications,” Sci. China Inf. Sci. 57(12), 113 (2014). doi: 10.1007/s11432-014-5203-8.CrossRefGoogle Scholar
Huang, R., Cheng, H., Qiu, J. and Zhang, J., “Learning physical human–Robot interaction with coupled cooperative primitives for a lower exoskeleton,” IEEE Trans. Autom. Sci. Eng. 16(4), 15661574 (2019). doi: 10.1109/tase.2018.2886376.CrossRefGoogle Scholar
Fryar, C., Carroll, M., Gu, Q., Afful, J. and Ogden, C. J. V., Anthropometric reference data for children and adults: United States, 2015–2018, 36, 144 (2021).Google Scholar
Zou, C., Zeng, C., Huang, R., Peng, Z., Zhang, J. and Cheng, H., “Online gait learning with assist-as-needed control strategy for post-stroke rehabilitation exoskeletons,” Robotica 42(2), 319331 (2024).10.1017/S0263574723001431CrossRefGoogle Scholar
Almaghout, K., Tarvirdizadeh, B., Alipour, K. and Hadi, A. J. R., “RBF neural network-based admittance PD control for knee rehabilitation robot,” Robotica 40(12), 45124534 (2022).10.1017/S0263574722001084CrossRefGoogle Scholar
Arefeen, A. and Xiang, Y., “Artificial neural network-based control of powered knee exoskeletons for lifting tasks: Design and experimental validation,” Robotica 42(9), 29492968 (2024). doi: 10.1017/s0263574724001206.CrossRefGoogle Scholar
Rospawan, A., Tsai, C.-C. and Hung, C.-C., “Two-layer intelligent learning control using output recurrent fuzzy neural long short-term memory broad learning system with RMSprop,” IEEE Access 13, 3433434349 (2025). doi: 10.1109/access.2025.3543867.CrossRefGoogle Scholar
Li, Y. and Ge, S. S., “Impedance learning for robots interacting with unknown environments,” IEEE Trans. Control Syst. Trans. 22(4), 14221432 (2014). doi: 10.1109/tcst.2013.2286194.CrossRefGoogle Scholar
Losantos, R., Montiel, M., Mustata, R., Zorrilla, F. and Valiño, L., “Parameter characterization of HTPEMFC using numerical simulation and genetic algorithms,” Int. J. Hydrogen Energy 47(7), 48144826 (2022). doi: 10.1016/j.ijhydene.2021.11.084.CrossRefGoogle Scholar
Ostaszewicz, D. and Rogowski, K., “Application of genetic algorithms for strejc model parameter tuning,” Electronics 13(18), 3652 (2024). doi: 10.3390/electronics13183652.CrossRefGoogle Scholar
Suraj, P., Wu, L., Guru, S. and Buyya, R., A particle swarm optimization (PSO)-based heuristic for scheduling workflow applications in cloud computing environments (2012).Google Scholar
Rajagopal, A., Dembia, C. L., DeMers, M. S., Delp, D. D., Hicks, J. L. and Delp, S. L., “Full-body musculoskeletal model for muscle-driven simulation of human gait,” IEEE Trans. Biomed. Eng. 63(10), 20682079 (2016). doi: 10.1109/tbme.2016.2586891.CrossRefGoogle ScholarPubMed
Arnold, A. S., Salinas, S., Hakawa, D. J. and Delp, S. L., “Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity,” Comput. Aided Surg. 5(2), 108119 (2010). doi: 10.3109/10929080009148877.CrossRefGoogle Scholar
Sandbakk, Ø., Dembia, C. L., Silder, A., Uchida, T. K., Hicks, J. L. and Delp, S. L., “Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads,” PLos One 12(7), e0180320 (2017). doi: 10.1371/journal.pone.0180320.Google Scholar
Wei, J., Zhang, S. and Zhang, J. J. R., “Biofusion design and parameter optimization for a novel passive assisted knee exoskeleton robot based on eight-bar mechanism,” Robotica 42(6), 27 (2024).10.1017/S0263574724000699CrossRefGoogle Scholar
Winter, D. A., Biomechanics and Motor Control of Human Movement (iomechanics and Motor Control of Human Movement, 1987).Google Scholar
Yan, Y., Chen, Z., Huang, C., Chen, L. and Guo, Q., “Human-exoskeleton coupling dynamics in the swing of lower limb,” Appl. Math. Model. 104, 439454 (2022). doi: 10.1016/j.apm.2021.12.007.CrossRefGoogle Scholar
Mo, J., Zeng, L., Liu, Y., Ma, L., Liu, C., Xiang, S. and Cheng, G., “Mechanical properties and damping capacity of polypropylene fiber reinforced concrete modified by rubber powder,” Constr. Build. Mater. 242, 118111 (2020). doi: 10.1016/j.conbuildmat.2020.118111.CrossRefGoogle Scholar
Kang, M. J. and Yoo, H. H., “In vivo viscoelastic properties of human thigh under compression estimated by experimental results obtained with pendulum test,” Int. J. Precis. Eng. Manuf. 18(9), 12531262 (2017). doi: 10.1007/s12541-017-0147-8.CrossRefGoogle Scholar
Cholewicki, J., Lee, A. S., Reeves, N. P. and Morrisette, D. C., “Comparison of trunk stiffness provided by different design characteristics of lumbosacral orthoses,” Clin. Biomech. 25(2), 110114 (2010). doi: 10.1016/j.clinbiomech.2009.10.010.CrossRefGoogle ScholarPubMed
Yin, W., Zhu, W., Gao, H., Niu, X., Shen, C., Fan, X. and Wang, C., “Gait analysis in the early stage of parkinson’s disease with a machine learning approach,” Front. Neurol. 15, 1472956 (2024). doi: 10.3389/fneur.2024.1472956.CrossRefGoogle ScholarPubMed