Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-10-01T04:28:03.688Z Has data issue: false hasContentIssue false

Fluid regulation strategies and valve innovations in soft robots: a review

Published online by Cambridge University Press:  01 October 2025

Xinzhou Wang
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Kaiwen Zheng
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Jiabiao Li
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Haoteng Wang
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Rencheng Zheng
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Jianbin Liu*
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
*
Corresponding author: Jianbin Liu; Email: jianbin_liu@tju.edu.cn

Abstract

Soft robots have emerged as a transformative technology with widespread applications across diverse fields. Among various actuation mechanisms, fluid-based actuation remains predominant in soft robotics, where precise fluid regulation is fundamental to system performance. This review aims to provide a comprehensive reference for researchers interested in fluid regulation strategies in soft robots by outlining the current state of research in this field and discussing innovations in valve designs to inspire future advancements. The fluid regulation strategies discussed in this review are systematically categorized into three main approaches: valve-based, smart fluid-based, and pressure source-based strategies, with each type systematically classified and discussed in detail. Building upon this analysis, a Task-to-Fluidic Regulation System mapping framework is proposed, integrating the V-model principles from systems engineering to provide a structured, requirements-driven methodology that links task objectives to concrete regulation system configurations through sequential design and multi-level verification. Finally, the latest advancements in fluid regulation methods in soft robotics are summarized, along with emerging trends and directions for future development.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Rus, D. and Tolley, M. T., “Design, fabrication and control of soft robots,” Nature 521 467475 (2015).10.1038/nature14543CrossRefGoogle ScholarPubMed
Cheney, N., Bongard, J. and Lipson, H., “Evolving Soft Robots in Tight Spaces,” Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation GECCO’15 (Association for Computing Machinery, New York, NY, USA, 2015) pp. 935942.10.1145/2739480.2754662CrossRefGoogle Scholar
Yang, Y., Wu, Y., Li, C., Yang, X. and Chen, W., “Flexible actuators for soft robotics,” Adv. Intell. Syst. 2, 1900077 (2020).10.1002/aisy.201900077CrossRefGoogle Scholar
Yang, Y., Li, Y. and Chen, Y., “Principles and methods for stiffness modulation in soft robot design and development,” Bio-des. Manuf. 1, 1425 (2018).10.1007/s42242-018-0001-6CrossRefGoogle Scholar
Cianchetti, M., Laschi, C., Menciassi, A. and Dario, P., “Biomedical applications of soft robotics,” Nature Rev. Mater. 3, 143153 (2018).10.1038/s41578-018-0022-yCrossRefGoogle Scholar
Coyle, S., Majidi, C., LeDuc, P. and Hsia, K. J. Bio-inspired soft robotics: Material selection, actuation and design,” Extreme Mech. Lett. 22, 5159 (2018).10.1016/j.eml.2018.05.003CrossRefGoogle Scholar
Rieffel, J. and Mouret, J.-B., “Adaptive and resilient soft tensegrity robots,”Soft Rob. 5, 318329 (2018).10.1089/soro.2017.0066CrossRefGoogle ScholarPubMed
Ohta, P., Valle, L., King, J., Low, K., Yi, J., Atkeson, C. G. and Park, Y.-L., “Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves,” Soft Rob. 5, 204215 (2018).10.1089/soro.2017.0044CrossRefGoogle ScholarPubMed
Chen, S., Pang, Y., Cao, Y., Tan, X. and Cao, C., “Soft robotic manipulation system capable of stiffness variation and dexterous operation for safe human–machine interactions,” Adv. Mater. Technol. 6, 2100084 (2021).10.1002/admt.202100084CrossRefGoogle Scholar
Kim, T., Yoon, S. J. and Park, Y.-L., “Soft inflatable sensing modules for safe and interactive robots,” IEEE Rob. Autom. Lett. 3, 32163223 (2018).10.1109/LRA.2018.2850971CrossRefGoogle Scholar
Peng, Z. and Huang, J., “Soft rehabilitation and nursing-care robots: A review and future outlook,” Appl. Sci. 9, 3102 (2019).10.3390/app9153102CrossRefGoogle Scholar
Liu, Q., Zuo, J., Zhu, C. and Xie, S. Q., “Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art,” Future Gener. Comput. Syst. 113, 620634 (2020).10.1016/j.future.2020.06.046CrossRefGoogle Scholar
Wang, L., Peng, G., Yao, W., Biggar, S., Hu, C., Yin, X. and Fan, Y., "Soft Robotics for Hand Rehabilitation," In: Intelligent Biomechatronics in Neurorehabilitation (Elsevier, 2020) pp. 167176.10.1016/B978-0-12-814942-3.00010-6CrossRefGoogle Scholar
Wang, X., Zhang, Q., Shen, D. and Chen, J., “A Novel Rescue Robot: Hybrid Soft and Rigid Structures for Narrow Space Searching,” 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2019) pp. 22072213.10.1109/ROBIO49542.2019.8961874CrossRefGoogle Scholar
Florez, J. M., Shih, B., Bai, Y. and Paik, J. K., “Soft Pneumatic Actuators for Legged Locomotion,” 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) (IEEE, 2014) pp. 2734.10.1109/ROBIO.2014.7090302CrossRefGoogle Scholar
Samm, R. T., Durairajah, V. and Gobee, S., “Developing a fully soft robotic snake for search and rescue,” Solid State Technol. 63(1s), 13141329 (2020).Google Scholar
El-Atab, N., Mishra, R. B., Al-Modaf, F., Joharji, L., Alsharif, A. A., Alamoudi, H., Diaz, M., Qaiser, N. and Hussain, M. M., “Soft actuators for soft robotic applications: A review,” Adv. Intell. Syst. 2, 2000128 (2020).10.1002/aisy.202000128CrossRefGoogle Scholar
Moghadam, A. A. A., Kouzani, A., Torabi, K., Kaynak, A. and Shahinpoor, M., “Development of a novel soft parallel robot equipped with polymeric artificial muscles,” Smart Mater. Struct. 24, 035017 (2015).10.1088/0964-1726/24/3/035017CrossRefGoogle Scholar
Anon, “Design, manufacturing and applications of small-scale magnetic soft robots,” Extreme Mech. Lett. 44, 101268 (2021).10.1016/j.eml.2021.101268CrossRefGoogle Scholar
Hsiao, J.-H., Chang, J. and Cheng, C.-M., “Soft medical robotics: Clinical and biomedical applications, challenges and future directions,” Adv. Rob. 33, 10991111 (2019).10.1080/01691864.2019.1679251CrossRefGoogle Scholar
Anon, Biomedical applications of soft robotics - Consensus.Google Scholar
Gao, X., “Bionic soft robot review,” Theoret. Nat. Sci. 2, 135141 (2023).10.54254/2753-8818/2/20220108CrossRefGoogle Scholar
Li, W., Hu, D. and Yang, L., “Actuation mechanisms and applications for soft robots: A comprehensive review,” Appl. Sci. 13(16), 9255 (2023).10.3390/app13169255CrossRefGoogle Scholar
Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T. and Shepherd, R. F., “Soft robotics: Review of fluid-driven intrinsically soft devices; Manufacturing, sensing, control, and applications in human-robot interaction,” Adv. Eng. Mater. 19, 1700016 (2017).10.1002/adem.201700016CrossRefGoogle Scholar
McDonald, K. and Ranzani, T., “Hardware methods for onboard control of fluidically actuated soft robots,” Front. Rob. AI 8, 720702 (2021).10.3389/frobt.2021.720702CrossRefGoogle ScholarPubMed
Sun, L., Chen, Z., Bian, F. and Zhao, Y., “Bioinspired soft robotic caterpillar with cardiomyocyte drivers,” Adv. Funct. Mater. 30, 1907820 (2020).10.1002/adfm.201907820CrossRefGoogle Scholar
Li, Z., Wang, Y., Foo, C. C., Godaba, H., Zhu, J. and Yap, C. H., “The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer,” J. Appl. Phys. 122, 084503 (2017).10.1063/1.4985827CrossRefGoogle Scholar
Xu, S., Nunez, C. M., Souri, M. and Wood, R., “A compact DEA-based soft peristaltic pump for power and control of fluidic robots,” Sci. Rob. 8 (2023).10.1126/scirobotics.add4649CrossRefGoogle Scholar
Cai, S., Wang, P., Tian, L., Xu, F. and Zhang, L., “Design and Experimental Study of Compliant Joints of Robot Based on Magneto-Rheological Fluid,” 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2017) pp. 19911996.10.1109/ROBIO.2017.8324711CrossRefGoogle Scholar
Xavier, M. S., Fleming, A. and Yong, Y., “Design and control of pneumatic systems for soft robotics: A simulation approach,” IEEE Rob. Autom. Lett. 6, 58005807 (2021).10.1109/LRA.2021.3086425CrossRefGoogle Scholar
Han, F., Li, Q., Xiong, H., He, C., Zhao, H. and Chen, Z., “Soft valves: A review of structures materials, and modeling,” Adv. Intell. Syst. 6, 2300764 (2024).10.1002/aisy.202300764CrossRefGoogle Scholar
Nakamura, T., “Fluid-driven soft actuators for soft robots,” J. Rob. Mechatron. 36, 251259 (2024).10.20965/jrm.2024.p0251CrossRefGoogle Scholar
Xu, S., Zhang, S., Lei, R., Liu, Y., Bu, W., Wei, X. and Zhang, Z., “Fluid-driven and smart material-driven research for soft body robots,” Prog. Nat. Sci. Mater. Int. 33(4), 371385 (2023).10.1016/j.pnsc.2023.09.002CrossRefGoogle Scholar
Tang, X., Li, H., Ma, T., Yang, Y., Luo, J., Wang, H. and Jiang, P., “A review of soft actuator motion: Actuation, design manufacturing and applications,” Actuators 11(11), 331 (2022).10.3390/act11110331CrossRefGoogle Scholar
Luo, K., Rothemund, P., Whitesides, G. M. and Suo, Z., “Soft kink valves,” J. Mech. Phys. Solids 131, 230239 (2019).10.1016/j.jmps.2019.07.008CrossRefGoogle Scholar
Xu, K. and Pérez-Arancibia, N. O., “Electronics-free logic circuits for localized feedback control of multi-actuator soft robots,” IEEE Rob. Autom. Lett. 5, 39903997 (2020).10.1109/LRA.2020.2982866CrossRefGoogle Scholar
Decker, C. J., Jiang, H. J., Nemitz, M. P., Root, S. E., Rajappan, A., Alvarez, J. T., Tracz, J., Wille, L., Preston, D. J. and Whitesides, G. M., “Programmable soft valves for digital and analog control,” Proc. Natl. Acad. Sci. U.S.A 119, e2205922119 (2022).10.1073/pnas.2205922119CrossRefGoogle ScholarPubMed
Rothemund, P., Ainla, A., Belding, L., Preston, D. J., Kurihara, S., Suo, Z. and Whitesides, G. M., “A soft, bistable valve for autonomous control of soft actuators,” Sci. Rob. 3, eaar7986 (2018).10.1126/scirobotics.aar7986CrossRefGoogle ScholarPubMed
Nabae, H. and Kitamura, E., “Self-excited valve using a flat ring tube: Application to robotics,” Front. Rob. AI 9, 1008559 (2022).10.3389/frobt.2022.1008559CrossRefGoogle ScholarPubMed
Wang, Y., Liu, Y., Luo, K., Tian, Q. and Hu, H., “Twisting tubes as soft robotic valves,” Int. J. Mech. Sci. 260, 108655 (2023).10.1016/j.ijmecsci.2023.108655CrossRefGoogle Scholar
Choe, J. K., Kim, J., Song, H., Bae, J. and Kim, J., “A soft, self-sensing tensile valve for perceptive soft robots,” Nat. Commun. 14, 3942 (2023).10.1038/s41467-023-39691-zCrossRefGoogle ScholarPubMed
Zhao, F., Wang, Y., Liu, S., Jin, M., Ren, L., Ren, L. and Liu, C., “Rapid, energy-saving bioinspired soft switching valve embedded in snapping membrane actuator,” J. Bionic Eng. 20, 225236 (2023).10.1007/s42235-022-00258-1CrossRefGoogle Scholar
Gaber, M., Branson, D., Ashcroft, I. and Goher, K., “3D-Printed Modified Pinch Valve for Controlling Pneumatic Artificial Muscles,” 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE) 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE) (IEEE, Jeju Island, Republic of Korea, 2024) pp. 435439.Google Scholar
Moran, A. M., Vo, V. T., McDonald, K. J., Sultania, P., Langenbrunner, E., Chong, J. H. V., Naik, A., Kinnicutt, L., Li, J. and Ranzani, T., “An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots,” Commun. Eng. 3, 117 (2024).10.1038/s44172-024-00251-yCrossRefGoogle ScholarPubMed
Xu, S., Chen, Y., Hyun, N. P., Becker, K. P. and Wood, R. J., “A dynamic electrically driven soft valve for control of soft hydraulic actuators,” Proc. Natl. Acad. Sci. U.S.A 118, e2103198118 (2021).10.1073/pnas.2103198118CrossRefGoogle ScholarPubMed
Poccard-Saudart, J., Xu, S., Teeple, C. B., Hyun, N.-S. P., Becker, K. P. and Wood, R. J., “Controlling soft fluidic actuators using soft DEA-based valves,” IEEE Rob. Autom. Lett. 7, 88378844 (2022).10.1109/LRA.2022.3187268CrossRefGoogle Scholar
Miyaki, Y. and Tsukagoshi, H., “Self-excited vibration valve that induces traveling waves in pneumatic soft mobile robots,” IEEE Rob. Autom. Lett. 5, 41334139 (2020).10.1109/LRA.2020.2978455CrossRefGoogle Scholar
Napp, N., Araki, B., Tolley, M. T., Nagpal, R. and Wood, R. J., “Simple Passive Valves for Addressable Pneumatic Actuation,” 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Hong Kong, China, 2014) pp. 14401445.10.1109/ICRA.2014.6907041CrossRefGoogle Scholar
Gilbertson, M. D., McDonald, G., Korinek, G., Van de Ven, J. D. and Kowalewski, T. M., “Soft passive valves for serial actuation in a soft hydraulic robotic catheter,” J. Med. Dev. 10, 030931 (2016).10.1115/1.4033803CrossRefGoogle Scholar
Park, T., Choi, E., Kim, C.-S., Park, J-O. and Hong, A., “A multi-segmented soft finger using snap-through instability of a soft valve with a slit,” IEEE Rob. Autom. Lett. 7, 69906997 (2022).10.1109/LRA.2022.3180037CrossRefGoogle Scholar
van Laake, L. C., de Vries, J., Kani, S. M. and Overvelde, J. T., “A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots,” Matter 5, 28982917 (2022).10.1016/j.matt.2022.06.002CrossRefGoogle Scholar
Wu, J., Lin, Y. and Sun, J., “Anisotropic volume change of poly(N-isopropylacrylamide)-based hydrogels with an aligned dual-network microstructure,” J. Mater. Chem. 22, 1744917451 (2012).10.1039/c2jm34010kCrossRefGoogle Scholar
Yu, Q., Bauer, J. M., Moore, J. S. and Beebe, D. J., “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78, 25892591 (2001).10.1063/1.1367010CrossRefGoogle Scholar
Bosio, C., Zrinscak, D., Laschi, C. and Cianchetti, M., “Soft mini fuse valve for resilient fluidically-actuated robots,” IEEE Rob. Autom. Lett. 8, 27162723 (2023).10.1109/LRA.2023.3258694CrossRefGoogle Scholar
Wang, S., He, L. and Maiolino, P., “Design and characterization of a 3d-printed pneumatically-driven bistable valve with tunable characteristics,” IEEE Rob. Autom. Lett. 7, 112119 (2021).10.1109/LRA.2021.3118086CrossRefGoogle Scholar
Wang, S., He, L. and Maiolino, P., “A modular approach to design multi-channel bistable valves for integrated pneumatically-driven soft robots via 3D-printing,” IEEE Rob. Autom. Lett. 7, 34123418 (2022).10.1109/LRA.2022.3147898CrossRefGoogle Scholar
Marchese, A. D., Onal, C. D. and Rus, D., “Soft Robot Actuators Using Energy-Efficient Valves Controlled by Electropermanent Magnets,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (IEEE, San Francisco, CA, 2011) pp. 756761.Google Scholar
Shen, D., Zhang, Q., Wang, C., Wang, X. and Tian, M., “Design and analysis of a snake-inspired crawling robot driven by alterable angle scales,” IEEE Rob. Autom. Lett. 6, 37443751 (2021).10.1109/LRA.2021.3061379CrossRefGoogle Scholar
Chen, C., Tang, W., Hu, Y., Lin, Y. and Zou, J., “Fiber-reinforced soft bending actuator control utilizing on/off valves,” IEEE Rob. Autom. Lett. 5, 67326739 (2020).10.1109/LRA.2020.3015189CrossRefGoogle Scholar
Kobayashi, T., Akagi, T., Dohta, S., Cho, F., Shinohara, T. and Yokota, M., “Slide-gate type multi-port switching valve,” J. Rob. Mechatron. 35, 633640 (2023).10.20965/jrm.2023.p0633CrossRefGoogle Scholar
Zhu, J., Han, P., Qi, C., Gong, G., Yang, H., Shinshi, T. and Han, D., Sens. Actuators A: Phys. 377, 115699 (2024).Google Scholar
Takayama, T. and Sumi, Y., “Self-excited air flow passage changing device for periodic pressurization of soft robot,” Robomech. J. 8, 20 (2021).10.1186/s40648-021-00207-3CrossRefGoogle Scholar
Low, K., Berg, D. R. and Li, P. Y., “A novel 3D ring-based flapper valve for soft robotic applications,” Robotics 11, 2 (2022).10.3390/robotics11010002CrossRefGoogle Scholar
Ranzani, T., Russo, S., Bartlett, N. W., Wehner, M. and Wood, R. J., “Increasing the dimensionality of soft microstructures through injection-induced self-folding,” Adv. Mater. 30, 1802739 (2018).10.1002/adma.201802739CrossRefGoogle ScholarPubMed
Konda, A., Lee, D., You, T., Wang, X., Ryu, S. and Morin, S. A., “Reversible mechanical deformations of soft microchannel networks for sensing in soft robotic systems,” Adv. Intell. Syst. 1, 1900027 (2019).10.1002/aisy.201900027CrossRefGoogle Scholar
Taylor, J. M., Perez-Toralla, K., Aispuro, R. and Morin, S. A., “Covalent bonding of thermoplastics to rubbers for printable, reel-to-reel processing in soft robotics and microfluidics,” Adv. Mater. 30, 1705333 (2018).10.1002/adma.201705333CrossRefGoogle ScholarPubMed
Garrad, M., Soter, G., Conn, A. T., Hauser, H. and Rossiter, J., “A soft matter computer for soft robots,” Sci. Rob. 4, eaaw6060 (2019).10.1126/scirobotics.aaw6060CrossRefGoogle ScholarPubMed
Gong, Q. L., Zhou, Z. Y., Yang, Y. H. and Wang, X. H., “Design, optimization and simulation on microelectromagnetic pump,” Sens. Actuator A-Phys. 83, 200207 (2000).10.1016/S0924-4247(99)00384-2CrossRefGoogle Scholar
Koch, M., Evans, A. G. R. and Brunnschweiler, A., “Simulation and fabrication of micromachined cantilever valves,” Sens. Actuator A-Phys. 62, 756759 (1997).10.1016/S0924-4247(97)01577-XCrossRefGoogle Scholar
Mosadegh, B., Kuo, C.-H., Tung, Y.-C., Torisawa, Y., Bersano-Begey, T., Tavana, H. and Takayama, S., “Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices,” Nat. Phys. 6, 433437 (2010).10.1038/nphys1637CrossRefGoogle ScholarPubMed
Kim, S.-J., Yokokawa, R. and Takayama, S., “Analyzing threshold pressure limitations in microfluidic transistors for self-regulated microfluidic circuits,” Appl. Phys. Lett. 101, 234107 (2012).10.1063/1.4769985CrossRefGoogle ScholarPubMed
Shin, J., Park, H., Dang, V. B., Kimb, C.-W. and Kim, S.-J., “Elastomeric microfluidic valve with low, constant opening threshold pressure,” RSC Adv. 5, 2323923245 (2015).10.1039/C4RA16696ECrossRefGoogle Scholar
Rhee, M. and Burns, M. A., “Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems,” Lab Chip 9, 31313143 (2009).10.1039/b904354cCrossRefGoogle ScholarPubMed
Baek, J. Y., Park, J. Y., Ju, J. I., Lee, T. S. and Lee, S. H., “A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development,” J. Micromech. Microeng. 15, 10151020 (2005).10.1088/0960-1317/15/5/017CrossRefGoogle Scholar
Xie, J., Shih, J., Lin, Q. A., Yang, B. Z. and Tai, Y. C., “Surface micromachined electrostatically actuated micro peristaltic pump,” Lab Chip 4, 495501 (2004).10.1039/b403906hCrossRefGoogle ScholarPubMed
Truong, T. Q. and Nguyen, N. T., “A polymeric piezoelectric micropump based on lamination technology,” J. Micromech. Microeng. 14, 632638 (2004).10.1088/0960-1317/14/4/026CrossRefGoogle Scholar
Khoo, M. and Liu, C., “A Novel Micromachined Magnetic Membrane Microfluid Pump,” Proceedings of the 22nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, vol. 22 (IEEE, New York, 2000) pp. 23942397.Google Scholar
Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A. and Wood, R. J., “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature, 451–455 (2016).10.1038/nature19100CrossRefGoogle Scholar
Bartlett, N. W., Becker, K. P. and Wood, R. J., “A fluidic demultiplexer for controlling large arrays of soft actuators,” Soft Matter 16, 58715877 (2020).10.1039/C9SM02502BCrossRefGoogle ScholarPubMed
Lin, K.-Y., King, N. R. and Wehner, M., “MAX, A Passive Microfluidic Control Valve, Toward Untethered Cyclic Combustion in Soft Robots,” 2024 IEEE International Conference on Soft Robotics 7th International Conference on Soft Robotics (ROBOSOFT) (IEEE, 2024) pp. 2227 Google Scholar
Keating, S. J., Gariboldi, M. I., Patrick, W. G., Sharma, S., Kong, D. S. and Oxman, N., “3D printed multimaterial microfluidic valve,” PLoS One 11, e0160624 (2016).10.1371/journal.pone.0160624CrossRefGoogle ScholarPubMed
Halsey, T. C., “Electrorheological Fluids,” Science 258(5083), 761766 (1992).10.1126/science.258.5083.761CrossRefGoogle ScholarPubMed
Wen, W., Huang, X. and Sheng, P., “Electrorheological fluids: Structures and mechanisms,” Soft Matter 4, 200210 (2008).10.1039/B710948MCrossRefGoogle ScholarPubMed
Sadeghi, A., Beccai, L. and Mazzolai, B., “Innovative Soft Robots Based on Electro-Rheological Fluids,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012) (IEEE, Vilamoura-Algarve, Portugal, 2012) pp. 42374242.Google Scholar
Huang, T., Xu, D., Zhang, H., Bai, O., Aravelli, A., Zhou, X. and Han, B., “A lightweight flexible semi-cylindrical valve for seamless integration in soft robots based on the giant electrorheological fluid,” Sens. Actuators A: Phys. 347, 113905 (2022).10.1016/j.sna.2022.113905CrossRefGoogle Scholar
Sudhawiyangkul, T., Yoshida, K., Eom, S. I. and Kim, J., “A study on a hybrid structure flexible electro-rheological microvalve for soft microactuators,” Microsyst. Technol. 26, 309321 (2020).10.1007/s00542-019-04492-2CrossRefGoogle Scholar
Tonazzini, A., Sadeghi, A. and Mazzolai, B., “Electrorheological valves for flexible fluidic actuators,” Soft Rob. 3, 3441 (2016).10.1089/soro.2015.0015CrossRefGoogle Scholar
Zatopa, A., Walker, S. and Menguc, Y., “Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots,” Soft Rob. 5, 258271 (2018).10.1089/soro.2017.0019CrossRefGoogle ScholarPubMed
Behbahani, S. B. and Tan, X., “Design and dynamic modeling of electrorheological fluid-based variable-stiffness fin for robotic fish,” Smart Mater. Struct. 26, 085014 (2017).10.1088/1361-665X/aa7238CrossRefGoogle Scholar
Sadi, F., Holthausen, J., Stallkamp, J. and Siegfarth, M., “Development of novel hydraulic 3D printed actuator using electrorheological fluid for robotic endoscopy,” Actuators 13, 119 (2024).10.3390/act13040119CrossRefGoogle Scholar
Choi, S.-B., Park, D.-W. and Cho, M.-S., “Position control of a parallel link manipulator using electro-rheological valve actuators mechatronics,” Mechatronics 11, 157181 (2001).10.1016/S0957-4158(00)00011-8CrossRefGoogle Scholar
Kim, J.-W., Yoshida, K., Kouda, K. and Yokota, S., “A flexible electro-rheological microvalve (FERV) based on SU-8 cantilever structures and its application to microactuators,” Sens. Actuators A: Phys. 156, 366372 (2009).10.1016/j.sna.2009.10.013CrossRefGoogle Scholar
Dong, Y. Z., Seo, Y. and Choi, H. J., “Recent development of electro-responsive smart electrorheological fluids,” Soft Matter 15, 34733486 (2019).10.1039/C9SM00210CCrossRefGoogle ScholarPubMed
De Vicente, J., Klingenberg, D. J. and Hidalgo-Alvarez, R., “Magnetorheological fluids: A review,” Soft Matter 7, 37013710 (2011).10.1039/c0sm01221aCrossRefGoogle Scholar
Bossis, G., Lacis, S., Meunier, A. and Volkova, O., “Magnetorheological fluids,” J. Magn. Magn. Mater. 252, 224228 (2002).10.1016/S0304-8853(02)00680-7CrossRefGoogle Scholar
Leps, T., Glick, P. E., Ruffatto, III. D., Parness, A., Tolley, M. T. and Hartzell, C., “A low-power, jamming, magnetorheological valve using electropermanent magnets suitable for distributed control in soft robots,” Smart Mater. Struct. 29, 105025 (2020).10.1088/1361-665X/abadd4CrossRefGoogle Scholar
Balak, R. and Mazumdar, Y. C., “Bistable valves for MR fluid-based soft robotic actuation systems,” IEEE Rob. Autom. Lett. 6, 82858292 (2021).10.1109/LRA.2021.3105687CrossRefGoogle Scholar
McDonald, K., Rendos, A., Woodman, S., Brown, K. A. and Ranzani, T., “Magnetorheological fluid-based flow control for soft robots,” Adv. Intell. Syst. 2, 2000139 (2020).10.1002/aisy.202000139CrossRefGoogle Scholar
McDonald, K. J., Enabling Complexity in Fluidically Actuated Soft Robots via Onboard Control Hardware Ph.D. Thesis (2023).Google Scholar
Wang, S., He, L., Albini, A., Zhang, P. and Maiolino, P., “A magnetorheological elastomer-based proportional valve for soft pneumatic actuators,” Adv. Intell. Syst. 5, 2200238 (2023).10.1002/aisy.202200238CrossRefGoogle Scholar
Wang, S., Zhang, P., He, L. and Maiolino, P., “Toward onboard proportional control of multi-chamber soft pneumatic robots: A magnetorheological elastomer valve array,” Soft Rob. 11(4), 617627 (2024).10.1089/soro.2023.0049CrossRefGoogle ScholarPubMed
Böse, H., Rabindranath, R. and Ehrlich, J., “Soft magnetorheological elastomers as new actuators for valves,” J. Intell. Mater. Syst. Struct. 23, 989994 (2012).10.1177/1045389X11433498CrossRefGoogle Scholar
Williamson, J. G., Schell, C., Keller, M. and Schultz, J., “Extending the Reach of Single-Chamber Inflatable Soft Robots Using Magnetorheological Fluids,” 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft) (IEEE, 2021) pp. 119–125.10.1109/RoboSoft51838.2021.9479295CrossRefGoogle Scholar
McDonald, K. J., Kinnicutt, L., Moran, A. M. and Ranzani, T., “Modulation of magnetorheological fluid flow in soft robots using electropermanent magnets,” IEEE Rob. Autom. Lett. 7, 39143921 (2022).10.1109/LRA.2022.3147873CrossRefGoogle Scholar
Hua, D., Liu, X., Sun, S., Sotelo, M. A., Li, Z. and Li, W., “A magnetorheological fluid-filled soft crawling robot with magnetic actuation,” IEEE/ASME Trans. Mechatron. 25, 27002710 (2020).10.1109/TMECH.2020.2988049CrossRefGoogle Scholar
Chauhan, V., Kumar, A. and Sham, R., “Magnetorheological fluids: A comprehensive review,” Manuf. Rev. 11, 6 (2024).Google Scholar
Onal, C. D. and Rus, D., “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspir. Biomim. 8, 026003 (2013).10.1088/1748-3182/8/2/026003CrossRefGoogle ScholarPubMed
Pal, A., Restrepo, V., Goswami, D. and Martinez, R. V., “Exploiting mechanical instabilities in soft robotics: Control, sensing, and actuation,” Adv. Mater. 33, 2006939 (2021).10.1002/adma.202006939CrossRefGoogle ScholarPubMed
Luo, M., Tao, W., Chen, F., Khuu, T. K., Ozel, S. and Onal, C. D., “Design Improvements and Dynamic Characterization on Fluidic Elastomer Actuators for a Soft Robotic Snake,” 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (IEEE, Woburn, MA, USA, 2014) pp. 1–6.10.1109/TePRA.2014.6869154CrossRefGoogle Scholar
Remy, C. D., Brei, Z., Bruder, D., Remy, J., Buffinton, K. and Gillespie, R. B., “The “Fluid Jacobian”: Modeling force-motion relationships in fluid-driven soft robots,” Int. J. Rob. Res. 43, 628645 (2024).10.1177/02783649231210592CrossRefGoogle Scholar
Song, X., Cui, L., Cao, M., Cao, W., Park, Y. and Dempster, W. M., “A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel,” Energy Convers. Manag. 81, 407419 (2014).10.1016/j.enconman.2014.02.021CrossRefGoogle Scholar
Jelali, M. and Kroll, A., Hydraulic Servo-Systems (Springer London, London, 2003).10.1007/978-1-4471-0099-7CrossRefGoogle Scholar
Katzschmann, R. K., Marchese, A. D. and Rus, D., "Hydraulic Autonomous Soft Robotic Fish for 3D Swimming Experimental Robotics,” In: Springer Tracts in Advanced Robotics (Hsieh, M. A., Khatib, O. and Kumar, V., eds.), vol. 109 (Springer International Publishing, Cham, 2016) pp. 405420.Google Scholar
Katzschmann, R. K., DelPreto, J., MacCurdy, R. and Rus, D., “Exploration of underwater life with an acoustically controlled soft robotic fish,” Sci. Rob. 3, eaar3449 (2018).10.1126/scirobotics.aar3449CrossRefGoogle ScholarPubMed
Tan, Q., Chen, Y., Liu, J., Zou, K., Yi, J., Liu, S. and Wang, Z., “Underwater crawling robot with hydraulic soft actuators,” Front. Robot. AI 8, 688697 (2021).10.3389/frobt.2021.688697CrossRefGoogle ScholarPubMed
Sinatra, N. R., Teeple, C. B., Vogt, D. M., Parker, K. K., Gruber, D. F. and Wood, R. J., “Ultragentle manipulation of delicate structures using a soft robotic gripper,” Sci. Rob. 4, eaax5425 (2019).10.1126/scirobotics.aax5425CrossRefGoogle ScholarPubMed
Shi, H., Tan, K., Zhang, B. and Liu, W., “Review on research progress of hydraulic powered soft actuators,” Energies 15, 9048 (2022).10.3390/en15239048CrossRefGoogle Scholar
Zhang, Z. and Calderon, A. D., “Modeling and Analysis of the Segmented Gas Finger Rehabilitation Training Actuator Based on ABAQUS,” 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI) 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI) (IEEE, Hangzhou, China, 2023) pp. 39–43.10.1109/RICAI60863.2023.10489268CrossRefGoogle Scholar
Gollob, S. D. and Roche, E. T., “Towards a Pump-Controlled, Propellant-Powered Pneumatic Source for Untethered Soft Robots: Modelling and Experiments,” 2023 IEEE International Conference on Soft Robotics (RoboSoft) (IEEE, Singapore, Singapore, 2023) pp. 1–8.10.1109/RoboSoft55895.2023.10122028CrossRefGoogle Scholar
Kohll, A. X., Cohrs, N. H., Walker, R., Petrou, A., Loepfe, M., Schmid Daners, M., Falk, V., Meboldt, M. and Stark, W. J., “Long-term performance of a pneumatically actuated soft pump manufactured by rubber compression molding,” Soft Rob. 6, 206213 (2019).10.1089/soro.2018.0057CrossRefGoogle ScholarPubMed
Gorissen, B., Chishiro, T., Shimomura, S., Reynaerts, D., De Volder, M. and Konishi, S., “Flexible pneumatic twisting actuators and their application to tilting micromirrors,” Sens. Actuators A: Phys. 216, 426431 (2014).10.1016/j.sna.2014.01.015CrossRefGoogle Scholar
Gong, X., Yang, K., Xie, J., Wang, Y., Kulkarni, P., Hobbs, A. S. and Mazzeo, A. D., “Rotary actuators based on pneumatically driven elastomeric structures,” Adv. Mater. 28, 75337538 (2016).10.1002/adma.201600660CrossRefGoogle ScholarPubMed
Jiao, Z., Ji, C., Zou, J., Yang, H. and Pan, M., “Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots,” Adv. Mater. Technol. 4, 1800429 (2019).10.1002/admt.201800429CrossRefGoogle Scholar
Yang, D., Verma, M. S., So, J., Mosadegh, B., Keplinger, C., Lee, B., Khashai, F., Lossner, E., Suo, Z. and Whitesides, G. M., “Buckling pneumatic linear actuators inspired by muscle,” Adv. Mater. Technol. 1, 1600055 (2016).10.1002/admt.201600055CrossRefGoogle Scholar
Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F. S., Kumar, S. and Shin, M., “A review of recent developments of pneumatic soft actuators,” Actuators 9, 3 (2020).10.3390/act9010003CrossRefGoogle Scholar
Wang, H., Totaro, M. and Beccai, L., “Toward perceptive soft robots: Progress and challenges,” Adv. Sci. 5, 1800541 (2018).10.1002/advs.201800541CrossRefGoogle ScholarPubMed
Zhang, Z., Zhang, L., Guan, M., Zhang, S. and Jiao, T., “Research on a variable pressure driving method for soft robots based on the electromagnetic effect,” Sensors 23, 6341 (2023).10.3390/s23146341CrossRefGoogle ScholarPubMed
Hines, L., Petersen, K., Lum, G. Z. and Sitti, M., “Soft actuators for small-scale robotics,” Adv. Mater. 29, 1603483 (2017).10.1002/adma.201603483CrossRefGoogle ScholarPubMed
Gupta, U., Qin, L., Wang, Y., Godaba, H. and Zhu, J., “Soft robots based on dielectric elastomer actuators: A review,” Smart Mater. Struct. 28, 103002 (2019).10.1088/1361-665X/ab3a77CrossRefGoogle Scholar
Gu, G.-Y., Zhu, J., Zhu, L-M. and Zhu, X., “A survey on dielectric elastomer actuators for soft robots,” Bioinspir. Biomim. 12, 011003 (2017).10.1088/1748-3190/12/1/011003CrossRefGoogle ScholarPubMed
Keplinger, C., Li, T., Baumgartner, R., Suo, Z. and Bauer, S., “Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation,” Soft Matter 8, 285288 (2012).10.1039/C1SM06736BCrossRefGoogle Scholar
Xu, S., Nunez, C. M., Souri, M. and Wood, R. J., “A compact DEA-based soft peristaltic pump for power and control of fluidic,” Sci. Rob. 8, eadd4649 (2023).10.1126/scirobotics.add4649CrossRefGoogle ScholarPubMed
Mao, G., Huang, X., Liu, J., Li, T., Qu, S. and Yang, W., “Dielectric elastomer peristaltic pump module with finite deformation,” smart Mater. Struct. 24, 075026 (2015).10.1088/0964-1726/24/7/075026CrossRefGoogle Scholar
Mao, G., Wu, L., Fu, Y., Chen, Z., Natani, S., Gou, Z., Ruan, X. and Qu, S., “Design and characterization of a soft dielectric elastomer peristaltic pump driven by electromechanical load,” IEEE/ASME Trans. Mechatron. 23, 21322143 (2018).10.1109/TMECH.2018.2864252CrossRefGoogle Scholar
Wang, K., Overvelde J.T., J. T. B., Engelbrecht, K., Bjørk, R. and Bahl, C. R. H., “Volume compensation of large-deformation 3D-printed soft elastomeric elastocaloric regenerators. Appl. Phys. Lett. 123, 223904 (2023).10.1063/5.0177761CrossRefGoogle Scholar
Conn, A. T., Gao, X. and Cao, C., "Contactless Coupling of Dielectric Elastomer Membranes with Magnetic Repulsion,” In: Electroactive Polymer Actuators and Devices (EAPAD) XXI (Bar-Cohen, Y. and Anderson, I. A. A., eds.) (SPIE, Denver, USA, 2019) p. 96.10.1117/12.2522127CrossRefGoogle Scholar
Cao, C., Gao, X. and Conn, A. T., “A magnetically coupled dielectric elastomer pump for soft robotics,” Adv. Mater. Technol. 4, 1900128 (2019).10.1002/admt.201900128CrossRefGoogle Scholar
Cao, C.-J., Hill, T. L., Conn, A. T., Li, B. and Gao, X., “Nonlinear dynamics of a magnetically coupled dielectric elastomer actuator,” Phys. Rev. Appl. 12, 044033 (2019).10.1103/PhysRevApplied.12.044033CrossRefGoogle Scholar
Cao, C., Gao, X. and Conn, A. T., “A compliantly coupled dielectric elastomer actuator using magnetic repulsion,” Appl. Phys. Lett. 114, 011904 (2019).10.1063/1.5071439CrossRefGoogle Scholar
Dai, J., Du, Y., Zhao, W., Cao, C., Li, Y. and Gao, X., “A Magnetic Coupling Pneumatic Diaphragm Pump Driven by Dielectric Elastomers,” 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Koh Samui, Thailand, 2023) pp. 1–6.10.1109/ROBIO58561.2023.10354670CrossRefGoogle Scholar
Lin, P-W. and Liu, C.–H., “Bio-inspired soft proboscis actuator driven by dielectric elastomer fluid transducers,” Polymers 11, 142 (2019).10.3390/polym11010142CrossRefGoogle ScholarPubMed
Acome, E., Mitchell, S. K., Morrissey, T. G., Emmett, M. B., Benjamin, C., King, M., Radakovitz, M. and Keplinger, C., “Hydraulically amplified self-healing electrostatic actuators with muscle-like performance,” Science 359, 6165 (2018).10.1126/science.aao6139CrossRefGoogle ScholarPubMed
Chang, M-P. and Maharbiz, M. M., “Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics,” Lab Chip 9, 1274 (2009).10.1039/b813244eCrossRefGoogle ScholarPubMed
Cacucciolo, V., Shintake, J., Kuwajima, Y., Maeda, S., Floreano, D. and Shea, H., “Stretchable pumps for soft machines,” Nature 572, 516519 (2019).10.1038/s41586-019-1479-6CrossRefGoogle ScholarPubMed
Zhao, J., Yu, T., Zhang, Y., Sun, H. and Xu, M., “Electrostatically driven Kresling origami soft pump,” IEEE Rob. Autom. Lett. 9, 71667173 (2024).10.1109/LRA.2024.3419640CrossRefGoogle Scholar
Chen, S., Cao, Y., Sarparast, M., Yuan, H., Dong, L., Tan, X. and Cao, C., “Soft crawling robots: Design, actuation, and locomotion,” Adv. Mater. Technol. 5, 1900837 (2020).10.1002/admt.201900837CrossRefGoogle Scholar
Levikhin, A. A. and Boryaev, A. A., “Hydrogen peroxide—a promising oxidizer for rocket engines: Physical and chemical properties: Decomposition in the liquid phase,” Adsorption 30(8), 21872217 (2024).10.1007/s10450-024-00547-7CrossRefGoogle Scholar
Yang, Y., Ren, H., Jiao, P. and He, Z., “How do combustions actuate high-speed soft robots?,” Soft Rob. 11(6), 911923 (2024).10.1089/soro.2023.0168CrossRefGoogle ScholarPubMed
Wang, T., Fan, X., J. Koh, J., He, C. and H. Yeow, C., “Self-Healing Approach toward Catalytic Soft Robots,” ACS Appl Mater & Interfaces 14(36), 4059040598 (2022).10.1021/acsami.2c09889CrossRefGoogle ScholarPubMed
Onal, C. D., Chen, X., Whitesides, G. M. and Rus, D., “Soft Mobile Robots with On-Board Chemical Pressure Generation ROBOTICS RESEARCH, ISRR Springer Tracts in Advanced Robotics,” 15th International Symposium of Robotics Research (ISRR), vol. 100 (Springer-Verlag Berlin, Berlin, 2017).10.1007/978-3-319-29363-9_30CrossRefGoogle Scholar
Bartlett, N. W., Tolley, M. T., Overvelde, J. T. B., Weaver, J. C., Mosadegh, B., Bertoldi, K., Whitesides, G. M. and Wood, R. J., “A 3D-printed, functionally graded soft robot powered by combustion,” Science 349, 161165 (2015).10.1126/science.aab0129CrossRefGoogle ScholarPubMed
Tolley, M. T., Shepherd, R. F., Karpelson, M., Bartlett, N. W., Galloway, K. C., Wehner, M., Nunes, R., Whitesides, G. M. and Wood, R. J., “An Untethered Jumping Soft Robot,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (IEEE, New York, 2014) pp. 561566.Google Scholar
Zhou, H., Cao, S., Zhang, S., Li, F. and Ma, N., “Design of a fuel explosion-based chameleon-like soft robot aided by the comprehensive dynamic model,” Cyborg Bionic Syst. 4, 0010 (2023).10.34133/cbsystems.0010CrossRefGoogle ScholarPubMed
Loepfe, M., Schumacher, C. M., Lustenberger, U. B. and Stark, W. J., “An untethered, jumping roly-poly soft robot driven by combustion,” Soft Robot 2, 3341 (2015).10.1089/soro.2014.0021CrossRefGoogle Scholar
Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A. and Whitesides, G. M., “Using explosions to power a soft robot,” Angew. Chem. Int. Ed. 52, 28922896 (2013).10.1002/anie.201209540CrossRefGoogle Scholar
Okui, M., Nagura, Y., Iikawa, S., Yamada, Y. and Nakamura, T., “A Pneumatic Power Source Using a Sodium Bicarbonate and Citric Acid Reaction with Pressure Booster for Use in Mobile Devices,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017) pp. 10401045.10.1109/IROS.2017.8202272CrossRefGoogle Scholar
Wada, A., Nabae, H., Kitamori, T. and Suzumori, K., “Energy regenerative hose-free pneumatic actuator,” Sens. Actuator A-Phys. 249, 17 (2016).10.1016/j.sna.2016.07.004CrossRefGoogle Scholar
Aubin, C. A., Choudhury, S., Jerch, R., Archer, L. A., Pikul, J. H. and Shepherd, R. F., “Electrolytic vascular systems for energy-dense robots,” Nature 571, 51 (2019).10.1038/s41586-019-1313-1CrossRefGoogle ScholarPubMed
Stella, F. and Hughes, J., “The science of soft robot design: A review of motivations, methods and enabling technologies,” Front. Rob. AI 9, 1059026 (2023).10.3389/frobt.2022.1059026CrossRefGoogle ScholarPubMed
Yin, J., Li, J., Niu, S. and Xu, Q., “Bioinspired multi-joint hybrid finger: Fabric-reinforced pneumatic actuation for adaptive and human-like grasping,” Robotica, 1–17 (2025).Google Scholar
Sun, T., Liu, Y. and Tian, Y., “Bio-inspired controllable adhesion for robotics: Mechanisms, design, and future directions,” Robotica 43(7), 27512781 (2025).10.1017/S0263574725101793CrossRefGoogle Scholar
Chang, Z., Gao, R. and Sun, F., “Development and kinematics/dynamics analysis of novel hybrid hand with flexible coupling chain,” Robotica, 1–22 (2025).10.1017/S026357472510204XCrossRefGoogle Scholar
Bröhl, A. P.. Das V-Modell: Der Standard für die Softwareentwicklung mit Praxisleitfaden (Oldenbourg, 1993).Google Scholar
Gausemeier, J. and Moehringer, S., “VDI 2206-a new guideline for the design of mechatronic systems,” IFAC Proc. 35(2), 785790 (2002).10.1016/S1474-6670(17)34035-1CrossRefGoogle Scholar
Graessler, I., Hentze, J. and Bruckmann, T., “V-Models for Interdisciplinary Systems Engineering,” DS 92: Proceedings of the DESIGN. 2018 15th International Design Conference (2018) pp. 747–756.Google Scholar
Lee, J. Y., Eom, J., Yu, S. Y. and Cho, K., “Customization methodology for conformable grasping posture of soft grippers by stiffness patterning,” Front. Rob. AI 7, 114 (2020).10.3389/frobt.2020.00114CrossRefGoogle ScholarPubMed
Zand, A. D., Khalili-Damghani, K. and Raissi, S., “Designing an intelligent control philosophy in reservoirs of water transfer networks in supervisory control and data acquisition system stations,” Int. J. Autom. Comput. 18(5), 694717 (2021).10.1007/s11633-021-1284-1CrossRefGoogle Scholar
Dubied, M., Michelis, M. Y., Spielberg, A. and Katzschmann, R. K., “Sim-to-real for soft robots using differentiable fem: Recipes for meshing, damping, and actuation,” IEEE Rob. Autom. Lett. 7(2), 50155022 (2022).10.1109/LRA.2022.3154050CrossRefGoogle Scholar
Howison, T., Hauser, S., Hughes, J. and Iida, F., “Reality-assisted evolution of soft robots through large-scale physical experimentation: A review,” Artif. Life 26(4), 484506 (2020).10.1162/artl_a_00330CrossRefGoogle ScholarPubMed
Ma, Z., Wang, Y., Zhang, T. and Liu, J., “Reconfigurable exomuscle system employing parameter tuning to assist hip flexion or ankle plantarflexion,” IEEE/ASME Trans. Mechatron., 1–12 (2025).10.1109/TMECH.2025.3526987CrossRefGoogle Scholar
Liu, J., Li, P., Huang, Z., Liu, H. and Huang, T., “Earthworm-inspired multimodal pneumatic continuous soft robot enhanced by winding transmission,” Cyborg Bionic Syst. (2025). cbsystems.0204.Google Scholar
Bettella, F., Tortora, S., Menegatti, E., Petrone, N. and Felice, A. D., “A scoping review on lower limb exoskeleton actuation’s description and characteristics,” Robotica 43(4), 15721589 (2025).10.1017/S0263574725000220CrossRefGoogle Scholar
Yang, Y., Li, S., Li, Z., Zhou, Z. and Wang, J., “Development of a novel unpowered rigid-flexible coupling waist exoskeleton through dynamic dimensional synthesis inspired by biomimetic cooperation,” Robotica 43(6), 22462272 (2025).10.1017/S0263574725000724CrossRefGoogle Scholar
Zhang, C., Chen, J., Xu, C., He, T., Zhang, X., Zhang, J., Sun, X., Xu, B., Zhu, Y. and Yang, H., “Flexible electro-hydraulic power chips,” Nat. Commun. 16, 1404 (2025).10.1038/s41467-025-56636-wCrossRefGoogle ScholarPubMed
Di Lallo, A., Yu, S., Slightam, J. E., Gu, G. X., Yin, J. and Su, H., “Untethered fluidic engine for high-force soft wearable robots,” Adv. Intell. Syst. 6(11), 2400171 (2024).10.1002/aisy.202400171CrossRefGoogle Scholar