No CrossRef data available.
Published online by Cambridge University Press: 01 October 2025
Soft robots have emerged as a transformative technology with widespread applications across diverse fields. Among various actuation mechanisms, fluid-based actuation remains predominant in soft robotics, where precise fluid regulation is fundamental to system performance. This review aims to provide a comprehensive reference for researchers interested in fluid regulation strategies in soft robots by outlining the current state of research in this field and discussing innovations in valve designs to inspire future advancements. The fluid regulation strategies discussed in this review are systematically categorized into three main approaches: valve-based, smart fluid-based, and pressure source-based strategies, with each type systematically classified and discussed in detail. Building upon this analysis, a Task-to-Fluidic Regulation System mapping framework is proposed, integrating the V-model principles from systems engineering to provide a structured, requirements-driven methodology that links task objectives to concrete regulation system configurations through sequential design and multi-level verification. Finally, the latest advancements in fluid regulation methods in soft robotics are summarized, along with emerging trends and directions for future development.