Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-12-03T21:23:02.974Z Has data issue: false hasContentIssue false

Informative path planning for unmanned aerial vehicles using cost-benefit spanning tree

Published online by Cambridge University Press:  03 December 2025

Wei-Hsiang Chiu
Affiliation:
Department of Mathematics, National Central University, Taoyuan City, Taiwan
Kuo-Shih Tseng*
Affiliation:
Department of Mathematics, National Central University, Taoyuan City, Taiwan
*
Corresponding author: Kuo-Shih Tseng; Email: kuoshih@math.ncu.edu.tw

Abstract

Informative path planning (IPP) is one of key applications for unmanned aerial vehicles. It can be applied to terrain monitoring problems, which are to find the static targets from bird’s eye view. In this research, the proposed algorithm generates the cost-benefit spanning tree (CBST) to boost the IPP performance. The CBST is able to generate different tree structures based on different parameters. The proofs show that the theoretical guarantees depend on the tree structures (e.g., minimal spanning tree and shortest path tree). The simulations and experiments demonstrate that the proposed method outperforms the benchmark approaches.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Krause, A., Guestrin, C., Gupta, A. and Kleinberg, J., “Near-Optimal Sensor Placements: Maximizing Information While Minimizing Communication Cost,” In:  International Conference on Information Processing in Sensor Networks , (IEEE, 2006) pp. 210.10.1145/1127777.1127782CrossRefGoogle Scholar
Singh, A., Krause, A. and Kaiser, W. J., “Nonmyopic Adaptive Informative Path Planning for Multiple Robots,” In: International Joint Conference on Artificial Intelligence, (ACM, 2009) pp. 18431850.Google Scholar
Chang, H.-C. and Tseng, K.-S., “Localizing Complex Terrains Through Adaptive Submodularity,” In:  International Symposium on Safety, Security, and Rescue Robotics , (IEEE, 2022) pp. 138144.10.1109/SSRR56537.2022.10018710CrossRefGoogle Scholar
Popović, M., Vidal-Calleja, T., Hitz, G., Chung, J. J., Sa, I., Siegwart, R. and Nieto, J., “An informative path planning framework for UAV-based terrain monitoring,” Auton. Robot. 44(6), 889911 (2020).10.1007/s10514-020-09903-2CrossRefGoogle Scholar
Nemhauser, G. L., Wolsey, L. A. and Fisher, M. L., “An analysis of approximations for maximizing submodular set functions—I,” Math. Program. 14(1), 265294 (1978).10.1007/BF01588971CrossRefGoogle Scholar
Grossman, T. and Wool, A., “Computational experience with approximation algorithms for the set covering problem,” Eur. J. Oper. Res. 101(1), 8192 (1997).10.1016/S0377-2217(96)00161-0CrossRefGoogle Scholar
Lin, S. and Kernighan, B. W., “An effective heuristic algorithm for the traveling-salesman problem,” Oper. Res. 21(2), 498516 (1973).10.1287/opre.21.2.498CrossRefGoogle Scholar
Binney, J. and Sukhatme, G. S., “Branch and Bound for Informative Path Planning,” In:  International Conference on Robotics and Automation , (IEEE, 2012) pp. 21472154.10.1109/ICRA.2012.6224902CrossRefGoogle Scholar
Popović, M., Vidal-Calleja, T., Hitz, G., Sa, I., Siegwart, R. and Nieto, J., “Multiresolution Mapping and Informative Path Planning for UAV-based Terrain Monitoring,” In: International Conference on Intelligent Robots and Systems (IROS), (IEEE/RSJ, 2017) pp. 13821388.Google Scholar
Zhang, H. and Vorobeychik, Y., “Submodular Optimization with Routing Constraints,” In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30(1) (AAAI, 2016) pp. 819825.10.1609/aaai.v30i1.10066CrossRefGoogle Scholar
Flood, M. M., “The traveling-salesman problem,” Oper. Res. 4(1), 6175 (1956).10.1287/opre.4.1.61CrossRefGoogle Scholar
Khuller, S., Moss, A. and Naor, J., “The budgeted maximum coverage problem,” Inform. Process. Lett. 70(1), 3945 (1999).10.1016/S0020-0190(99)00031-9CrossRefGoogle Scholar
Feige, U., “A threshold of ln n for approximating set cover,” J. ACM 45(4), 634652 (1998).10.1145/285055.285059CrossRefGoogle Scholar
Lin, P.-T. and Tseng, K.-S., “Improvement of submodular maximization problems with routing constraints via submodularity and fourier sparsity,” IEEE Robot. Autom. Lett. 8(4), 19271934 (2023).10.1109/LRA.2023.3243792CrossRefGoogle Scholar
Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E. and Thrun, S., Principles of Robot Motion (MIT, Cambridge, Massachusetts, 2005).Google Scholar
Galceran, E. and Carreras, M., “A survey on coverage path planning for robotics,” Robot. Auton. Syst. 61(12), 12581276 (2013).10.1016/j.robot.2013.09.004CrossRefGoogle Scholar
Chung, T. H., Hollinger, G. A. and Isler, V., “Search and pursuit-evasion in mobile robotics,” Auton. Robot. 31, 299316 (2011).10.1007/s10514-011-9241-4CrossRefGoogle Scholar
Stone, L. D., Theory of Optimal Search (Elsevier, 1976).Google Scholar
Bourgault, F., Furukawa, T. and Durrant-Whyte, H. F., “Coordinated decentralized search for a lost target in a bayesian world,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (2003) pp. 4853.Google Scholar
Trummel, K. E. and Weisinger, J. R., “The complexity of the optimal searcher path problem,” Oper. Res. 34(2), 324327 (1986).10.1287/opre.34.2.324CrossRefGoogle Scholar
Chung, T. H. and Burdick, J. W., “A Decision-Making Framework for Control Strategies in Probabilistic Search,” In:  IEEE International Conference on Robotics and Automation (2007) pp. 43864393.Google Scholar
Chung, T. H. and Burdick, J. W., “Analysis of search decision making using probabilistic search strategies,” IEEE Trans. Robot. 28(1), 132144 (IEEE, 2011).10.1109/TRO.2011.2170333CrossRefGoogle Scholar
Elfes, A., “Using occupancy grids for mobile robot perception and navigation,” Computer 22(6), 4657 (1989).10.1109/2.30720CrossRefGoogle Scholar
Tseng, K.-S. and Mettler, B., “Near-optimal probabilistic search via submodularity and sparse regression,” Auton. Robot. 41(1), 205229 (2017).10.1007/s10514-015-9521-5CrossRefGoogle Scholar
Lau, H., Huang, S. and Dissanayake, G., “Discounted MEAN bound for the optimal searcher path problem with non-uniform travel times,” Eur. J. Oper. Res. 190(2), 383397 (2008).10.1016/j.ejor.2007.06.043CrossRefGoogle Scholar
Besada-Portas, E., de la Torre, L., de la Cruz, J. A. M. and de Andrés-Toro, B., “Evolutionary trajectory planner for multiple uavs in realistic scenarios,” IEEE Trans. Robot. 26(4), 619634 (2010).10.1109/TRO.2010.2048610CrossRefGoogle Scholar
Torres, M., Pelta, D. A., Verdegay, J.é L. and Torres, J. C., “Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction,” Expert Syst. Appl. 55, 441451 (2016).10.1016/j.eswa.2016.02.007CrossRefGoogle Scholar
Qian, C., Shi, J.-C., Yu, Y. and Tang, K., “On Subset Selection with General Cost Constraints,” In:  Proceedings of the Twenty-Sixth International Joint International Joint Conference on Artificial Intelligence , vol. 17 (2017) pp. 26132619.Google Scholar
Bian, C., Feng, C., Qian, C. and Yu, Y., “An Efficient Evolutionary Algorithm for Subset Selection with General Cost Constraints,” In:  AAAI Conference on Artificial Intelligence , vol. 34(04) (2020) pp. 32673274.Google Scholar
Nikolos, I. K., Valavanis, K. P., Tsourveloudis, N. C. and Kostaras, A. N., “Evolutionary algorithm based offline/online path planner for uav navigation,” IEEE Trans. Syst. Man. Cybern. Part B (Cybern.) 33(6), 898912 (2003).10.1109/TSMCB.2002.804370CrossRefGoogle ScholarPubMed
Hitz, G., Galceran, E., ve Garneau, M. È., Pomerleau, F. and Siegwart, R., “Adaptive continuous-space informative path planning for online environmental monitoring,” J. Field. Robot. 34(8), 14271449 (2017).10.1002/rob.21722CrossRefGoogle Scholar
Javdani, S., Klingensmith, M., Bagnell, J. A., Pollard, N. S. and Srinivasa, S. S., “Efficient Touch Based Localization Through Submodularity,” In:  IEEE International Conference on Robotics and Automation (2013) pp. 18281835.Google Scholar
Yu, Y., Zheng, H. and Xu, W., “Learning and sampling-based informative path planning for auvs in ocean current fields,” IEEE Trans. Syst. Man. Cybern: Syst. 55(1), 5162 (2024).10.1109/TSMC.2024.3370177CrossRefGoogle Scholar
Popovic, M., Hitz, G., Nieto, J., Sa, I., Siegwart, R. and Galceran, E., “Online Informative Path Planning for Active Classification Using UAVs,” In:  IEEE International Conference on Robotics and Automation (IEEE, 2017) pp. 57535758.10.1109/ICRA.2017.7989676CrossRefGoogle Scholar
Yamauchi, B., “Frontier-Based Exploration Using Multiple Robots,” In:  International Conference on Autonomous Agents (1998) pp. 4753.Google Scholar
Hansen, N., “The CMA Evolution Strategy: A Comparing Review,” In: Towards a New Evolutionary Computation, (Springer, 2006) pp. 75102.10.1007/3-540-32494-1_4CrossRefGoogle Scholar
Cui, R., Li, Y. and Yan, W., “Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT,” IEEE Trans. Syst. Man. Cybern.: Syst. 46(7), 9931004 (IEEE, 2015).10.1109/TSMC.2015.2500027CrossRefGoogle Scholar
Wang, C., Cheng, J., Chi, W., Yan, T. and Meng, M. Q.-H., “Semantic-aware informative path planning for efficient object search using mobile robot,” IEEE Trans. Syst. Man. Cybern.: Syst. 51(8), 52305243 (IEEE, 2021).10.1109/TSMC.2019.2946646CrossRefGoogle Scholar
Vashisth, A., Rückin, J., Magistri, F., Stachniss, C. and Popovi’c, M., “Deep reinforcement learning with dynamic graphs for adaptive informative path planning,” IEEE Robot. Autom. Lett. 9(9), 77477754 (2024).10.1109/LRA.2024.3421188CrossRefGoogle Scholar
Zhang, Y., Tian, G., Shao, X., Zhang, M. and Liu, S., “Semantic grounding for long-term autonomy of mobile robots toward dynamic object search in home environments,” IEEE Trans. Ind. Electron. 70(2), 16551665 (2023).10.1109/TIE.2022.3159913CrossRefGoogle Scholar
Corah, M. and Michael, N., “Distributed matroid-constrained submodular maximization for multi-robot exploration: Theory and practice,” Auton. Robot. 43, 485501 (2019).10.1007/s10514-018-9778-6CrossRefGoogle Scholar
Lu, B.-X. and Tseng, K.-S., “3d Map Exploration Via Learning Submodular Functions in the Fourier Domain,” In:  International Conference on Unmanned Aircraft Systems (ICUAS) (2020) pp. 11991205.Google Scholar
Hollinger, G. and Singh, S., “Proofs and experiments in scalable, near-optimal search by multiple robots,” Robot.: Sci. Syst. 1 (2008).Google Scholar
Stobbe, P. and Krause, A., “Learning Fourier Sparse Set Functions,” In: Artificial Intelligence and Statistics, (PMLR, 2012) pp. 11251133.Google Scholar
Chen, J., Zhang, Y., Wu, L., You, T. and Ning, X., “An adaptive clustering-based algorithm for automatic path planning of heterogeneous UAVs,” IEEE Trans. Intell. Transp. Syst. 23(9), 1684216853 (2022).10.1109/TITS.2021.3131473CrossRefGoogle Scholar
Chen, C., Wang, Y., Zhang, Y., Lu, Y., Shu, Q. and Hu, Y., “Extrinsic-and-intrinsic reward-based multi-agent reinforcement learning for multi-UAV cooperative target encirclement,” IEEE Trans. Intell. Transp. 26(10), 113 (2025).Google Scholar
Alpert, C. J., Hu, T. C., Huang, J.-H. and Kahng, A. B., “A Direct Combination of the Prim and Dijkstra Constructions for Improved Performance-driven Global Routing,” In:  IEEE International Symposium on Circuits and Systems (1993) pp.18691872.Google Scholar
Alpert, C. J., Chow, W.-K., Han, K., Kahng, A. B., Li, Z., Liu, D. and Venkatesh, S., “Prim-Dijkstra Revisited: Achieving Superior Timing-Driven Routing Trees,” In:  International Symposium on Physical Design (2018) pp. 1017.Google Scholar
Conforti, M. and Cornuéjols, G., “Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem,” Discrete Appl. Math. 7(3), 251274 (Elsevier, 1984).10.1016/0166-218X(84)90003-9CrossRefGoogle Scholar
Kadane, J. B. and Simon, H. A., “Optimal strategies for a class of constrained sequential problems,” Ann. Stat. 5(2), 237255 (1977).10.1214/aos/1176343791CrossRefGoogle Scholar
Tseng, K.-S., Learning in human and robot search: Subgoal, submodularity, and sparsity Ph.D. Thesis (University of Minnesota, 2016).Google Scholar
Shieh, R.-S. and Tseng, K.-S., “Map explorations via dynamic tree-structured graph,” IEEE Robot. Autom. Lett. 9(6), 50625069 (2024).10.1109/LRA.2024.3387123CrossRefGoogle Scholar
Schütte, K. and van der Waerden, B. L., “Das problem der dreizehn kugeln,” Math. Ann. 125(1), 325334 (Springer, 1952).10.1007/BF01343127CrossRefGoogle Scholar
Rosenkrantz, D. J., Stearns, R. E. and Lewis, P. M. II, “An analysis of several heuristics for the traveling salesman problem,” SIAM J. Comput. 6(3), 563581 (1977).10.1137/0206041CrossRefGoogle Scholar
Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Y. K. NanoCode012, Michael, K., TaoXie, J. F., imyhxy, L., Yifu, Z., Wong, C., Abhiram, V., Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, U. K. De and Sonck, V., tkianai, yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. ultralytics/yolov5:v7.0 - YOLOv5 SOTA Realtime Instance Segmentation, November 2022, (2022).Google Scholar
Chai, R., Tsourdos, A., Savvaris, A., Chai, S., Xia, Y. and Chen, C. L. P., “Review of Advanced Guidance and Control Methods,” In: Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles (Springer, 2023).10.1007/978-981-99-4311-1CrossRefGoogle Scholar
Lu, B.-X., Tsai, Y.-C. and Tseng, K.-S., “People search via deep compressed sensing techniques,” Robotica 40(7), 23202348 (Cambridge University Press, 2022).10.1017/S0263574721001661CrossRefGoogle Scholar
Supplementary material: File

Chiu and Tseng supplementary material

Chiu and Tseng supplementary material
Download Chiu and Tseng supplementary material(File)
File 17 MB