Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-10-07T14:21:47.943Z Has data issue: false hasContentIssue false

Late glacial and Holocene climate and landscape dynamics in the Valdai Highlands (East European Plain) inferred from lake sediment records

Published online by Cambridge University Press:  01 September 2025

Grigory Fedorov
Affiliation:
Takhtajan Institute of Botany, National Academy of Sciences of the Republic of Armenia, Yerevan 0063, Armenia Arctic and Antarctic Research Institute, St. Petersburg 199397, Russia
Larisa Savelieva
Affiliation:
St. Petersburg State University, St. Petersburg 199034, Russia
Nikita Bobrov
Affiliation:
St. Petersburg State University, St. Petersburg 199034, Russia
Anna Ludikova
Affiliation:
Institute of Limnology, Russian Academy of Sciences, SPC RAS, St. Petersburg 196105, Russia
Natalia Kostromina
Affiliation:
St. Petersburg State University, St. Petersburg 199034, Russia
Anna Cherezova
Affiliation:
St. Petersburg State University, St. Petersburg 199034, Russia A.P. Karpinsky Russian Geological Research Institute, St. Petersburg 199106, Russia
Aleksey Petrov
Affiliation:
St. Petersburg State University, St. Petersburg 199034, Russia
Evgenia Bazhenova
Affiliation:
St. Petersburg State University, St. Petersburg 199034, Russia
Andrei Andreev*
Affiliation:
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
*
Corresponding author: Andrei Andreev; Email: aandreev@awi.de

Abstract

The results of a ground-penetrating radar survey and multiproxy studies of the sediment cores collected from two lakes in the Valdai Highlands (East European Plain) provide new insights into the late glacial and Holocene environmental history of the region situated in the marginal zone of the last Scandinavian ice sheet. The cores were analyzed for organic carbon and nitrogen content, as well as for pollen and diatoms. The chronology of the cores is based on radiocarbon dates and pollen-based stratigraphy. The studied records document that vast dead ice masses and associated ice-dammed lakes existed in the Valdai Highlands area until ∼14 cal ka BP. Open tundra-steppe communities dominated the study area during the Oldest Dryas, Bølling, and Older Dryas (between ca. 17 and 14 cal ka BP), but dwarf birch (Betula nana), shrub alder (Alnus fruticosa), and willow (Salix) were also common. Scots pine forest (Pinus sylvestris) became common for a short interval during the Bølling warming (ca. 14.9 and 14.4 cal ka BP). The appearance of spruce (Picea) forest in the landscape occurred in the beginning of the Allerød warming (∼14 cal ka BP), but the open steppe-like plant communities remained common until the onset of the Holocene. The modern lake systems emerged at ∼10 cal ka BP, marked by an onset of organic-type sedimentation and the appearance of modern-type forests. The Mid-Holocene (∼8–4 cal ka BP) was the warmest time, as documented by the maximal distribution of temperate and broadleaved taxa in the region. The onset of agricultural land use and simultaneous trend of increasing lake trophic state and increasing paludification in the area is recorded at ∼2.5 cal ka BP.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arslanov, K.A., 1993. Late Pleistocene geochronology of European Russia. Radiocarbon 35, 421427.10.1017/S0033822200060434CrossRefGoogle Scholar
Arslanov, K.A., Savelieva, L.A., Gey, N.A., Klimanov, V.A., Chernov, S.B., Chernova, G.M., Kuzmin, G.F., et al. 1999. Chronology of vegetation and paleoclimatic stages of north-western Russia during the Late Glacial and Holocene. Radiocarbon 41, 2245.10.1017/S0033822200019317CrossRefGoogle Scholar
Arslanov, K.A., Savelieva, L.A., Klimanov, V.A., Chernov, S.B., Maksimov, F.E., Tertychnaya, T.V., Subetto, D.A., 2001. New data on chronology of landscape-paleoclimatic stages in northwestern Russia during the Late Glacial and Holocene. Radiocarbon 43, 545558.10.1017/S0033822200041230CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.10.1214/ba/1339616472CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., Vazquez, J.E., Belding, T., Theiler, J., Gough, B., Karney, C., 2020. Package ‘rbacon’—Age-Depth Modelling Using Bayesian Statistics. Queen’s University, Belfast.Google Scholar
Bushtuev, A.G., Koltukova, I.V., Ostrometskaya, E.D., 1971. An Explanatory Note on Geological and Hydrogeological Maps of the USSR of a Scale of 1:200 000. Tikhvin-Onega’s Series. Sheet О-36-XVI. [In Russian.] Cartographic Factory of the All-Soviet Union Geological Fund, Moscow.Google Scholar
Cwynar, L.C., Burden, E., McAndrews, J.H., 1979. An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian Journal of Earth Sciences 16, 11151120.10.1139/e79-097CrossRefGoogle Scholar
Dam, H. van, Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117133.10.1007/BF02334251CrossRefGoogle Scholar
Davydova, N.N., 1985. Diatoms as Indicators of the Environmental Conditions of Water-Bodies in the Holocene. [In Russian.] Nauka, Leningrad.Google Scholar
Davydova, N.N., Kabailene, M.V., Raukas, A.V., Yakushko, O.F. (Eds.), 1992. History of Lakes to the North of the East-European Plain. The Karelian Isthmus. [In Russian.] Nauka, St. Petersburg.Google Scholar
Davydova, N.N., Subetto, D.A., Khomutova, V.I., Sapelko, T.V., 2001. Paleolimnology of three lakes in NW Russia. Journal of Paleolimnology 26, 3751.10.1023/A:1011131015322CrossRefGoogle Scholar
Demidov, I.N., Houmark-Nielsen, M., Kjær, K.H., Larsen, E., 2006. The last Scandinavian Ice Sheet in northwestern Russia: ice flow patterns and decay dynamics. Boreas 3, 425443.10.1080/03009480600781883CrossRefGoogle Scholar
Giesecke, T., Bennett, K.D., 2004. The Holocene spread of Picea abies (L.) Karst in Fennoscandia and adjacent areas. Journal of Biogeography 31, 15231548.10.1111/j.1365-2699.2004.01095.xCrossRefGoogle Scholar
Gorlach, A., Hang, T., Kalm, V., 2017. GIS-based reconstruction of Late Weichselian proglacial lakes in northwestern Russia and Belarus. Boreas 46, 48502.10.1111/bor.12223CrossRefGoogle Scholar
Grichuk, V.P., Zaklinskaya, E.D., 1948. Analysis of Fossil Pollen and Spores and Its Application in Paleogeography. [In Russian.] Geografgiz Press, Moscow.Google Scholar
Grimm, E.C. 2004. TGView. Illinois State Museum, Research and Collections Center, Springfield.Google Scholar
Gromig, R., Wagner, B., Wennrich, V., Fedorov, G., Savelieva, L., Lebas, E., Krastel, S., et al. 2019. Deglaciation history of Lake Ladoga (northwestern Russia) based on varved sediments. Boreas 48, 330348.10.1111/bor.12379CrossRefGoogle Scholar
Guiry, M.D., Guiry, G.M., 2024. AlgaeBase (accessed May 17 , 2024). National University of Ireland, Galway. http://www.algaebase.org.Google Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.-I., 2016. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.10.1111/bor.12142CrossRefGoogle Scholar
Juggins, S., 2007. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle upon Tyne.Google Scholar
Kalm, V., Gorlach, A., 2014. Impact of bedrock surface topography on spatial distribution of Quaternary sediments and on the flow pattern of late Weichselian glaciers on the East European Craton (Russian Plain). Geomorphology 207, 19.10.1016/j.geomorph.2013.10.022CrossRefGoogle Scholar
Khotinsky, N.A., 1987. Radiocarbon chronology and correlation of natural and anthropogenic boundaries of the Holocene. In: O.M, Petrov. (Ed.), New Data in Quaternary Geochronology. [In Russian.] Nauka, Moscow, pp. 3945.Google Scholar
Khotinsky, N.A., Klimanov, V.A., 1997. Allerød, Younger Dryas and early Holocene palaeoenvironmental stratigraphy. Quaternary International 41/42, 6770.10.1016/S1040-6182(96)00038-9CrossRefGoogle Scholar
Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae. 1 Teil, Naviculaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süsswasserflora von Mitteleuropa, Band 2/1. Gustav Fisher, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae. 2 Teil, Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Susswasserflora von Mitteleuropa, Band 2/2. Gustav Fisher, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991a. Bacillariophyceae. 3 Teil, Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (eds.) Susswasserflora von Mitteleuropa, Band 2/3. Gustav Fisher, Stuttgart.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991b. Bacillariophyceae. 4. Teil, Achnanthaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Sußwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer, Heidelberg.Google Scholar
Kremenetski, K.V., Borisova, O.K., Zelikson, E.M., 2000. The Late Glacial and Holocene history of vegetation in the Moscow region. Paleontological Journal 34, 6774.Google Scholar
Krotova-Putintseva, A.Y., Verbitskiy, V.R., 2012. Preglacial geomorphology of the northern Baltic Lowland and the Valdai Hills, north-western Russia. Bulletin of the Geological Society of Finland 84, 5868.10.17741/bgsf/84.1.005CrossRefGoogle Scholar
Kupriyanova, L.A., Alyoshina, L.A., 1978. Pollen and Spores of Plants from the Flora of European Part of USSR. [In Russian.] Komarov Botanical Institute of the USSR Academy of Sciences, Leningrad.Google Scholar
Latałowa, M., van der Knaap, W.O., 2006. Late Quaternary expansion of Norway spruce Picea abies (L.) Karst in Europe according to pollen data. Quaternary Science Reviews 25, 27802805.10.1016/j.quascirev.2006.06.007CrossRefGoogle Scholar
Lohne, O.S., Mangerud, J., Birks, H.H., 2013. Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology. Journal of Quaternary Science 28, 490500.10.1002/jqs.2640CrossRefGoogle Scholar
Mangerud, J., 2021. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 15.10.1111/bor.12481CrossRefGoogle Scholar
McKay, N.P., Emile‐Geay, J., Khider, D., 2021. geoChronR—an R package to model, analyze, and visualize age‐uncertain data. Geochronology 3, 149169.10.5194/gchron-3-149-2021CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen analysis. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Musin, A.G., Kirsanov, V.K., 1990. The features of the karst in the northern part of the Valdai Upland. [In Russian.] Izvestiya Akademii Nauk SSSR, Seriya Geograficheskaya 6, 101108.Google Scholar
Novenko, E.A., Volkova, E.M., Nosova, N.B., Zuganova, I.S., 2009. Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quaternary International 207, 93103.10.1016/j.quaint.2008.12.006CrossRefGoogle Scholar
Payne, R.J., Malysheva, E., Tsyganov, A., Pampura, T., Novenko, E., Volkova, E., Babeshko, K., et al. 2016. A multi-proxy record of Holocene environmental change, peatland development and carbon accumulation from Staroselsky Moch peatland, Russia. Holocene 26, 314326.10.1177/0959683615608692CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G, Ramsey, C.B., Butzin, M., et al. 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal ka BP). Radiocarbon 62, 725757.10.1017/RDC.2020.41CrossRefGoogle Scholar
Rethemeyer, J., Fülöp, R.-H., Höfle, S., Wacker, L., Heinze, S., Hajdas, I., Patt, U., et al. 2013. Status report on sample preparation facilities for 14C analysis at the new Cologne AMS center. Nuclear Instruments and Methods in Physics Research B 294, 168172.10.1016/j.nimb.2012.02.012CrossRefGoogle Scholar
Rinterknecht, V., Hang, T., Gorlach, A., Kohv, M., Kalla, K., Kalm, V., Subetto, D., et al. 2018. The Last Glacial Maximum extent of the Scandinavian Ice Sheet in the Valday Heights, western Russia: evidence from cosmogenic surface exposure dating using 1°Be. Quaternary Science Reviews 200, 106113.10.1016/j.quascirev.2018.09.032CrossRefGoogle Scholar
Savelieva, L.A., Andreev, A.A., Gromig, R., Subetto, D.A., Fedorov, G.B., Wennrich, V., Wagner, B., et al. 2019. Vegetation and climate changes in northwestern Russia during the Lateglacial and Holocene inferred from the Lake Ladoga pollen record. Boreas 48, 349360.10.1111/bor.12376CrossRefGoogle Scholar
Subetto, D.A., 2009. Lake Bottom Sediments: Paleolimnological Reconstructions. [In Russian.] Publishing House of Herzen State Pedagogical University, St. Petersburg.Google Scholar
Subetto, D.A., Wohlfarth, B., Davydova, N.N., Sapelko, T., Björkman, L., Solovieva, N., Wastegärd, S., et al. 2002. Climate and environment on the Karelian Isthmus, northwestern Russia, 13 000-9000 cal. yrs BP. Boreas 31, 119.Google Scholar
Tarasov, P.E., Savelieva, L.A., Long, T., Leipe, Ch., 2019. Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quaternary International 516, 2141.10.1016/j.quaint.2018.02.029CrossRefGoogle Scholar
Verbitskiy, V.R., Verbitskiy, I.V., Vasil’eva, O.V., Savanin, V.V., Kyamyarya, V.V., Mazurkevich, K.N., Krotova-Putintseva, A.E., et al. 2012. An Explanatory Note on a Geological Map of the Russian Federation of a Scale of 1:1 000 000 (Third Generation). [In Russian.] Central European Series. Sheets О-35 (Pskov), (N-35), О-36 (St. Petersburg). VSEGEI Cartographic Factory, St. Petersburg.Google Scholar
Wohlfarth, B., Bennike, O., Brunnberg, L., Demidov, I., Possnert, G., Vyahirev, S., 1999. AMS 14C measurements and macrofossil analysis from a varved sequence near Pudozh, eastern Karelia, NW Russia. Boreas 29, 575586.10.1111/j.1502-3885.1999.tb00243.xCrossRefGoogle Scholar
Wohlfarth, B., Filimonova, L., Bennike, O., Björkman, L., Brunnberg, L., Lavrova, N., Demidov, I. et al. 2002. Late-glacial and early Holocene environmental and climatic change from Lake Tambichozero in southeastern Russian Karelia. Quaternary Research 58, 261272.10.1006/qres.2002.2386CrossRefGoogle Scholar
Wohlfarth, B., Lacourse, T., Bennike, O., Subetto, D., Filimonova, L., Tarasov, P., Sapelko, T. et al. 2007. Climatic and environmental changes in north-western Russia between 15 000 and 8 000 cal yr BP: a review. Quaternary Science Reviews 26, 18711883.10.1016/j.quascirev.2007.04.005CrossRefGoogle Scholar
Wohlfarth, B., Schwark, L., Bennike, O., Filimonova, L., Tarasov, P., Björkman, L., Brunnberg, L., et al. 2004. Unstable early Holocene climatic and environmental conditions in northwestern Russia derived from a multidisciplinary study of a lake sediment sequence from Pichozero, southeastern Russian Karelia. Holocene 14, 732746.10.1191/0959683604hl751rpCrossRefGoogle Scholar
Wohlfarth, B., Tarasov, P., Bennike, O., Lacourse, T., Subetto, D.A., Torssander, P., Romanenko, F. 2006. Late glacial and Holocene palaeoenvironmental changes in the Rostov-Yaroslavl’ area, West Central Russia. Journal of Paleolimnology 35, 543569.10.1007/s10933-005-3240-4CrossRefGoogle Scholar