Hostname: page-component-7f64f4797f-d7bbv Total loading time: 0 Render date: 2025-11-10T23:55:28.676Z Has data issue: false hasContentIssue false

Orbital period variation analysis of the HS 0705+6700 post-common envelope binary

Published online by Cambridge University Press:  03 June 2024

Huseyin Er*
Affiliation:
Faculty of Science, Department of Astronomy and Space Science, Atatürk University, Yakutiye, Erzurum, Türkiye
Aykut Özdönmez
Affiliation:
Faculty of Science, Department of Astronomy and Space Science, Atatürk University, Yakutiye, Erzurum, Türkiye
Ilham Nasiroglu
Affiliation:
Faculty of Science, Department of Astronomy and Space Science, Atatürk University, Yakutiye, Erzurum, Türkiye
Muhammet Emir Kenger
Affiliation:
Graduate School of Natural and Applied Sciences, Department of Astronomy and Astrophysics, Atatürk University, Yakutiye, Erzurum, Türkiye
*
Corresponding author: Huseyin Er; Email: huseyin.er@atauni.edu.tr

Abstract

To detect additional bodies in binary systems, we performed a potent approach of orbital period variation analysis. In this work, we present 90 new mid-eclipse times of a short-period eclipsing binary system. Observations were made using two telescopes from 2014 to 2024, extending the time span of the $O-C$ diagram to 24 yr. The data obtained in the last seven years indicate significant deviations in the $O-C$ diagram from the models obtained in previous studies. We investigated whether this variation could be explained by mechanisms such as the LTT effect or Applegate. To investigate the cyclic behaviour observed in the system with the light travel time effect, we modelled the updated $O-C$ diagram using different models including linear/quadratic terms and additional bodies. The updated $O-C$ diagram is statistically consistent with the most plausible solutions of models that include multiple brown dwarfs close to each other. However, it has been found that the orbit of the system is unstable on short time scales. Using three different theoretical definitions, we have found that the Applegate mechanism cannot explain the variation in the orbital period except for the model containing the fifth body. Therefore, due to the complex nature of the system, further mid-eclipse time is required before any conclusions can be drawn about the existence of additional bodies.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almeida, L. A., Jablonski, F., & Rodrigues, C. V. 2013, ApJ, 766, 1110.1088/0004-637X/766/1/11CrossRefGoogle Scholar
Applegate, J. H. 1992, ApJ, 385, 62110.1086/170967CrossRefGoogle Scholar
Astropy Collaboration, et al. 2013, A&A, 558, A3310.1051/0004-6361/201322068CrossRefGoogle Scholar
Baran, A. S., et al. 2018, MNRAS, 481, 2721CrossRefGoogle Scholar
Baycroft, T. A., Triaud, A. H. M. J., & Kervella, P. 2023, MNRAS, 526, 224110.1093/mnras/stad2794CrossRefGoogle Scholar
Beuermann, K., Dreizler, S., Hessman, F. V., & Deller, J. 2012 a, A&A, 543, A138CrossRefGoogle Scholar
Beuermann, K., et al. 2012 b, A&A, 540, A810.1051/0004-6361/201118105CrossRefGoogle Scholar
Bogensberger, D., Clarke, F., & Lynas-Gray, A. E. 2017, Open Astronomy, 26, 134CrossRefGoogle Scholar
Bradley, L., et al. 2020, astropy/photutils: 1.0.1, Zenodo, doi: 10.5281/zenodo.4049061CrossRefGoogle Scholar
Brown-Sevilla, S. B., et al. 2021, MNRAS, 506, 212210.1093/mnras/stab1843CrossRefGoogle Scholar
Çamurdan, C. M., Zengin Çamurdan, D., & İbanoğlu, C. 2012, NewA, 17, 32510.1016/j.newast.2011.08.004CrossRefGoogle Scholar
Cincotta, P. M., & Simó, C. 2000, A&AS, 147, 205CrossRefGoogle Scholar
Craig, M., et al. 2017, Astropy/Ccdproc: V1.3.0.Post1, Zenodo, doi: 10.5281/zenodo.1069648CrossRefGoogle Scholar
Diethelm, R. 2012, IBVS, 6029, 1Google Scholar
Diethelm, R. 2013, IBVS, 6063, 1Google Scholar
Drechsel, H., et al. 2001, in Astronomische Gesellschaft Meeting Abstracts, Vol. 18, Astronomische Gesellschaft Meeting Abstracts, MS 09 12Google Scholar
Eastman, J., Siverd, R., & Gaudi, B. S. 2010, PASP, 122, 93510.1086/655938CrossRefGoogle Scholar
Er, H., Özdönmez, A., & Nasiroglu, I. 2021, MNRAS, 507, 80910.1093/mnras/stab2054CrossRefGoogle Scholar
Esmer, E. M., Baştürk, Ö., Hinse, T. C., Selam, S. O., & Correia, A. C. M. 2021, A&A, 648, A85CrossRefGoogle Scholar
Faillance, G., et al. 2020, JBAA, 130, 35710.1016/j.crma.2019.01.011CrossRefGoogle Scholar
Foreman-Mackey, D. 2016, JOSS, 1, 2410.21105/joss.00024CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306CrossRefGoogle Scholar
Goodman, J., & Weare, J. 2010, CoAMCS, 5, 65CrossRefGoogle Scholar
Goździewski, K., et al. 2012, MNRAS, 425, 93010.1111/j.1365-2966.2012.21341.xCrossRefGoogle Scholar
Goździewski, K., et al. 2015, MNRAS, 448, 111810.1093/mnras/stu2728CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., & Marsh, T. R. 2003, MNRAS, 341, 669CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, MNRAS, 336, 44910.1046/j.1365-8711.2002.05752.xCrossRefGoogle Scholar
Harris, C. R., et al. 2020, Natur, 585, 357Google Scholar
Heber, U. 2016, PASP, 128, 08200110.1088/1538-3873/128/966/082001CrossRefGoogle Scholar
Horner, J., Hinse, T. C., Wittenmyer, R. A., Marshall, J. P., & Tinney, C. G. 2012, MNRAS, 427, 281210.1111/j.1365-2966.2012.22046.xCrossRefGoogle Scholar
Hunter, J. D. 2007, CSE, 9, 90CrossRefGoogle Scholar
Irwin, J. B. 1952, ApJ, 116, 211CrossRefGoogle Scholar
Kilkenny, D. 2011, MNRAS, 412, 48710.1111/j.1365-2966.2010.17919.xCrossRefGoogle Scholar
Kruspe, R., Schuh, S., & Traulsen, I. 2007, IBVS, 5796, 1Google Scholar
Kubicki, D. 2015, IBVS, 6133, 1Google Scholar
Lanza, A. F. 2020, MNRAS, 491, 1820Google Scholar
Lightkurve Collaboration, et al. 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library, record ascl:1812.013, ascl:1812.013Google Scholar
Lohr, M. E., et al. 2014, A&A, 566, A128CrossRefGoogle Scholar
Mai, X., & Mutel, R. L. 2022, MNRAS, 513, 247810.1093/mnras/stac971CrossRefGoogle Scholar
Marsh, T. R. 2018, in Handbook of Exoplanets, ed. Deeg, H. J., & Belmonte, J. A. (Springer Cham), 96Google Scholar
Maxted, P. F. L., Heber, U., Marsh, T. R., & North, R. C. 2001, 326, 1391CrossRefGoogle Scholar
Morales-Rueda, L., Maxted, P. F. L., Marsh, T. R., North, R. C., & Heber, U. 2003, MNRAS, 338, 75210.1046/j.1365-8711.2003.06088.xCrossRefGoogle Scholar
Nasiroglu, I., et al. 2017, AJ, 153, 13710.3847/1538-3881/aa5d10CrossRefGoogle Scholar
Németh, P., Kiss, L. L., & Sarneczky, K. 2005, IBVS, 5599Google Scholar
Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, Zenodo, doi: 10.5281/zenodo.11813CrossRefGoogle Scholar
Niarchos, P. G., Gazeas, K. D., & Manimanis, V. N. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 292, Interplay of Periodic, Cyclic and Stochastic Variability in Selected Areas of the H-R Diagram, ed. Sterken, C., 129Google Scholar
Özdönmez, A., Er, H., & Nasiroglu, I. 2023, MNRAS, 526, 472510.1093/mnras/stad3086CrossRefGoogle Scholar
Perets, H. B. 2011, in American Institute of Physics Conference Series, Vol. 1331, Planetary Systems Beyond the Main Sequence, ed. Schuh, S., Drechsel, H., & Heber, U., 56Google Scholar
Petropoulou, M., Gazeas, K., Tzouganatos, L., & Karampotsiou, E. 2015, IBVS, 6153, 1Google Scholar
Pulley, D., Faillace, G., Smith, D., Watkins, A., & Owen, C. 2015, JBAA, 125, 284Google Scholar
Pulley, D., Faillace, G., Smith, D., Watkins, A., & von Harrach, S. 2018, A&A, 611, A48CrossRefGoogle Scholar
Pulley, D., Sharp, I. D., Mallett, J., & von Harrach, S. 2022, MNRAS, 514, 572510.1093/mnras/stac1676CrossRefGoogle Scholar
Qian, S. B., et al. 2009, ApJ, 695, L163CrossRefGoogle Scholar
Qian, S. B., et al. 2010, Ap&SS, 329, 113Google Scholar
Qian, S. B., et al. 2013, MNRAS, 436, 1408Google Scholar
Rein, H., & Liu, S. F. 2012, A&A, 537, A12810.1051/0004-6361/201118085CrossRefGoogle Scholar
Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376CrossRefGoogle Scholar
Sale, O., Bogensberger, D., Clarke, F., & Lynas-Gray, A. E. 2020, MNRAS, 499, 3071CrossRefGoogle Scholar
Schaffenroth, V., Barlow, B. N., Drechsel, H., & Dunlap, B. H. 2015, A&A, 576, A12310.1051/0004-6361/201525701CrossRefGoogle Scholar
Schleicher, D. R. G., & Dreizler, S. 2014, A&A, 563, A6110.1051/0004-6361/201322860CrossRefGoogle Scholar
Schleicher, D. R. G., Dreizler, S., Völschow, M., Banerjee, R., & Hessman, F. V. 2015, AN, 336, 45810.1002/asna.201412184CrossRefGoogle Scholar
Silvotti, R., Östensen, R., Telting, J., & Lovis, C. 2014, in Astronomical Society of the Pacific Conference Series, Vol. 481, 6th Meeting on Hot Subdwarf Stars and Related Objects, ed. van Grootel, V., Green, E., Fontaine, G., & Charpinet, S., 13Google Scholar
Tian, Y. P., Xiang, F. Y., & Tao, X. 2009, AP&SS, 319, 11910.1007/s10509-008-9975-4CrossRefGoogle Scholar
Völschow, M., Schleicher, D. R. G., Perdelwitz, V., & Banerjee, R. 2016, A&A, 587, A34CrossRefGoogle Scholar
Zorotovic, M., & Schreiber, M. R. 2013, A&A, 549, A9510.1051/0004-6361/201220321CrossRefGoogle Scholar