Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-11-21T15:37:08.365Z Has data issue: false hasContentIssue false

Thin Gordian unlinks

Published online by Cambridge University Press:  19 November 2025

José Ayala Hoffmann*
Affiliation:
DITEC, Universidad de Tarapacá, Av. La Tirana, 4802, Iquique, Chile (jayalhoff@gmail.com)

Abstract

A Gordian unlink is a finite number of unknots that are not topologically linked, each with prescribed length and thickness, and that cannot be disentangled into the trivial link by an isotopy preserving length and thickness throughout. In this note, we provide the first examples of Gordian unlinks. As a consequence, we identify the existence of isotopy classes of unknots that differ from those in classical knot theory. More generally, we present a one-parameter family of Gordian unlinks with thickness ranging in $[1,2)$ and absolute curvature bounded by 1, concluding that thinner normal tubes lead to different rope geometries than those previously considered. Knots or links in the one-parameter model introduced here are called thin knots or links. When the thickness is equal to 2, we obtain the standard model for geometric knots, also called thick knots.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agol, I., Marques, F. C. and Neves, A.. Min–max theory and the energy of links. J. Amer. Math. Soc. 29 (2016), 561578.10.1090/jams/835CrossRefGoogle Scholar
Ayala, J.. On the topology of the spaces of curvature constrained plane curves. Adv. Geom. 17 (2017), 283292.10.1515/advgeom-2017-0015CrossRefGoogle Scholar
Ayala, J. Hass, J., Gordian Unlinks, https://arxiv.org/abs/2005.13168.Google Scholar
Ayala, J., Kirszenblat, D., and Rubinstein, J. H.. A geometric approach to shortest bounded curvature paths. Commun. Anal. Geom. 26 (2018), 679697.10.4310/CAG.2018.v26.n4.a1CrossRefGoogle Scholar
Ayala, J., Kirszenblat, D., and Rubinstein, J. H.. Immersed flat ribbon knots. Isr. J. Math. https://arxiv.org/abs/2005.13168 accepted for publication not assigned vol yet.Google Scholar
Brendle, T. E. and Hatcher, A. E.. Configuration spaces of rings and wickets. Comment. Math. Helv. 88 (2013), 131162.10.4171/cmh/280CrossRefGoogle Scholar
Cantarella, J., Kusner, R. B. and Sullivan, J. M.. On the minimum ropelength of knots and links. Invent. Math. 150 (2002), 257286.10.1007/s00222-002-0234-yCrossRefGoogle Scholar
Coward, A. and Hass, J.. Topological and physical knot theory are distinct. Pacific J. Math. 276 (2015), 387400.10.2140/pjm.2015.276.387CrossRefGoogle Scholar
Diao, Y., Ernst, C. and Janse van Rensburg, E. J.. Thicknesses of knots. Math. Proc. Cambridge Philos. Soc. 126 (1999), 293310.10.1017/S0305004198003338CrossRefGoogle Scholar
Diaz, J. and Ayala, J.. Census to bounded curvature paths. Geom. Dedicata. 204 (2020), 4371.10.1007/s10711-019-00444-2CrossRefGoogle Scholar
Dubins, L. E.. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Amer. J. Math. 79 (1957), 139155.10.2307/2372560CrossRefGoogle Scholar
Durumeric, O.. Local structure of ideal knots and shapes. Topology Appl. 154 (2007), 30703089.10.1016/j.topol.2007.07.004CrossRefGoogle Scholar
Evans, M. E., Robins, V. and Hyde, S. T.. Ideal geometry of periodic entanglements. Proceedings of the Royal Society A. 471 (2015), 123.Google Scholar
Freedman, M., He, Z. and Wang, Z.. Möbius energy of knots and unknots. Annals of Mathematics, Second Series. 139 (1994), 150.10.2307/2946626CrossRefGoogle Scholar
Gonzales, O. and Maddocks, J.. Global curvature, thickness, and the ideal shapes of knots. Proc. Natl. Acad. Sci. USA. 96 (1999), 47694773.10.1073/pnas.96.9.4769CrossRefGoogle Scholar
Hatcher, A.. A proof of the Smale conjecture, ${\mathrm{Diff}}(S^{3})\simeq{\mathrm{O}}(4)$. Ann. Math. 117 (1983), 553607.10.2307/2007035CrossRefGoogle Scholar
Katritch, V., Bednar, J., Michoud, D., Scharein, R. G., Dubochet, J. and Stasiak, A.. Nature. 384 (1996), 142.10.1038/384142a0CrossRefGoogle Scholar
Kusner, R. B. and Sullivan, J. M.. Criticality for the Gehring link problem. Geom. Topol. 10 (2006), 20552116.Google Scholar
Litherland, R. A., Simon, J., Durumeric, O. and Rawdon, E.. Thickness of knots. Topology Appl. 91 (1999), 233244.10.1016/S0166-8641(97)00210-1CrossRefGoogle Scholar
Markov, A. A.. Some examples of the solution of a special kind of problem on greatest and least quantities. Soobshch. Karkovsk. Mat. Obshch. 1 (1887), 250276.Google Scholar
Millett, K. C. and Rawdon, E. J.. Energy, ropelength, and other physical aspects of equilateral knots. Journal of Computational Physics. 186 (2003), 426456.10.1016/S0021-9991(03)00026-3CrossRefGoogle Scholar
O’Hara, J.. Energy of a knot. Topology. 30 (1991), 241247.10.1016/0040-9383(91)90010-2CrossRefGoogle Scholar
Pieranski, P., Przybyl, S., Stasiak, A., 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, 2125, 2000.Google Scholar
Pieranski, P., Przybyl, S. and Stasiak, A.. Gordian unknots, arXiv preprint physics/0103080, 2001.Google Scholar
Strzelecki, P. and von der Mosel, H.. How averaged Menger curvatures control regularity and topology of curves and surfaces. Journal of Physics: Conference Series. 544 (2014), 012018.Google Scholar
Sussmann, H. J.. Shortest 3-dimensional paths with a prescribed curvature bound. Proceedings of the 34th IEEE Conference on Decision and Control (1995), 33063312.Google Scholar