Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-09-06T02:44:54.782Z Has data issue: false hasContentIssue false

On K-stability of blow-ups of weighted projective planes

Published online by Cambridge University Press:  29 August 2025

In-Kyun Kim
Affiliation:
June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea (soulcraw@gmail.com)
Joonyeong Won
Affiliation:
Department of Mathematics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea (leonwon@ewha.ac.kr)

Abstract

We study the K-stability of blow-ups of the weighted projective plane ${\mathbb P}(1,1,n)$, where n is a positive integer.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abban, H. and Zhuang., Z. K-stability of Fano varieties via admissible flags. Paper No. e15. 10 (2022), .Google Scholar
Araujo., C. et al. The Calabi Problem for Fano threefolds (London Mathematical Society Lecture Note Series), Vol. 485, (Cambridge Univ. Press, Cambridge, 2023).10.1017/9781009193382CrossRefGoogle Scholar
Blum, H. and Jonsson., M. Thresholds, valuations, and K-stability. Adv. Math. 365 (2020), , .10.1016/j.aim.2020.107062CrossRefGoogle Scholar
Blum, H. and Xu., C. Uniqueness of K-polystable degenerations of Fano varieties. Ann. of Math. 190 (2019), 609656.10.4007/annals.2019.190.2.4CrossRefGoogle Scholar
Cavey, D. and Prince., T. M. Del Pezzo surfaces with a single $1/k(1,1)$ singularity. J. Math. Soc. Japan. 72 (2020), 465505.10.2969/jmsj/79337933CrossRefGoogle Scholar
Cheltsov., A.I Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18 (2008), 11181144.10.1007/s00039-008-0687-2CrossRefGoogle Scholar
Cheltsov, A.I and Prokhorov., Y. G. Del Pezzo surfaces with infinite automorphism groups Algebr. Geom. 8 (2021), 31935710.14231/AG-2021-008CrossRefGoogle Scholar
Denisova., E. δ-invariants of Du Val del Pezzo surfaces of degree $\geq 4$. (2023), arXiv:2304.11412.Google Scholar
Denisova., E. δ-invariants of Du Val del Pezzo surfaces of degree 2. (2024), arXiv:2410.12512v2Google Scholar
Denisova., E. δ-invariants of Du Val del Pezzo surfaces of degree 1. (2024). arXiv:2410.19853 Google Scholar
Denisova., E. δ-invariants of cubic surfaces with Du Val singularities. (2023) arXiv:2311.14181.Google Scholar
Fujita., K. On K-stability for Fano threefolds of rank 3 and degree 28. Int. Math. Res. Not. IMRN. 2023, 1260112784.10.1093/imrn/rnac190CrossRefGoogle Scholar
Fujita, K. and Odaka., Y. On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. 70 (2018), 511521.10.2748/tmj/1546570823CrossRefGoogle Scholar
Kim, I. -K., Kim, J. and Won., J. Rigid affine cones over singular del Pezzo surfaces (2024). arXiv:2506.01310Google Scholar
Kim, I. -K. and Won., J. Delta-invariants of complete intersection log del Pezzo surfaces. Proc. Roy. Soc. Edinburgh Sect. A. 153 (2023), 10211036.10.1017/prm.2022.30CrossRefGoogle Scholar
Kollár., J. Singularities of pairs, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.). Vol. 62, , (Amer. Math. Soc, Providence, RI.Google Scholar
Lazarsfeld., R. K. Positivity in algebraic geometry. II, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49, (Springer, Berlin, 2004).Google Scholar
Liu., Y. The volume of singular Kähler-Einstein Fano varieties. Compos. Math. 154 (2018), 11311158.10.1112/S0010437X18007042CrossRefGoogle Scholar
Liu, Y. and Zhu., Z. Equivariant K-stability under finite group action. Internat. J. Math. 33 (2022), .10.1142/S0129167X22500070CrossRefGoogle Scholar
Odaka, Y., Spotti, C. and Sun., S. Compact moduli spaces of del Pezzo surfaces and Kähler-Einstein metrics. J. Differential Geom. 102 (2016), 12717210.4310/jdg/1452002879CrossRefGoogle Scholar
Park, J. and Won., J. K-stability of smooth del Pezzo surfaces. Math. Ann. 372 (2018), 12391276.10.1007/s00208-017-1602-7CrossRefGoogle Scholar
Park, J. and Won., J. Simply connected Sasaki-Einstein rational homology 5-spheres. Duke Math. J. 170 (2021), 10851112.10.1215/00127094-2020-0085CrossRefGoogle Scholar
Tian., G. On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), 101172.10.1007/BF01231499CrossRefGoogle Scholar