June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea (soulcraw@gmail.com)
Joonyeong Won
Affiliation:
Department of Mathematics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea (leonwon@ewha.ac.kr)
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
1
Abban, H. and Zhuang., Z.K-stability of Fano varieties via admissible flags. Paper No. e15.10 (2022), .Google Scholar
2
Araujo., C.et al.The Calabi Problem for Fano threefolds (London Mathematical Society Lecture Note Series), Vol. 485, (Cambridge Univ. Press, Cambridge, 2023).10.1017/9781009193382CrossRefGoogle Scholar
3
Blum, H. and Jonsson., M.Thresholds, valuations, and K-stability. Adv. Math.365 (2020), , .10.1016/j.aim.2020.107062CrossRefGoogle Scholar
4
Blum, H. and Xu., C.Uniqueness of K-polystable degenerations of Fano varieties. Ann. of Math.190 (2019), 609–656.10.4007/annals.2019.190.2.4CrossRefGoogle Scholar
5
Cavey, D. and Prince., T. M.Del Pezzo surfaces with a single $1/k(1,1)$ singularity. J. Math. Soc. Japan.72 (2020), 465–505.10.2969/jmsj/79337933CrossRefGoogle Scholar
6
Cheltsov., A.ILog canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal.18 (2008), 1118–1144.10.1007/s00039-008-0687-2CrossRefGoogle Scholar
7
Cheltsov, A.I and Prokhorov., Y. G.Del Pezzo surfaces with infinite automorphism groupsAlgebr. Geom.8 (2021), 319–35710.14231/AG-2021-008CrossRefGoogle Scholar
8
Denisova., E.δ-invariants of Du Val del Pezzo surfaces of degree $\geq 4$. (2023), arXiv:2304.11412.Google Scholar
9
Denisova., E.δ-invariants of Du Val del Pezzo surfaces of degree 2. (2024), arXiv:2410.12512v2Google Scholar
Fujita., K.On K-stability for Fano threefolds of rank 3 and degree 28. Int. Math. Res. Not. IMRN.2023, 12601–12784.10.1093/imrn/rnac190CrossRefGoogle Scholar
13
Fujita, K. and Odaka., Y.On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J.70 (2018), 511–521.10.2748/tmj/1546570823CrossRefGoogle Scholar
14
Kim, I. -K., Kim, J. and Won., J.Rigid affine cones over singular del Pezzo surfaces (2024). arXiv:2506.01310Google Scholar
15
Kim, I. -K. and Won., J.Delta-invariants of complete intersection log del Pezzo surfaces. Proc. Roy. Soc. Edinburgh Sect. A.153 (2023), 1021–1036.10.1017/prm.2022.30CrossRefGoogle Scholar
Lazarsfeld., R. K.Positivity in algebraic geometry. II, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49, (Springer, Berlin, 2004).Google Scholar
Liu, Y. and Zhu., Z.Equivariant K-stability under finite group action. Internat. J. Math.33 (2022), .10.1142/S0129167X22500070CrossRefGoogle Scholar
20
Odaka, Y., Spotti, C. and Sun., S.Compact moduli spaces of del Pezzo surfaces and Kähler-Einstein metrics. J. Differential Geom.102 (2016), 127–17210.4310/jdg/1452002879CrossRefGoogle Scholar
21
Park, J. and Won., J.K-stability of smooth del Pezzo surfaces. Math. Ann.372 (2018), 1239–1276.10.1007/s00208-017-1602-7CrossRefGoogle Scholar
22
Park, J. and Won., J.Simply connected Sasaki-Einstein rational homology 5-spheres. Duke Math. J.170 (2021), 1085–1112.10.1215/00127094-2020-0085CrossRefGoogle Scholar
23
Tian., G.On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math.101 (1990), 101–172.10.1007/BF01231499CrossRefGoogle Scholar