Hostname: page-component-65b85459fc-5fwlf Total loading time: 0 Render date: 2025-10-19T09:58:54.528Z Has data issue: false hasContentIssue false

A k-Hessian equation with a power nonlinearity source and self-similarity

Published online by Cambridge University Press:  17 October 2025

Justino Sánchez*
Affiliation:
Departamento de Matemáticas, Universidad de La Serena, Avenida Cisternas 1200, La Serena, Chile (jsanchez@userena.cl)
*
*Corresponding author.

Abstract

We study existence and uniqueness of spherically symmetric solutions of

\begin{equation*}S_k(D^2v)+\beta \xi\cdot\nabla v+\alpha v+\left\vert v\right\vert^{q-1}v=0\;\; \mbox{in}\;\; \mathbb{R}^n,\end{equation*}

where $\alpha,\beta$ are real parameters, $n \gt 2,\, q \gt k\geqslant 1$ and $S_k(D^2v)$ stands for the k-Hessian operator of v. Our results are based mainly on the analysis of an associated dynamical system and energy methods. We derive some properties of the solutions of the above equation for different ranges of the parameters α and β. In particular, we describe with precision its asymptotic behaviour at infinity. Further, according to the position of q with respect to the first critical exponent $\frac{(n+2)k}{n}$ and the Tso critical exponent $\frac{(n+2)k}{n-2k}$ we study the existence of three classes of solutions: crossing, slow decay or fast decay solutions. In particular, if k > 1 all the fast decay solutions have a compact support in $\mathbb{R}^n$. The results also apply to construct self-similar solutions of type I to a related nonlinear evolution equation. These are self-similar functions of the form $u(t,x)=t^{-\alpha}v(xt^{-\beta})$ with suitable α and β.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bidaut-Véron, M. F.. The p-Laplace heat equation with a source term: self-similar solutions revisited. Adv. Nonlinear Stud. 6 (2006), 69108.10.1515/ans-2006-0105CrossRefGoogle Scholar
Budd, C. J. and Galaktionov, V. A.. On self-similar blow-up in evolution equations of Monge-Ampère type. IMA J. Appl. Math. 78 (2013), 338378.10.1093/imamat/hxr053CrossRefGoogle Scholar
Cazenave, T., Dickstein, F. and Weissler, F. B.. An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 68 (2008), 862874.10.1016/j.na.2006.11.042CrossRefGoogle Scholar
Fujita, H.. On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\unicode{x03B1}}$. J. Fac. Sci. Univ. Tokyo Sect. I. 13 (1966), 109124.Google Scholar
Haraux, A. and Weissler, F. B.. Nonuniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31 (1982), 167189.10.1512/iumj.1982.31.31016CrossRefGoogle Scholar
Korman, P.. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Commun. Pure Appl. Anal. 19 (2020), 3146.10.3934/cpaa.2020003CrossRefGoogle Scholar
Peletier, L. A., Terman, D. and Weissler, F. B.. On the equation $\Delta u+{1{\over} 2}x\cdot\nabla u+f(u)=0$. Arch. Rational Mech. Anal. 94 (1986), 8399.10.1007/BF00278244CrossRefGoogle Scholar
Ph. Clément, R. M. and Mitidieri, E.. Some existence and non-existence results for a homogeneous quasilinear problem. Asymptot. Anal. 17 (1998), 1329.Google Scholar
Qi, Y. W.. The global existence and nonuniqueness of a nonlinear degenerate equation. Nonlinear Anal. 31 (1998), 117-136.10.1016/S0362-546X(96)00298-2CrossRefGoogle Scholar
Sánchez, J.. Asymptotic behavior of solutions of a k-Hessian evolution equation. J. Differential Equations. 268 (2020), 18401853.10.1016/j.jde.2019.09.028CrossRefGoogle Scholar
Sánchez, J.. On the existence of solutions of a k-Hessian equation and its connection with self-similar solutions. Discrete Contin. Dyn. Syst. 45 (2025), 875895.10.3934/dcds.2024116CrossRefGoogle Scholar
Tso, K.. Remarks on critical exponents for Hessian operators. Ann. Inst. H. Poincaré Anal. Non Linéaire. 7 (1990), 113122.10.1016/s0294-1449(16)30302-xCrossRefGoogle Scholar
Vázquez, J. L.. The Porous Medium equation. Mathematical theory. (Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007).Google Scholar
Wang, X. -J.. A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J. 43 (1994), 2554.10.1512/iumj.1994.43.43002CrossRefGoogle Scholar
Wang, X. -J.. The k-Hessian equation. In Geometric Analysis and PDEs, Volume 1977 of Lecture Notes in Math., 177252 (Springer, Dordrecht, 2009).Google Scholar
Weissler, F. B.. Asymptotic analysis of an ordinary differential equation and nonuniqueness for a semilinear partial differential equation. Arch. Rational Mech. Anal. 91 (1985), 231245.10.1007/BF00250743CrossRefGoogle Scholar
Weissler, F. B.. Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations. Arch. Rational Mech. Anal. 91 (1985), 247266.10.1007/BF00250744CrossRefGoogle Scholar