Hostname: page-component-857557d7f7-nfgnx Total loading time: 0.001 Render date: 2025-12-13T04:42:43.299Z Has data issue: false hasContentIssue false

Double points and image of reflection maps

Published online by Cambridge University Press:  11 December 2025

José Borges-Zampiva
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, Brazil (jrbzampiva@estudante.ufscar.br)
Bruna Oréfice-Okamoto
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, Brazil (brunaorefice@ufscar.br)
Guillermo Peñafort Sanchis
Affiliation:
Departament de Matemàtiques, Universitat de València, Campus de Burjassot, Burjassot, Spain (guillermo.penafort@uv.es)
João N. Tomazella
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, Brazil (jntomazella@ufscar.br)

Abstract

A reflection mapping is a singular holomorphic mapping obtained by restricting the quotient mapping of a complex reflection group. We study the analytic structure of double point spaces of reflection mappings. In the case where the image is a hypersurface, we obtain explicit equations for the double point space and for the image as well. In the case of surfaces in ${\mathbb C}^3$, this gives a very efficient method to compute the Milnor number and delta invariant of the double point curve.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Barajas, M.. Folding maps on a cross-cap. arXiv:2004.04781.Google Scholar
Bruce, J. W.. Projections and reflections of generic surfaces in $\textbf{R}^{3}$. Math. Scand. 54 (1984), 262278.10.7146/math.scand.a-12058CrossRefGoogle Scholar
Bruce, J. W. and Wilkinson, T. C.. Folding maps and focal sets. In Singularity theory and its applications, Part I (Coventry, 1988/1989), volume. Of Lecture Notes in Math., Vol. 1462, pp. 6372 (Springer, Berlin, 1991).Google Scholar
de Concini, C. and Strickland, E.. On the variety of complexes. Advances in Mathematics. 41 (1981), 5777.10.1016/S0001-8708(81)80004-7CrossRefGoogle Scholar
Gama, M. B. and Nogueira da Silva, O.. On reflection maps from n-space to n+1-space. (2024), arXiv:2408.11669.Google Scholar
Hernandes, M. E. R. and Ruas, M. A. S.. Parametrized monomial surfaces in 4-space. Q. J. Math. 70 (2019), 473485.10.1093/qmath/hay052CrossRefGoogle Scholar
Houston, K.. On singularities of folding maps and augmentations. Math. Scand. 82 (1998), 191206.10.7146/math.scand.a-13833CrossRefGoogle Scholar
Izumiya, S., Takahashi, M. and Tari, F.. Folding maps on spacelike and timelike surfaces and duality. Osaka J. Math. 47 (2010), 839862.Google Scholar
Kleiman, S. L.. Multiple-point formulas I: Iteration. Acta mathematica. 147 (1981), 1349.10.1007/BF02392866CrossRefGoogle Scholar
Lehrer, G.I and Taylor, D. E.. Unitary Reflection Groups, Australian Mathematical Society Lecture Series 20, Cambridge: Cambridge University Press, 2009.Google Scholar
Marar, W. L. and Nuño Ballesteros, J. J.. A note on finite determinacy for corank 2 map germs from surfaces to 3-space. Math. Proc. Cambridge Philos. Soc. 145 (2008), 153163.10.1017/S0305004108001278CrossRefGoogle Scholar
Marar, W. L., Nuño Ballesteros, J. J. and Peñafort Sanchis, G.. Double point curves for corank 2 map germs from ${\Bbb C}^2$ to ${\Bbb C}^3$. Topology Appl. 159 (2012), 526536.10.1016/j.topol.2011.09.028CrossRefGoogle Scholar
Mond, D.. On the classification of germs of maps from $\mathbb{R}^2$ to $\mathbb{R}^3$. Proc. London Math. Soc. 50 (1985), 333369.10.1112/plms/s3-50.2.333CrossRefGoogle Scholar
Mond, D.. On the classification of germs of maps from $\mathbb{R}^2$ to $\textbf{R}^3$. Proc. London Math. Soc. (3). 50 (1985), 333369.10.1112/plms/s3-50.2.333CrossRefGoogle Scholar
Mond, D.. Some remarks on the geometry and classification of germs of maps from surfaces to 3-space. Topology. 26 (1987), 361383.10.1016/0040-9383(87)90007-3CrossRefGoogle Scholar
Mond, D. and Nuño-Ballesteros, J. J.. Of Grundlehren der Mathematischen Wissenschaften, Vol.357, (Springer, Cham, 2020) Singularities of mappings.Google Scholar
Mond, D. and Pellikaan, R.. Algebraic Geometry and Complex Analysis (Pátzcuaro, 1987) Lecture Notes in Mathematics, Berlin: Springer. (1989), 107161.Google Scholar
Nguyen, T., Brasselet, J.-P. and Ruas, M. A. S.. Local bi-Lipschitz classification of semialgebraic surfaces. Dalat University Journal of Science. 15 (2025), 7697.Google Scholar
Nuño-Ballesteros, J. J. and Peñafort Sanchis, G.. Multiple point spaces of finite holomorphic maps. The Quarterly Journal of Mathematics. 68 (2017), 369390.10.1093/qmath/haw042CrossRefGoogle Scholar
Nuño-Ballesteros, J. J. and Peñafort Sanchis, G.. Iterated multiple points i: Equations and pathologies. Journal of the London Mathematical Society. 107 (2023), 213253.10.1112/jlms.12685CrossRefGoogle Scholar
Peñafort Sanchis, G.. The geometry of double fold maps. J. Singul. 10 (2014), 250263.Google Scholar
Peñafort Sanchis, G.. Reflection maps. Math. Ann. 378 (2020), 559598.10.1007/s00208-020-02030-4CrossRefGoogle Scholar
Peñafort Sanchis, G. and Tari, F.. On $k$-folding map-germs and hidden symmetries of surfaces in the Euclidean 3-space. Proc. Roy. Soc. Edinburgh Sect. A. 154 (2024), 60104.10.1017/prm.2022.90CrossRefGoogle Scholar
Ronga, F.. Le calcul des classes duales aux singularités de Boardman d’ordre deux. Comment. Math. Helv. 47 (1972), 1535.10.1007/BF02566786CrossRefGoogle Scholar
Ruas, M. A. S. and Silva, O. N.. Whitney equisingularity of families of surfaces in $\mathbb{C}^3$, Mathematical Proceedings of the Cambridge Philosophical Society, (2016), pp. 353369.Google Scholar
Silva, O. N.. On the topology of the transversal slice of a quasi-homogeneous map germ. Math. Proc. Cambridge Philos. Soc. 176 (2024), 339359.10.1017/S0305004123000464CrossRefGoogle Scholar
Sinha, R. O. and Saji, K.. On the geometry of folded cuspidal edges. Rev. Mat. Complut. 31 (2018), 627650.10.1007/s13163-018-0257-6CrossRefGoogle Scholar