Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-09-11T04:01:41.542Z Has data issue: false hasContentIssue false

Diophantine approximations with restrained denominators. Balance condition on decay and growth rates

Published online by Cambridge University Press:  29 August 2025

Volodymyr Pavlenkov
Affiliation:
Department of Mathematics, University of York, Heslington, York, England Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine (pavlenkovvolodymyr@gmail.com)
Evgeniy Zorin*
Affiliation:
Department of Mathematics, University of York, Heslington, York, England (evgeniy.zorin@york.ac.uk)
*
*Corresponding author.

Abstract

We strengthen known results on Diophantine approximation with restricted denominators by presenting a new quantitative Schmidt-type theorem that applies to denominators growing much more slowly than in previous works. In particular, we can handle sequences of denominators with polynomial growth and Rajchmann measures exhibiting arbitrary slow decay, allowing several applications. For instance, our results yield non-trivial lower bounds on the Hausdorff dimensions of intersections of two sets of inhomogeneously well-approximable numbers (each with restricted denominators) and enable the construction of Salem subsets of well-approximable numbers of arbitrary Hausdorff dimension.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aistleitner, C., Borda, B. and Hauke, M.. On the metric theory of approximations by reduced fractions: a quantitative Koukoulopoulos-Maynard theorem. Compos. Math. 159 (2023), 207231.10.1112/S0010437X22007837CrossRefGoogle Scholar
Beresnevich, V. and Velani, S.. A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. Math. 2 (2006), 971992.10.4007/annals.2006.164.971CrossRefGoogle Scholar
Bluhm, C.. PhD thesis, (University of Erlanger, (1996)), Zur Konstruktion von Salem-Mengen.Google Scholar
Bluhm, C.. On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets. Ark. Mat. 36 (1998), 307316.10.1007/BF02384771CrossRefGoogle Scholar
Bluhm, C.. Liouville numbers, Rajchman measures, and small Cantor sets, Proceedings of the American Mathematical Society, 128 (2000) , 26372640.10.1090/S0002-9939-00-05276-XCrossRefGoogle Scholar
Bugeaud, Y.. Nombres de Liouville et nombres normaux. C. R. Acad. Sci. Paris, Ser. I. 335 (2002), 117120.10.1016/S1631-073X(02)02456-1CrossRefGoogle Scholar
Hambrook, K.. Explicit Salem sets and applications to metrical Diophantine approximation. Transactions of the American Mathematical Society. 371 (2019), 43534376. doi:10.1090/TRAN/7613.CrossRefGoogle Scholar
Harman, G.. Metric Number Theory. (Clarendon Press, Oxford, 1998).10.1093/oso/9780198500834.001.0001CrossRefGoogle Scholar
Kaufman, R.. Continued fractions and Fourier transforms. Mathematika. 27 (1980), 262267.10.1112/S0025579300010147CrossRefGoogle Scholar
Khintchine, A.. Einige Sätze über Kettenbrüiche mit Anwendugen auf die Theorie der diophantischen Approximationen. Math. Ann. 92 (1924), 115125.10.1007/BF01448437CrossRefGoogle Scholar
Koukoulopoulos, D. and Maynard, J.. On the Duffin-Schaeffer conjecture. Ann. Math. 192 (2020), 251307.10.4007/annals.2020.192.1.5CrossRefGoogle Scholar
Li, J. and Sahlsten, T.. Trigonometric series and self-similar sets. J. Eur. Math. Soc. 24 (2022), 341368.10.4171/jems/1102CrossRefGoogle Scholar
Mattila, P.. Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics, Vol. 44, (Cambridge University Press, 1995)Google Scholar
Mattila, P.. Fourier analysis and Hausdorff dimension. Cambridge Studies in Advanced Mathematics, Vol. 150, (Cambridge University Press, 2015)Google Scholar
Pollington, A., Velani, S., Zafeiropoulos, A. and Zorin, E.. Inhomogeneous Diophantine Approximation on M 0-sets with restricted denominators. IMRN. 11 (2022), 85718643.10.1093/imrn/rnaa307CrossRefGoogle Scholar
Queffélec, M. and Ramaré, O.. Analyse de Fourier des fractions continues à quotients restreints. (French) [Fourier analysis of continued fractions with bounded special quotients] Enseign. Math. (2) 49 3-4 (2003), 335356.Google Scholar
Rynne, B. P.. The Hausdorff dimension of sets arising from Diophantine approximation with a general error function. J. Number Theory. 71 (1998), 166171.10.1006/jnth.1998.2253CrossRefGoogle Scholar
Schmidt, W. M.. Metrical theorems on fractional parts of sequences. Trans. Amer. Math. Soc. 110 (1964), 493518.10.1090/S0002-9947-1964-0159802-4CrossRefGoogle Scholar
Szüsz, P.. Über die metrische Theorie der diophantischen Approximationen. Acta Math. Acad. Sci. Hungar. 9 (1958), 177193.10.1007/BF02023871CrossRefGoogle Scholar