Hostname: page-component-7f64f4797f-7vssv Total loading time: 0 Render date: 2025-11-11T08:32:41.770Z Has data issue: false hasContentIssue false

Cohomology of restricted twisted Heisenberg Lie algebras

Published online by Cambridge University Press:  06 November 2025

Yong Yang*
Affiliation:
College of Mathematics and System Science, Xinjiang University, Urumqi, China (yangyong195888221@163.com)
*
*Corresponding author.

Abstract

Over an algebraically closed field $\mathbb F$ of characteristic $p \gt 0$, the restricted twisted Heisenberg Lie algebras are studied. We use the Hochschild–Serre spectral sequence relative to its Heisenberg ideal to compute the trivial cohomology. The ordinary 1- and 2-cohomology spaces are used to compute the restricted 1- and 2-cohomology spaces and describe the restricted one-dimensional central extensions, including explicit formulas for the Lie brackets and $-^{[p]}$-operators.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, S.. Dynamics on Lorentz manifolds. Singapore, World Scientific, 2001.10.1142/4491CrossRefGoogle Scholar
Cairns, G. and Jambor, S.. The cohomology of the Heisenberg Lie algebras over fields of finite characteristic. Proc. Amer. Math. Soc. 136 (2008), 38033807.10.1090/S0002-9939-08-09422-7CrossRefGoogle Scholar
Calderón, A. J., Draper, C., Martín, C. and Sánchez, J. M.. Gradings and symmetries on Heisenberg type algebras. Linear Algebra Appl. 458 (2014), 463502.10.1016/j.laa.2014.06.024CrossRefGoogle Scholar
Chevalley, C. and Eilenberg, S.. Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85124.10.1090/S0002-9947-1948-0024908-8CrossRefGoogle Scholar
Evans, T. J. and Fialowski, A.. Restricted one-dimensional central extensions of the restricted filiform Lie algebras $\mathfrak{m}^{\lambda}_{0}(p)$. Linear Algebra Appl. 565 (2019), 244257.10.1016/j.laa.2018.12.005CrossRefGoogle Scholar
Evans, T. J., Fialowski, A. and Yang, Y.. On the cohomology of restricted Heisenberg Lie algebras. Linear Algebra Appl. 699 (2024), 295309.10.1016/j.laa.2024.06.027CrossRefGoogle Scholar
Evans, T. J. and Fuchs, D. B.. A complex for the cohomology of restricted Lie algebras. J. Fixed Point Theory Appl. 3 (2008), 159179.10.1007/s11784-008-0060-yCrossRefGoogle Scholar
Feldvoss, J.. On the cohomology of restricted Lie algebras. Comm. Algebra. 19 (1991), 28652906.10.1080/00927879108824299CrossRefGoogle Scholar
Fuchs, D. B.. Cohomology of infinite-dimensional Lie algebras. Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.Google Scholar
Günther, F.. Isometry groups of Lorentzian manifolds of finite volume and the local geometry of compact homogeneous Lorentz spaces. Aus der Reihe: e-fellows.net stipendiaten-wissen, GRIN-Verlag, Munich. 250 (2011), viii+120.Google Scholar
Hochschild, G.. Cohomology of restricted Lie algebras. Amer. J. Math. 76 (1954), 555580.10.2307/2372701CrossRefGoogle Scholar
Hochschild, G. and Serre, J. -P.. Cohomology of Lie algebras. Ann. Math. 57 (1953), 591603.10.2307/1969740CrossRefGoogle Scholar
Jacobson, N.. Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York-London, (1962), 331 pp.Google Scholar
Santharoubane, L. J.. Cohomology of Heisenberg Lie algebras. Proc. Amer. Math. Soc. 87 (1983), 2328.10.1090/S0002-9939-1983-0677223-XCrossRefGoogle Scholar
Seligman, G. B.. Modular Lie algebras. Ergebnisse der Mathematikund Ihrer Grenzgebiete, Band 40, Springer, 1967.10.1007/978-3-642-94985-2CrossRefGoogle Scholar
Sköldberg, E.. The homology of Heisenberg Lie algebras over fields of characteristic two. Math. Proc. R. Ir. Acad. 105A (2005), 4749.10.1353/mpr.2005.0012CrossRefGoogle Scholar
Strade, H. and Farnsteiner, R.. Modular Lie algebras and their representations. Monographs and Textbooks in Pure and Applied Math. Vol. 116, (Marcel Dekker, Inc, New York, 1988).Google Scholar
Viviani, F.. Restricted infinitesimal deformations of restricted simple Lie algebras. J. Algebra Appl. 11 (2012), 19.10.1142/S0219498812500910CrossRefGoogle Scholar