Hostname: page-component-7dd5485656-wxk4p Total loading time: 0 Render date: 2025-10-30T08:01:36.427Z Has data issue: false hasContentIssue false

Atypical bifurcation for periodic solutions of ϕ-Laplacian systems

Published online by Cambridge University Press:  03 September 2025

Pierluigi Benevieri*
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP - CEP 05508-090, Brazil (pluigi@ime.usp.br)
Guglielmo Feltrin
Affiliation:
Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Via delle Scienze 206, Udine 33100, Italy (guglielmo.feltrin@uniud.it)
*
*Corresponding author.

Abstract

In this paper, we study the T-periodic solutions of the parameter-dependent ϕ-Laplacian equation

\begin{equation*}(\phi(x'))'=F(\lambda,t,x,x').\end{equation*}

Based on the topological degree theory, we present some atypical bifurcation results in the sense of Prodi–Ambrosetti, i.e., bifurcation of T-periodic solutions from λ = 0. Finally, we propose some applications to Liénard-type equations.

Dedicated to Professor Maria Patrizia Pera on the occasion of her 70th birthday

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ambrosetti, A. and Prodi, G.. A primer of nonlinear analysis. Cambridge Studies in Advanced Mathematics, Vol. 34, (Cambridge University Press, Cambridge, 1993).Google Scholar
Bartsch, T. and Mawhin, J.. The Leray-Schauder degree of S 1-equivariant operators associated to autonomous neutral equations in spaces of periodic functions. J. Differential Equations. 92 (1991), 9099.CrossRefGoogle Scholar
Benevieri, P., do Ó, J. M. and de Medeiros, E. S.. Periodic solutions for nonlinear systems with mean curvature-like operators. Nonlinear Anal. 65 (2006), 14621475.CrossRefGoogle Scholar
Benevieri, P. and Furi, M.. A degree theory for locally compact perturbations of Fredholm maps in Banach spaces. Abstr. Appl. Anal. (2006), 64764, 20 pp.Google Scholar
Benevieri, P., Furi, M., Martelli, M. and Pera, M. P.. Atypical bifurcation without compactness. Z. Anal. Anwendungen. 24 (2005), 137147.CrossRefGoogle Scholar
Benevieri, P. and Zecca, P.. Topological degree and atypical bifurcation results for a class of multivalued perturbations of Fredholm maps in Banach spaces. Fixed Point Theory. 18 (2017), 85106.CrossRefGoogle Scholar
Bereanu, C. and Mawhin, J.. Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian. J. Differential Equations. 243 (2007), 536557.CrossRefGoogle Scholar
Bereanu, C. and Mawhin, J.. Periodic solutions of nonlinear perturbations of ϕ-Laplacians with possibly bounded ϕ. Nonlinear Anal. 68 (2008), 16681681.CrossRefGoogle Scholar
Bereanu, C. and Mawhin, J.. Periodic solutions of second order differential equations involving the ϕ-Laplacian, In: Proceedings of the Sixth Congress of Romanian Mathematicians. Vol. 1, pp. 231235 (Editura Academiei Române, Bucharest, 2009).Google Scholar
Caccioppoli, R.. Sulle corrispondenze funzionali inverse diramate: teoria generale e applicazioni ad alcune equazioni funzionali non lineari e al problema di Plateau. Opere Scelte, Vol. II, (Edizioni Cremonese, Roma, 1963).Google Scholar
Calamai, A., Pera, M. P. and Spadini, M.. Branches of forced oscillations for a class of implicit equations involving the Φ-Laplacian, In: Topological methods for delay and ordinary differential equations — with applications to continuum mechanics. Adv. Mech. Math., Vol. 51, pp. 151166 (Birkhäuser/Springer, Cham, 2024)Google Scholar
Calamai, A., Pera, M. P. and Spadini, M.. Forced oscillations for generalized ϕ-Laplacian equations with Carathéodory perturbations. Preprint, arXiv:2504.05165.Google Scholar
Capietto, A., Mawhin, J. and Zanolin, F.. A continuation approach to superlinear periodic boundary value problems. J. Differential Equations. 88 (1990), 347395.CrossRefGoogle Scholar
Capietto, A., Mawhin, J. and Zanolin, F.. Continuation theorems for periodic perturbations of autonomous systems. Trans. Amer. Math. Soc. 329 (1992), 4172.CrossRefGoogle Scholar
Chow, S. N. and Hale, J. K.. Methods of bifurcation theory. Grundlehren der Mathematischen Wissenschaften, Vol. 251, (Springer-Verlag, New York-Berlin, 1982).Google Scholar
Deimling, K.. Nonlinear Functional Analysis. (Springer-Verlag, Berlin, 1985).CrossRefGoogle Scholar
Dinca, G. and Brouwer degree, J. M.. The core of nonlinear analysis. Progress in Nonlinear Differential Equations and Their Applications, Vol. 95 (Birkhäuser/Springer, Cham, 2021).Google Scholar
Fečkan, M.. Topological degree approach to bifurcation problems. Topological Fixed Point Theory and Its Applications, Vol. 5, (Springer, New York, 2008).Google Scholar
Feltrin, G. and Zanolin, F.. An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators. Topol. Methods Nonlinear Anal. 50 (2017), 683726.Google Scholar
Feltrin, G. and Zanolin, F.. Bound sets for a class of ϕ-Laplacian operators. J. Differential Equations. 297 (2021), 508535.CrossRefGoogle Scholar
Fonseca, I. and Gangbo, W.. Degree theory in analysis and applications. Oxford Lecture Series in Mathematics and its Applications, Vol. 2, (The Clarendon Press, Oxford University Press, New York, 1995).Google Scholar
Furi, M.. On the concept of atypical bifurcation. Rend. Sem. Mat. Fis. Milano. 53 (1983), 7581.CrossRefGoogle Scholar
Furi, M. and Pera, M. P.. Cobifurcating branches of solutions for nonlinear eigenvalue problems in Banach spaces. Ann. Mat. Pura Appl. 135 (1983), 119131.CrossRefGoogle Scholar
Furi, M. and Pera, M. P.. A continuation principle for periodic solutions of forced motion equations on manifolds and applications to bifurcation theory. Pacific J. Math. 160 (1993), 219244.CrossRefGoogle Scholar
Furi, M. and Pera, M. P.. Carathéodory periodic perturbations of the zero vector field on manifolds. Topol. Methods Nonlinear Anal. 10 (1997), 7992.CrossRefGoogle Scholar
Furi, M. and Pera, M. P.. Remarks on global branches of harmonic solutions to periodic ODE’s on manifolds. Boll. Un. Mat. Ital. A. 11 (1997), 709722.Google Scholar
Furi, M., Pera, M. P. and Spadini, M.. A set of axioms for the degree of a tangent vector field on differentiable manifolds. Fixed Point Theory Appl. (2010), 845631, 11 pp.Google Scholar
Gaines, R. E. and Mawhin, J.. Coincidence degree, and nonlinear differential equations. Lecture Notes in Math., Vol. 568, (Springer-Verlag, Berlin-New York, 1977).Google Scholar
García-Huidobro, M., Manásevich, R., Mawhin, J. and Tanaka, S.. Periodic solutions for nonlinear systems of ODE’s with generalized variable exponents operators. J. Differential Equations. 388 (2024), 3458.CrossRefGoogle Scholar
Hartman, P.. On boundary value problems for systems of ordinary, nonlinear, second order differential equations. Trans. Amer. Math. Soc. 96 (1960), 493509.CrossRefGoogle Scholar
Kielhöfer, H.. Bifurcation theory. An introduction with applications to PDEs. Applied Mathematical Sciences, Vol. 156, (Springer-Verlag, New York, 2004).Google Scholar
Knobloch, H. -W.. On the existence of periodic solutions for second order vector differential equations. J. Differential Equations. 9 (1971), 6785.CrossRefGoogle Scholar
Krasnosel’skii, M. A.. Topological Methods in the Theory of Nonlinear Integral Equations. (The Macmillan Company, New York, 1964).Google Scholar
Lloyd, N. G.. Degree theory. Cambridge Tracts in Mathematics, Vol. 73, (Cambridge University Press, Cambridge-New York-Melbourne, 1978).Google Scholar
Ma, T. and Wang, S.. Bifurcation theory and applications. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, Vol. 53, (World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, 2005).Google Scholar
Manásevich, R. and Mawhin, J.. Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differential Equations. 145 (1998), 367393.CrossRefGoogle Scholar
Mawhin, J.. Équations intégrales et solutions périodiques des systèmes différentiels non linéaires, Acad. Roy. Belg. Bull. Cl. Sci. 55 (1969), 934947.Google Scholar
Mawhin, J.. Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations. 12 (1972), 610636.CrossRefGoogle Scholar
Mawhin, J.. An extension of a theorem of A. C. Lazer on forced nonlinear oscillations. J. Math. Anal. Appl. 40 (1972), 2029.CrossRefGoogle Scholar
Mawhin, J.. Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, Vol. 40 (American Mathematical Society, Providence, RI, 1979).CrossRefGoogle Scholar
Mawhin, J.. Topological degree and boundary value problems for nonlinear differential equations. In: Topological methods for ordinary differential equations (Montecatini Terme). Lecture Notes in Math., Vol. 1537, pp. 74142 (Springer, Berlin, 1993).CrossRefGoogle Scholar
Mawhin, J.. Continuation theorems for nonlinear operator equations: the legacy of Leray and Schauder. In: Travaux mathématiques, Fasc. XI Luxembourg, 1998, pp. 4973 (Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1999).Google Scholar
Mawhin, J.. Periodic solutions in the golden sixties: the birth of a continuation theorem. In: Ten Mathematical Essays on Approximation in Analysis and Topology, pp. 199214 (Elsevier B. V., Amsterdam, 2005).CrossRefGoogle Scholar
Mawhin, J.. Resonance problems for some non-autonomous ordinary differential equations. In: Stability and Bifurcation Theory for non-Autonomous Differential Equations. Lecture Notes in Math., Vol. 2065, pp. 103184 (Springer, Heidelberg, 2013).CrossRefGoogle Scholar
Mawhin, J.. Some contributions of Fabio Zanolin to continuation theorems for periodic solutions of differential systems. Rend. Semin. Mat. Univ. Politec. Torino. 81 (2023), 4969.Google Scholar
Mawhin, J., Rebelo, C. and Zanolin, F.. Continuation theorems for Ambrosetti-Prodi type periodic problems. Commun. Contemp. Math. 2 (2000), 87126.CrossRefGoogle Scholar
Prodi, G. and Ambrosetti, A.. Analisi non lineare, Quaderno 1, Scuola Normale Superiore Pisa, Classe di Scienze. (Editrice Tecnico Scientifica, Pisa, 1973).Google Scholar
Rabinowitz, P. H.. Some global results for nonlinear eigenvalue problems. J. Functional Analysis. 7 (1971), 487513.CrossRefGoogle Scholar
Reissig, R.. Extension of some results concerning the generalized Liénard equation. Ann. Mat. Pura Appl. 104 (1975), 269281.CrossRefGoogle Scholar
Smale, S.. An infinite dimensional version of Sard’s theorem. Amer. J. Math. 87 (1965), 861866.CrossRefGoogle Scholar
Väth, M.. Topological analysis. From the basics to the triple degree for nonlinear Fredholm inclusions. De Gruyter Series in Nonlinear Analysis and Applications, Vol. 16, (Walter de Gruyter & Co, Berlin, 2012).Google Scholar