This paper considers various extensions of results ofJohnson and Williams and of Fong on the rangeinclusion of normal derivations. Let $C_p$, with$p \in [1,\infty)$,be the Schatten ideals of compactoperators on a Hilbert space $H$ with norms$|\ |_p$, $C_\infty$ be the idealof all compactoperators, and $C_b$ the algebra $B(H)$ of all boundedoperators.Any $S \in B(H)$ defines a bounded derivation $\delta_S$on all $C_p$: $\delta_S(X) = SX - XS$, for $X \in C_p$.Johnson andWilliamsproved that, for normal $S$, theinclusion of ranges$\delta_T(C_b) \subseteq \delta_S (C_b)$ implies$T = g(S)$,where $g$ is a Lipschitz, differentiablefunction on $\sigma(S)$. Fongshowed that the condition$T = g(S)$ is equivalent to the range inclusion$\delta_T(C_1) \subseteq \delta_S (C_b)$.This paper studies the range inclusion\begin{equation}\delta_T(C_p) \subseteq \delta_S (C_p)\end{equation}for normal $S$ and $p \in [1,\infty] \cup b$,and theclasses of functions for which $T = g(S)$. Set$$p_- = \min\bigg(p, \frac{p}{p - 1}\bigg),\quadp_+ = \max\bigg(p, \frac{p}{p - 1}\bigg), \quad\text{for } p \in (1, \infty),$$and$$p_- = 1,\quad p_+ = b, \quad\text{for } p \in \{1,\infty,b\}.$$This paper shows that condition (1) implies:\begin{enumerate}\item[(i)] the range inclusions$\delta_T(C_r) \subseteq \delta_S (C_r)$, for $r \in [p_-,p_+]$;\item[(ii)] that there exists $D > 0$ such that$|\delta_T(X)|_p\leq D|\delta_S (X)|_p$,for $X \in B(H)$($|X|_p= \infty$ if $X \notin C_p$);\item[(iii)]the range inclusions$\delta_{g(A)}(C_p) \subseteq \delta_A (C_p)$for any normal operator $A$ with$\sigma(A) \subseteq \sigma(S)$.\end{enumerate}It establishes that (1) implies that the function$g$ (in $T = g(S)$) is $C_p$-Lipschitzian on$\sigma(S)$, that is, there is$D > 0$ such that $|g(A) - g(B)|_p \leq D|A - B|_p$for all normal $A$ and $B$ with spectra in $\sigma(S)$.Conversely, it is proved that, for any selfadjoint $S$ and $C_p$-Lipschitz function $g$ on $\sigma(S)$,$\delta_{g(S)}(C_p) \subseteq \delta_S(C_p)$.The paper also extends the above results of Johnson andWilliams to bounded derivations of C$^*$-algebras. 2000 Mathematics Subject Classification: 46L57, 47B47, 58C07.