Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-07T03:40:28.146Z Has data issue: false hasContentIssue false

Thermal and non-thermal connection in radio mini-halos

Published online by Cambridge University Press:  07 April 2020

A. Ignesti
Affiliation:
DIFA, University of Bologna, Via Gobetti 93/2, 40129Bologna, Italy email: alessandro.ignesti2@unibo.it IRA INAF, Via Gobetti 101, 40129Bologna, Italy
G. Brunetti
Affiliation:
IRA INAF, Via Gobetti 101, 40129Bologna, Italy
M. Gitti
Affiliation:
DIFA, University of Bologna, Via Gobetti 93/2, 40129Bologna, Italy email: alessandro.ignesti2@unibo.it IRA INAF, Via Gobetti 101, 40129Bologna, Italy
S. Giacintucci
Affiliation:
U.S. NRL, 4555 Overlook Avenue SW, Code 7213, Washington, DC20375, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several cool-core clusters are known to host a radio mini-halo, a diffuse, steep-spectrum radio source located in their cores, thus probing the presence of non-thermal components as magnetic field and relativistic particles on scales not directly influenced by the central AGN. The nature of the mechanism that produces a population of radio-emitting relativistic particles on the scale of hundreds of kiloparsecs is still unclear. At the same time, it is still debated if the central AGN may play a role in the formation of mini-halos by providing the seed of the relativistic particles. We aim to investigate these open issues by studying the connection between thermal and non-thermal components of the intra-cluster medium. We performed a point-to-point analysis of the radio and the X-ray surface brightness of a compilation of mini-halos. We find that mini-halos have super-linear scalings between radio and X-rays, with radio brightness declining more steeply than the X-ray brightness. This trend is opposite to that generally observed in giant radio halos, thus marking a possible difference in the physics of the two radio sources. Finally, using the scalings between radio and X-rays and assuming a hadronic origin of mini-halos we derive constraints on the magnetic field in the core of the hosting clusters.

References

Ahnen, M. L., Ansoldi, S., Antonelli, L. A., et al. 2016, Astronomy and Astrophysics, 589, A33CrossRefGoogle Scholar
Blasi, P. & Colafrancesco, S. 1999, Astroparticle Physics, 12, 169CrossRefGoogle Scholar
Brunetti, G. & Jones, T. W. 2014, International Journal of Modern Physics D, 23, 30007CrossRefGoogle Scholar
Brunetti, G. & Lazarian, A. 2016, Monthly Notices of the RAS, 458, 2584CrossRefGoogle Scholar
Carilli, C. L. & Taylor, G. B. 2002, Annual Review of Astronomy and Astrophysics, 40, 319CrossRefGoogle Scholar
Cavaliere, A. & Fusco-Femiano, R. 1976, Astronomy and Astrophysics, 49, 137Google Scholar
Doria, A., Gitti, M., Ettori, S., et al. 2012, Astrophysical Journal, 753, 47CrossRefGoogle Scholar
Feretti, L., Fusco-Femiano, R., Giovannini, G., & Govoni, F. 2001, Astronomy and Astrophysics, 373, 106CrossRefGoogle Scholar
Giacintucci, S., Markevitch, M., Cassano, R., et al. 2017, Astrophysical Journal, 841, 71CrossRefGoogle Scholar
Gitti, M., Brunetti, G., & Setti, G. 2002, Astronomy and Astrophysics, 386, 456CrossRefGoogle Scholar
Govoni, F., Enßlin, T. A., Feretti, L., & Giovannini, G. 2001, Astronomy and Astrophysics, 369, 441CrossRefGoogle Scholar
Hudson, D. S., Mittal, R., Reiprich, T. H., et al. 2010, Astronomy and Astrophysics, 513, A37CrossRefGoogle Scholar
Pfrommer, C. & Enßlin, T. A. 2004, Astronomy and Astrophysics, 413, 17CrossRefGoogle Scholar
Sun, M. 2009, Astrophysical Journal, 704, 1586CrossRefGoogle Scholar
Tribble, P. C. 1993, Monthly Notices of the RAS, 263, 31CrossRefGoogle Scholar