Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-31T11:48:33.827Z Has data issue: false hasContentIssue false

Enhancing Exoplanet Surveys via Physics-informed Machine Learning

Published online by Cambridge University Press:  01 August 2025

Eric B. Ford*
Affiliation:
Department of Astronomy & Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA Center for Astrostatistics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
*

Abstract

Since the last 1990s, Doppler spectroscopy has been one of the most prolific methods of detecting and characterizing exoplanets (Fischer et al. 2016). The latest generation of stabilized spectrographs can achieve impressive levels of precision and stability, approaching that needed to detect the motion of a Sun-like star due to the gravity of an Earth-mass planet in its habitable zone (Crass et al. 2021). However, the exoplanet detection power of modern radial velocity (RV) exoplanet surveys is typically limited by the spectral variability of the target star. Machine learning (ML) has the potential to significantly improve the ability of RV exoplanet surveys to distinguish planets for stellar variability. Astronomers have begun making applying a wide variety of ML techniques, from principal component analysis and multilinear regression to convolutional neural networks. This paper reviews the state of the field for mitigating stellar variability in RV exoplanet surveys from a ML perspective. Early results show that relatively simple ML techniques paired with well-engineered features often perform comparable to much more complex ML models, while providing improved interpretability and explainability. These are likely to be critical factors for establishing the credibility and robustness of any future detections of potentially Earth-like planets.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aigrain, S., et al., 2012, MNRAS, 419, 3147. doi: 10.1111/j.1365-2966.2011.19960.x CrossRefGoogle Scholar
Aigrain, S., Foreman-Mackey, D., 2022, arXiv, arXiv:2209.08940. doi: 10.48550/arXiv.2209.08940 CrossRefGoogle Scholar
Al Moulla, K., et al., 2022, A&A, 664, A34. doi: 10.1051/0004-6361/202243276 CrossRefGoogle Scholar
Al Moulla, K., et al., 2023, A&A, 669, A39. doi: 10.1051/0004-6361/202244663 CrossRefGoogle Scholar
Artigau, É., et al., 2022, AJ, 164, 84. doi: 10.3847/1538-3881/ac7ce6 CrossRefGoogle Scholar
Barragán, O., et al., 2022, MNRAS, 509, 866. doi: 10.1093/mnras/stab2889 CrossRefGoogle Scholar
Bedell, M., et al., 2019, AJ, 158, 164. doi: 10.3847/1538-3881/ab40a7 CrossRefGoogle Scholar
Blackman, R. T., et al., 2020, AJ, 159, 238. doi: 10.3847/1538-3881/ab811d CrossRefGoogle Scholar
Bouchy, F., et al., 2001, A&A, 374, 733. doi: 10.1051/0004-6361:20010730 CrossRefGoogle Scholar
Brewer, B. J., Stello, D., 2009, MNRAS, 395, 2226. doi: 10.1111/j.1365-2966.2009.14679.x CrossRefGoogle Scholar
Brewer, J. M., et al., 2020, AJ, 160, 67. doi: 10.3847/1538-3881/ab99c9 CrossRefGoogle Scholar
Cale, B. L., et al., 2021, AJ, 162, 295. doi: 10.3847/1538-3881/ac2c80 CrossRefGoogle Scholar
Camacho, J. D., et al., 2023, MNRAS, 519, 5439. doi: 10.1093/mnras/stac3727 Google Scholar
Cegla, H. M., et al., 2019, ApJ, 879, 55. doi: 10.3847/1538-4357/ab16d3 CrossRefGoogle Scholar
Chaplin, W. J., et al., 2019, AJ, 157, 163. doi: 10.3847/1538-3881/ab0c01 CrossRefGoogle Scholar
Collier Cameron, A., et al., 2019, MNRAS, 487, 1082. doi: 10.1093/mnras/stz1215 CrossRefGoogle Scholar
Collier Cameron, A., et al., 2021, MNRAS, 505, 1699. doi: 10.1093/mnras/stab1323 CrossRefGoogle Scholar
Crass, J., et al., 2021, arXiv, arXiv:2107.14291. doi: 10.48550/arXiv.2107.14291 CrossRefGoogle Scholar
Cretignier, M., et al., 2020, A&A, 633, A76. doi: 10.1051/0004-6361/201936548 CrossRefGoogle Scholar
Cretignier, M., et al., 2022, A&A, 659, A68. doi: 10.1051/0004-6361/202142435 CrossRefGoogle Scholar
Cretignier, M., et al., 2021, A&A, 653, A43. doi: 10.1051/0004-6361/202140986 CrossRefGoogle Scholar
Davis, A. B., et al., 2017, ApJ, 846, 59. doi: 10.3847/1538-4357/aa8303 Google Scholar
de Beurs, Z. L., et al., 2022, AJ, 164, 49. doi: 10.3847/1538-3881/ac738e Google Scholar
Delisle, J.-B., et al., 2022, A&A, 659, A182. doi: 10.1051/0004-6361/202141949 Google Scholar
Dodson-Robinson, S. E., et al., 2022, AJ, 163, 169. doi: 10.3847/1538-3881/ac52ed CrossRefGoogle Scholar
Dravins, D., et al., 2021, A&A, 649, A17. doi: 10.1051/0004-6361/202039997 CrossRefGoogle Scholar
Dumusque, X., et al., 2011, A&A, 525, A140. doi: 10.1051/0004-6361/201014097 CrossRefGoogle Scholar
Dumusque, X., 2018, A&A, 620, A47. doi: 10.1051/0004-6361/201833795 CrossRefGoogle Scholar
Dumusque, X., et al., 2014, ApJ, 796, 132. doi: 10.1088/0004-637X/796/2/132 CrossRefGoogle Scholar
Dumusque, X., et al., 2021, A&A, 648, A103. doi: 10.1051/0004-6361/202039350 CrossRefGoogle Scholar
Dumusque, X., et al., 2015, ApJL, 814, L21. doi: 10.1088/2041-8205/814/2/L21 CrossRefGoogle Scholar
Ervin, T., et al., 2022, ascl.soft, ascl:2207.009. doi:Google Scholar
Fischer, D. A., et al., 2016, PASP, 128, 066001. doi: 10.1088/1538-3873/128/964/066001 CrossRefGoogle Scholar
Ford, E. B., 2006, ApJ, 642, 505. doi: 10.1086/500802 CrossRefGoogle Scholar
Foreman-Mackey, D., et al., 2017, AJ, 154, 220. doi: 10.3847/1538-3881/aa9332 CrossRefGoogle Scholar
Foreman-Mackey, D., et al., 2021, JOSS, 6, 3285. doi: 10.21105/joss.03285 Google Scholar
Gibson, N. P., et al., 2012, MNRAS, 419, 2683. doi: 10.1111/j.1365-2966.2011.19915.x CrossRefGoogle Scholar
Gilbertson, C., et al., 2020a, ApJ, 905, 155. doi: 10.3847/1538-4357/abc627 CrossRefGoogle Scholar
Gilbertson, C., et al., 2020b, RNAAS, 4, 59. doi: 10.3847/2515-5172/ab8d44 CrossRefGoogle Scholar
Gilbertson, C., et al., 2024, arXiv, arXiv:2408.17289. doi: 10.48550/arXiv.2408.17289 CrossRefGoogle Scholar
Gully-Santiago, M., Morley, C. V., 2022, ApJ, 941, 200. doi: 10.3847/1538-4357/aca0a2 CrossRefGoogle Scholar
Hall, R. D., et al., 2018, MNRAS, 479, 2968. doi: 10.1093/mnras/sty1464 CrossRefGoogle Scholar
Hara, N. C., Ford, E. B., 2023, AnRSA, 10, 623. doi: 10.1146/annurev-statistics-033021-012225 Google Scholar
Haywood, R. D., et al., 2022, ApJ, 935, 6. doi: 10.3847/1538-4357/ac7c12 CrossRefGoogle Scholar
Haywood, R. D., et al., 2016, MNRAS, 457, 3637. doi: 10.1093/mnras/stw187 CrossRefGoogle Scholar
Haywood, R. D., et al., 2014, MNRAS, 443, 2517. doi: 10.1093/mnras/stu1320 CrossRefGoogle Scholar
Holzer, P. H., et al., 2021, AJ, 161, 272. doi: 10.3847/1538-3881/abf5e0 CrossRefGoogle Scholar
Jones, 2022, Ann. Appl. Stat. 16, 652679. doi: 10.1214/21-AOAS1471 Google Scholar
Jurgenson, C., et al., 2016, SPIE, 9908, 99086T. doi: 10.1117/12.2233002 CrossRefGoogle Scholar
Langellier, N., et al., 2021, AJ, 161, 287. doi: 10.3847/1538-3881/abf1e0 CrossRefGoogle Scholar
Lin, A. S. J., et al., 2022, AJ, 163, 184. doi: 10.3847/1538-3881/ac5622 CrossRefGoogle Scholar
Luhn, J. K., et al., 2020, AJ, 159, 235. doi: 10.3847/1538-3881/ab855a CrossRefGoogle Scholar
Luhn, J. K., et al., 2023, AJ, 165, 98. doi: 10.3847/1538-3881/acad08 CrossRefGoogle Scholar
Meunier, N., et al., 2015, A&A, 583, A118. doi: 10.1051/0004-6361/201525721 CrossRefGoogle Scholar
Meunier, N., et al., 2010, A&A, 512, A39. doi: 10.1051/0004-6361/200913551 CrossRefGoogle Scholar
Milbourne, T. W., et al., 2019, ApJ, 874, 107. doi: 10.3847/1538-4357/ab064a CrossRefGoogle Scholar
Newman, P. D., et al., 2023, AJ, 165, 151. doi: 10.3847/1538-3881/acad07 CrossRefGoogle Scholar
Nicholson, B. A., Aigrain, S., 2022, MNRAS, 515, 5251. doi: 10.1093/mnras/stac2097 CrossRefGoogle Scholar
Palumbo, M. L., et al., 2022, AJ, 163, 11. doi: 10.3847/1538-3881/ac32c2 CrossRefGoogle Scholar
Perger, M., et al., 2023, arXiv, arXiv:2301.12872. doi: 10.48550/arXiv.2301.12872 CrossRefGoogle Scholar
Petersburg, R. R., et al., 2020, AJ, 159, 187. doi: 10.3847/1538-3881/ab7e31 CrossRefGoogle Scholar
Queloz, D., et al., 2001, A&A, 379, 279. doi: 10.1051/0004-6361:20011308 CrossRefGoogle Scholar
Rajpaul, V., et al., 2016, MNRAS, 456, L6. doi: 10.1093/mnrasl/slv164 CrossRefGoogle Scholar
Rajpaul, V., et al., 2015, MNRAS, 452, 2269. doi: 10.1093/mnras/stv1428 CrossRefGoogle Scholar
Rajpaul, V. M., et al., 2020, MNRAS, 492, 3960. doi: 10.1093/mnras/stz3599 CrossRefGoogle Scholar
Roettenbacher, R. M., et al., 2022, AJ, 163, 19. doi: 10.3847/1538-3881/ac3235 CrossRefGoogle Scholar
Silva, A. M., et al., 2022, A&A, 663, A143. doi: 10.1051/0004-6361/202142262 CrossRefGoogle Scholar
Wise, A. W., et al., 2018, AJ, 156, 180. doi: 10.3847/1538-3881/aadd94 CrossRefGoogle Scholar
Wise, A., et al., 2022, ApJ, 930, 121. doi: 10.3847/1538-4357/ac649b CrossRefGoogle Scholar
Zechmeister, M., et al., 2019, A&A, 627, A49. doi: 10.1051/0004-6361/201935460 CrossRefGoogle Scholar
Zechmeister, M., et al., 2018, A&A, 609, A12. doi: 10.1051/0004-6361/201731483 CrossRefGoogle Scholar
Zhao, J., et al., 2022, ApJ, 935, 75. doi: 10.3847/1538-4357/ac77ec CrossRefGoogle Scholar
Zhao, L., et al., 2020, RNAAS, 4, 156. doi: 10.3847/2515-5172/abb8d0 CrossRefGoogle Scholar
Zhao, L. L., et al., 2022, AJ, 163, 171. doi: 10.3847/1538-3881/ac5176 CrossRefGoogle Scholar
Zhao, Y., Dumusque, X., 2023, A&A, 671, A11. doi: 10.1051/0004-6361/202244568 CrossRefGoogle Scholar