Hostname: page-component-7dd5485656-bvgqh Total loading time: 0 Render date: 2025-11-01T01:29:28.183Z Has data issue: false hasContentIssue false

The Dynamical Mass of the Large Magellanic Cloud

Published online by Cambridge University Press:  30 October 2025

Laura L. Watkins*
Affiliation:
AURA for the European Space Agency (ESA), Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21211, USA
Roeland P. van der Marel
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21211, USA
Paul Bennet
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21211, USA

Abstract

In this contribution, we describe how we have used positions and velocities of 30 globular clusters in the Large Magellanic Cloud (LMC) to estimate its anisotropy and mass within 13 kpc, and then how we have used these estimates to extrapolate its virial mass. This is the first time that this family of mass estimation methods has been applied to the LMC. We also compare our estimate against other estimates of the LMC’s mass via different methods and discuss the broader context of our results.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57, doi: 10.1088/0004-637X/770/1/57 CrossRefGoogle Scholar
Bennet, P., Alfaro-Cuello, M., del Pino, A., et al. 2022, ApJ, 935, 149, doi: 10.3847/1538-4357/ac81c9 CrossRefGoogle Scholar
Boubert, D., Erkal, D., Evans, N. W., & Izzard, R. G. 2017, MNRAS, 469, 2151, doi: 10.1093/mnras/stx848 CrossRefGoogle Scholar
del Pino, A., Libralato, M., van der Marel, R. P., et al. 2022, ApJ, 933, 76, doi: 10.3847/1538-4357/ac70cf CrossRefGoogle Scholar
Erkal, D., Belokurov, V., Laporte, C. F. P., et al. 2019, MNRAS, 487, 2685, doi: 10.1093/mnras/stz1371 CrossRefGoogle Scholar
Erkal, D., Deason, A. J., Belokurov, V., et al. 2021, MNRAS, 506, 2677, doi: 10.1093/mnras/stab1828 CrossRefGoogle Scholar
Collaboration, Gaia, et al. 2021, A&A, 649, A7, doi: 10.1051/0004-6361/202039588 CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J., & Alcock, C. 2013, ApJ, 764, 161, doi: 10.1088/0004-637X/764/2/161 CrossRefGoogle Scholar
Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102, doi: 10.1088/0004-637X/740/2/102 CrossRefGoogle Scholar
Laporte, C. F. P., Gómez, F. A., Besla, G., Johnston, K. V., & Garavito-Camargo, N. 2018, MNRAS, 473, 1218, doi: 10.1093/mnras/stx2146 CrossRefGoogle Scholar
Peñarrubia, J., Gómez, F. A., Besla, G., Erkal, D., & Ma, Y.-Z. 2016, MNRAS, 456, L54, doi: 10.1093/mnrasl/slv160 CrossRefGoogle Scholar
Shipp, N., Erkal, D., Drlica-Wagner, A., et al. 2021, ApJ, 923, 149, doi: 10.3847/1538-4357/ac2e93 CrossRefGoogle Scholar
van der Marel, R. P., & Kallivayalil, N. 2014, ApJ, 781, 121, doi: 10.1088/0004-637X/781/2/121 CrossRefGoogle Scholar
Vasiliev, E., Belokurov, V., & Erkal, D. 2021, MNRAS, 501, 2279, doi: 10.1093/mnras/staa3673 CrossRefGoogle Scholar
Watkins, L. L., Evans, N. W., & An, J. H. 2010, MNRAS, 406, 264, doi: 10.1111/j.1365-2966.2010.16708.x CrossRefGoogle Scholar