Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-09-07T05:58:44.102Z Has data issue: false hasContentIssue false

Deep learning and numerical simulations to infer the evolution of MaNGA galaxies

Published online by Cambridge University Press:  01 August 2025

Regina Sarmiento
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
Johan H. Knapen*
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
Marc Huertas-Company
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain Observatoire de Paris, LERMA, PSL University, 61 avenue de l’Observatoire, F-75014 Paris, France
Annalisa Pillepich
Affiliation:
Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany
Sebastián F. Sánchez
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, CDMX 04510, Mexico
Héctor Ibarra-Medel
Affiliation:
Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Chile
Eduardo Lacerda
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, CDMX 04510, Mexico

Abstract

As surveys grow, the challenge is how to explore and interpret the increasing quantity of data. Integral field spectroscopic (IFS) galaxy surveys are a good example of how data have grown in complexity and in volume. In order to find complex relations between the spatially resolved structures of galaxies and their accretion histories, we combine IFS high-dimensionality data, deep learning and numerical simulations to infer the evolutionary paths of galaxies. In this work we generate 10,000 simulated galaxies from TNG50 hydro-cosmological simulation to compare with the 10,000 galaxies observed in MaNGA, thus generating a mock MaNGA sample. We then analyse how the simulated galaxies reproduce the properties of MaNGA galaxies and study how the evolutionary paths of the mock galaxies relate to their observable properties. We finish by outlining our next steps which include using contrastive learning.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bundy, K., et al. 2015, ApJ, 798, 7 Google Scholar
Ibarra-Medel, H. J., et al. 2019, MNRAS, 483, 4525 Google Scholar
Lacerda, E. A. D., et al. 2022, arXiv:Astrophysics - Astrophysics of Galaxies, 97, 101895 Google Scholar
Nelson, D., et al. 2019, MNRAS, 490, 32343261 Google Scholar
Pillepich, A., et al. 2019, MNRAS, 490, 31963233 Google Scholar
Sánchez, S., et al. 2016a, RMAA, 52, 2153 Google Scholar
Sánchez, S., et al. 2016b, RMAA, 52, 171220 Google Scholar
Sarmiento, R., et al. 2021, ApJ, 921, 177 CrossRefGoogle Scholar