No CrossRef data available.
Published online by Cambridge University Press: 10 November 2023
We investigate the equation  $D=x^4-y^4$ in field extensions. As an application, for a prime number p, we find solutions to
$D=x^4-y^4$ in field extensions. As an application, for a prime number p, we find solutions to  $p=x^4-y^4$ if
$p=x^4-y^4$ if  $p\equiv 11$ (mod 16) and
$p\equiv 11$ (mod 16) and  $p^3=x^4-y^4$ if
$p^3=x^4-y^4$ if  $p\equiv 3$ (mod 16) in all cubic extensions of
$p\equiv 3$ (mod 16) in all cubic extensions of  $\mathbb{Q}(i)$.
$\mathbb{Q}(i)$.
 $x^4- q^4=py^r$, Publ. Math. Debrecen 79 (2011), 269–282.CrossRefGoogle Scholar
$x^4- q^4=py^r$, Publ. Math. Debrecen 79 (2011), 269–282.CrossRefGoogle Scholar $x^4-y^4$ revisited, Bull. Aust. Math. Soc. 76 (2007), 133–136.Google Scholar
$x^4-y^4$ revisited, Bull. Aust. Math. Soc. 76 (2007), 133–136.Google Scholar $x^4-y^4 = z^p$ and
$x^4-y^4 = z^p$ and  $x^4-1 = dy^q$, C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 23–27.Google Scholar
$x^4-1 = dy^q$, C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 23–27.Google Scholar $x^4-y^4$, Bull. Aust. Math. Soc. 76 (2007), 133–136.CrossRefGoogle Scholar
$x^4-y^4$, Bull. Aust. Math. Soc. 76 (2007), 133–136.CrossRefGoogle Scholar $x^4-y^4= z^p$, C. R. Math. Rep. Acad. Sci. Canada 15(6) (1993), 286–290.Google Scholar
$x^4-y^4= z^p$, C. R. Math. Rep. Acad. Sci. Canada 15(6) (1993), 286–290.Google Scholar $x^4-q^4=py^5$, Ital. J. Pure Appl. Math. 26 (2009), 103–108.Google Scholar
$x^4-q^4=py^5$, Ital. J. Pure Appl. Math. 26 (2009), 103–108.Google Scholar