Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
An AF-algebra is assigned to each cusp form f of weight 2; we study properties of this operator algebra when f is a Hecke eigenform.
1.Bauer, M., A characterization of uniquely ergodic interval exchange maps in terms of the Jacobi-Perron algorithm, Bol. Soc. Bras. Mat.27 (1996), 109–128.CrossRefGoogle Scholar
2
2.Bernstein, L., The Jacobi-Perron algorithm, its theory and applications, Lecture Notes in Mathematics, Volume 207 (Springer, 1971).CrossRefGoogle Scholar
3
3.Borevich, Z. I. and Shafarevich, I. R., Number theory (Academic Press, New York, 1966).Google Scholar
4
4.Diamond, F. and Shurman, J., A first course in modular forms, Graduate Texts in Mathematics, Volume 228 (Springer, 2005).Google Scholar
5
5.Effros, E. G., Dimensions and C*-algebras, CBMS Regional Conference Series in Mathematics, Volume 46 (American Mathematical Society, Providence, RI, 1981).CrossRefGoogle Scholar
6
6.Hubbard, J. and Masur, H., Quadratic differentials and foliations, Acta Math.142 (1979), 221–274.CrossRefGoogle Scholar
7
7.Perron, O., Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Annalen64 (1907), 1–76.CrossRefGoogle Scholar