1 Introduction
1.1 Background
 It is well known that the  $N$-linear
$N$-linear  $(N\geqslant 1)$ Fourier multiplier operator
$(N\geqslant 1)$ Fourier multiplier operator  $T_{m}$ is defined as follows:
$T_{m}$ is defined as follows: 
 $$\begin{eqnarray}T_{m}(f_{1},\ldots ,f_{N})(x)=\frac{1}{(2\unicode[STIX]{x1D70B})^{nN}}\int _{(\mathbb{R}^{n})^{N}}e^{ix\cdot (\unicode[STIX]{x1D709}_{1}+\cdots +\unicode[STIX]{x1D709}_{N})}m(\unicode[STIX]{x1D709})\widehat{f_{1}}(\unicode[STIX]{x1D709}_{1})\cdots \widehat{f_{N}}(\unicode[STIX]{x1D709}_{N})\,d\unicode[STIX]{x1D709},\end{eqnarray}$$
$$\begin{eqnarray}T_{m}(f_{1},\ldots ,f_{N})(x)=\frac{1}{(2\unicode[STIX]{x1D70B})^{nN}}\int _{(\mathbb{R}^{n})^{N}}e^{ix\cdot (\unicode[STIX]{x1D709}_{1}+\cdots +\unicode[STIX]{x1D709}_{N})}m(\unicode[STIX]{x1D709})\widehat{f_{1}}(\unicode[STIX]{x1D709}_{1})\cdots \widehat{f_{N}}(\unicode[STIX]{x1D709}_{N})\,d\unicode[STIX]{x1D709},\end{eqnarray}$$ for  $m\in L^{\infty }(\mathbb{R}^{N})$ and
$m\in L^{\infty }(\mathbb{R}^{N})$ and  $f_{1},\ldots ,f_{N}\in {\mathcal{S}}$, where
$f_{1},\ldots ,f_{N}\in {\mathcal{S}}$, where  $x\in \mathbb{R}^{n},\unicode[STIX]{x1D709}=(\unicode[STIX]{x1D709}_{1},\ldots ,\unicode[STIX]{x1D709}_{m})\in (\mathbb{R}^{n})^{N}.$ By using paraproducts, Coifman and Meyer [Reference Coifman and Meyer8] proved that if
$x\in \mathbb{R}^{n},\unicode[STIX]{x1D709}=(\unicode[STIX]{x1D709}_{1},\ldots ,\unicode[STIX]{x1D709}_{m})\in (\mathbb{R}^{n})^{N}.$ By using paraproducts, Coifman and Meyer [Reference Coifman and Meyer8] proved that if  $m$ is a bounded function on
$m$ is a bounded function on  $\mathbb{R}^{nN}\backslash \{0\}$ and it satisfies that
$\mathbb{R}^{nN}\backslash \{0\}$ and it satisfies that 
 $$\begin{eqnarray}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}_{1}}^{\unicode[STIX]{x1D6FC}_{1}}\cdots \unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}_{N}}^{\unicode[STIX]{x1D6FC}_{N}}m(\unicode[STIX]{x1D709}_{1},\ldots ,\unicode[STIX]{x1D709}_{N})|\leqslant C_{\unicode[STIX]{x1D6FC}}(|\unicode[STIX]{x1D709}_{1}|+\cdots +|\unicode[STIX]{x1D709}_{m}|)^{-(|\unicode[STIX]{x1D6FC}_{1}|+\cdots +|\unicode[STIX]{x1D6FC}_{N}|)},\end{eqnarray}$$
$$\begin{eqnarray}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}_{1}}^{\unicode[STIX]{x1D6FC}_{1}}\cdots \unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}_{N}}^{\unicode[STIX]{x1D6FC}_{N}}m(\unicode[STIX]{x1D709}_{1},\ldots ,\unicode[STIX]{x1D709}_{N})|\leqslant C_{\unicode[STIX]{x1D6FC}}(|\unicode[STIX]{x1D709}_{1}|+\cdots +|\unicode[STIX]{x1D709}_{m}|)^{-(|\unicode[STIX]{x1D6FC}_{1}|+\cdots +|\unicode[STIX]{x1D6FC}_{N}|)},\end{eqnarray}$$ away from the origin for  $|\unicode[STIX]{x1D6FC}_{1}|+\cdots +|\unicode[STIX]{x1D6FC}_{N}|\leqslant L$ with
$|\unicode[STIX]{x1D6FC}_{1}|+\cdots +|\unicode[STIX]{x1D6FC}_{N}|\leqslant L$ with  $L$ sufficiently large, then
$L$ sufficiently large, then  $T_{m}$ is bounded from
$T_{m}$ is bounded from  $L^{p_{1}}(\mathbb{R}^{n})\times \cdots \times L^{p_{N}}(\mathbb{R}^{n})$ to
$L^{p_{1}}(\mathbb{R}^{n})\times \cdots \times L^{p_{N}}(\mathbb{R}^{n})$ to  $L^{p}(\mathbb{R}^{n})$. By decreasing the smoothness condition of
$L^{p}(\mathbb{R}^{n})$. By decreasing the smoothness condition of  $T_{m}$ in [Reference Coifman and Meyer8], Tomita [Reference Tomita25] gave a Hörmander type theorem for
$T_{m}$ in [Reference Coifman and Meyer8], Tomita [Reference Tomita25] gave a Hörmander type theorem for  $T_{m}$. Later on, Fujita and Tomita [Reference Fujita and Tomita14] demonstrated a weighted version of the results in [Reference Tomita25] for
$T_{m}$. Later on, Fujita and Tomita [Reference Fujita and Tomita14] demonstrated a weighted version of the results in [Reference Tomita25] for  $T_{m}$ under the Hörmander condition with classical
$T_{m}$ under the Hörmander condition with classical  $A_{p}$ weights. In 2013, Bui and Duong [Reference Bui and Duong2] established the norm inequality for a class of Calderón–Zygmund singular integral operators with kernels satisfying some mild regularity condition. As an application, they [Reference Bui and Duong2] obtained the multiple weighted norm inequality of multilinear Fourier multipliers. For more works about multilinear Fourier multipliers, we refer the reader to [Reference Grafakos and Si15, Reference Li and Sun20, Reference Li, Xue and Yabuta21]. Recently, Si, Xue and Yabuta [Reference Zengyan, Xue and Yabuta28] considered the bilinear square-function Fourier multiplier operator defined as follows,
$A_{p}$ weights. In 2013, Bui and Duong [Reference Bui and Duong2] established the norm inequality for a class of Calderón–Zygmund singular integral operators with kernels satisfying some mild regularity condition. As an application, they [Reference Bui and Duong2] obtained the multiple weighted norm inequality of multilinear Fourier multipliers. For more works about multilinear Fourier multipliers, we refer the reader to [Reference Grafakos and Si15, Reference Li and Sun20, Reference Li, Xue and Yabuta21]. Recently, Si, Xue and Yabuta [Reference Zengyan, Xue and Yabuta28] considered the bilinear square-function Fourier multiplier operator defined as follows, 
 $$\begin{eqnarray}\displaystyle \mathfrak{T}_{m}(f_{1},f_{2})(x)=\Big(\int _{0}^{\infty }|T_{m}^{t}(f_{1},f_{2})(x)|^{2}\frac{dt}{t}\Big)^{1/2}, & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \mathfrak{T}_{m}(f_{1},f_{2})(x)=\Big(\int _{0}^{\infty }|T_{m}^{t}(f_{1},f_{2})(x)|^{2}\frac{dt}{t}\Big)^{1/2}, & & \displaystyle \nonumber\end{eqnarray}$$where
 $$\begin{eqnarray}T_{m}^{t}(f_{1},f_{2})(x)=\int _{(\mathbb{R}^{n})^{2}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}.\end{eqnarray}$$
$$\begin{eqnarray}T_{m}^{t}(f_{1},f_{2})(x)=\int _{(\mathbb{R}^{n})^{2}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}.\end{eqnarray}$$ By studying a class of multilinear square functions, the authors in [Reference Zengyan, Xue and Yabuta28] demonstrated the multiple weighted norm inequality for  $\mathfrak{T}_{m}$ and obtained some weighted estimates for the commutators of
$\mathfrak{T}_{m}$ and obtained some weighted estimates for the commutators of  $\mathfrak{T}_{m}$ with
$\mathfrak{T}_{m}$ with  $BMO$ functions.
$BMO$ functions.
Remark 1.1. Note that if  $t=1$, then
$t=1$, then  $T_{m}^{1}$ coincides with the well-known bilinear Fourier multiplier operator defined and studied in [Reference Coifman and Meyer8]. The operator studied in [Reference Zengyan, Xue and Yabuta28] can be looked as a vector valued or square version of bilinear Fourier multiplier operator
$T_{m}^{1}$ coincides with the well-known bilinear Fourier multiplier operator defined and studied in [Reference Coifman and Meyer8]. The operator studied in [Reference Zengyan, Xue and Yabuta28] can be looked as a vector valued or square version of bilinear Fourier multiplier operator  $T_{m}^{1}$.
$T_{m}^{1}$.
 In this paper, we investigate the boundedness of the following bilinear square-function Fourier multiplier operator  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$, which is associated with the multilinear
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$, which is associated with the multilinear  $g_{\unicode[STIX]{x1D706}}^{\ast }$-function defined in [Reference Shi, Xue and Yabuta23].
$g_{\unicode[STIX]{x1D706}}^{\ast }$-function defined in [Reference Shi, Xue and Yabuta23]. 
 $$\begin{eqnarray}\mathfrak{T}_{\unicode[STIX]{x1D706},m}(f_{1},f_{2})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|T_{m}^{t}(f_{1},f_{2})(x)|^{2}\frac{dt}{t}\Big|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2}.\end{eqnarray}$$
$$\begin{eqnarray}\mathfrak{T}_{\unicode[STIX]{x1D706},m}(f_{1},f_{2})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|T_{m}^{t}(f_{1},f_{2})(x)|^{2}\frac{dt}{t}\Big|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2}.\end{eqnarray}$$ Let  $\vec{f}=(f_{1},f_{2})$ and
$\vec{f}=(f_{1},f_{2})$ and  $K_{t}(x,y_{1},y_{2})=\frac{1}{t^{2n}}\check{m}\big(\frac{x-y_{1}}{t},\frac{x-y_{2}}{t}\big)$. Then,
$K_{t}(x,y_{1},y_{2})=\frac{1}{t^{2n}}\check{m}\big(\frac{x-y_{1}}{t},\frac{x-y_{2}}{t}\big)$. Then,  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ can be written as
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ can be written as
 $$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\int _{(\mathbb{R}^{n})^{2}}K_{t}(x,y_{1},y_{2})f_{1}(y_{1})f_{2}(y_{2})\,dy_{1}\,dy_{2}\Big|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\int _{(\mathbb{R}^{n})^{2}}K_{t}(x,y_{1},y_{2})f_{1}(y_{1})f_{2}(y_{2})\,dy_{1}\,dy_{2}\Big|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2}.\nonumber\end{eqnarray}$$ The commutator of  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is defined by
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is defined by 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}^{\vec{b}}(\vec{f})(x)=\mathop{\sum }_{i=1}^{2}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\int _{(\mathbb{R}^{n})^{2}}(b_{i}(x)-b_{i}(y))\nonumber\\ \displaystyle & & \displaystyle \quad \times \,K_{t}(x,y_{1},y_{2})f_{1}(y_{1})f_{2}(y_{2})\,dy_{1}\,dy_{2}\Big|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2},\quad \vec{b}=(b_{1},b_{2}).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}^{\vec{b}}(\vec{f})(x)=\mathop{\sum }_{i=1}^{2}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\int _{(\mathbb{R}^{n})^{2}}(b_{i}(x)-b_{i}(y))\nonumber\\ \displaystyle & & \displaystyle \quad \times \,K_{t}(x,y_{1},y_{2})f_{1}(y_{1})f_{2}(y_{2})\,dy_{1}\,dy_{2}\Big|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2},\quad \vec{b}=(b_{1},b_{2}).\nonumber\end{eqnarray}$$Remark 1.2. In [Reference Shi, Xue and Yabuta23], the authors studied a class of multilinear  $g_{\unicode[STIX]{x1D706}}^{\ast }$ function associated with convolution type kernels. The endpoint
$g_{\unicode[STIX]{x1D706}}^{\ast }$ function associated with convolution type kernels. The endpoint  $L^{1}\times \cdots \times L^{1}\rightarrow L^{1/m,\infty }$ boundedness, and multiple weighted boundedness for the multilinear
$L^{1}\times \cdots \times L^{1}\rightarrow L^{1/m,\infty }$ boundedness, and multiple weighted boundedness for the multilinear  $g_{\unicode[STIX]{x1D706}}^{\ast }$ function were established. Later, in [Reference Xue and Yan27] the same results were extended to kernels of nonconvolution type. For more previous nice works of the classical
$g_{\unicode[STIX]{x1D706}}^{\ast }$ function were established. Later, in [Reference Xue and Yan27] the same results were extended to kernels of nonconvolution type. For more previous nice works of the classical  $g_{\unicode[STIX]{x1D706}}^{\ast }$ function, one may see the famous works of Stein [Reference Stein24], Fefferman [Reference Fefferman13], Muckenhoupt and Wheeden [Reference Muckenhoupt and Wheeden22].
$g_{\unicode[STIX]{x1D706}}^{\ast }$ function, one may see the famous works of Stein [Reference Stein24], Fefferman [Reference Fefferman13], Muckenhoupt and Wheeden [Reference Muckenhoupt and Wheeden22].
 Our object of investigation in this paper is the multilinear square-function Fourier multiplier operator associated with the multilinear  $g_{\unicode[STIX]{x1D706}}^{\ast }$ function. Before stating our main results, we need to introduce some more notations and definitions. For
$g_{\unicode[STIX]{x1D706}}^{\ast }$ function. Before stating our main results, we need to introduce some more notations and definitions. For  $m$ exponents
$m$ exponents  $p_{1},\ldots ,p_{m}$, denote by
$p_{1},\ldots ,p_{m}$, denote by  $p$ the number given by
$p$ the number given by  $1/p=1/p_{1}+\cdots +1/p_{m}$, and
$1/p=1/p_{1}+\cdots +1/p_{m}$, and  $\vec{P}$ for the vector
$\vec{P}$ for the vector  $\vec{P}=(p_{1},\ldots ,p_{m})$. For any real number
$\vec{P}=(p_{1},\ldots ,p_{m})$. For any real number  $r>1$, the vector
$r>1$, the vector  $\vec{P}/r$ is given by
$\vec{P}/r$ is given by  $\vec{P}/r=(p_{1}/r,\ldots ,p_{m}/r).$ The following multiple weights classes
$\vec{P}/r=(p_{1}/r,\ldots ,p_{m}/r).$ The following multiple weights classes  $A_{\vec{P}}$ were introduced and studied by Lerner et al. [Reference Lerner, Ombrosi, Pérez, Torres and Trujillo-González19].
$A_{\vec{P}}$ were introduced and studied by Lerner et al. [Reference Lerner, Ombrosi, Pérez, Torres and Trujillo-González19].
Definition 1.3. (Multiple weights [Reference Lerner, Ombrosi, Pérez, Torres and Trujillo-González19].) Let  $1\leqslant p_{1},\ldots ,p_{m}<\infty ,1/p=1/p_{1}+\cdots +1/p_{m}.$ Given
$1\leqslant p_{1},\ldots ,p_{m}<\infty ,1/p=1/p_{1}+\cdots +1/p_{m}.$ Given  $\vec{\unicode[STIX]{x1D714}}=(\unicode[STIX]{x1D714}_{1},\ldots ,\unicode[STIX]{x1D714}_{m})$, set
$\vec{\unicode[STIX]{x1D714}}=(\unicode[STIX]{x1D714}_{1},\ldots ,\unicode[STIX]{x1D714}_{m})$, set  $\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}}=\prod _{i=1}^{m}\unicode[STIX]{x1D714}_{i}^{p/p_{i}}.$ We say that
$\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}}=\prod _{i=1}^{m}\unicode[STIX]{x1D714}_{i}^{p/p_{i}}.$ We say that  $\vec{\unicode[STIX]{x1D714}}$ satisfies the
$\vec{\unicode[STIX]{x1D714}}$ satisfies the  $A_{\vec{P}}$ condition if
$A_{\vec{P}}$ condition if 
 $$\begin{eqnarray}\sup _{Q}\Big(\frac{1}{|Q|}\int _{Q}\mathop{\prod }_{i=1}^{m}\unicode[STIX]{x1D714}_{i}^{p/p_{i}}\Big)^{1/p}\mathop{\prod }_{i=1}^{m}\Big(\frac{1}{|Q|}\int _{Q}\unicode[STIX]{x1D714}_{i}^{1-p_{i}^{\prime }}\Big)^{1/p_{i}^{\prime }}<\infty ,\end{eqnarray}$$
$$\begin{eqnarray}\sup _{Q}\Big(\frac{1}{|Q|}\int _{Q}\mathop{\prod }_{i=1}^{m}\unicode[STIX]{x1D714}_{i}^{p/p_{i}}\Big)^{1/p}\mathop{\prod }_{i=1}^{m}\Big(\frac{1}{|Q|}\int _{Q}\unicode[STIX]{x1D714}_{i}^{1-p_{i}^{\prime }}\Big)^{1/p_{i}^{\prime }}<\infty ,\end{eqnarray}$$ when  $p_{i}=1,((1/|Q|)\int _{Q}\unicode[STIX]{x1D714}_{i}^{1-p_{i}^{\prime }})^{1/p_{i}^{\prime }}$ is understood as
$p_{i}=1,((1/|Q|)\int _{Q}\unicode[STIX]{x1D714}_{i}^{1-p_{i}^{\prime }})^{1/p_{i}^{\prime }}$ is understood as  $(\inf _{Q}\unicode[STIX]{x1D714}_{i})^{-1}.$
$(\inf _{Q}\unicode[STIX]{x1D714}_{i})^{-1}.$
 Throughout this paper, we always assume that  $m\in L^{\infty }((\mathbb{R}^{n})^{2})$ and satisfies the conditions
$m\in L^{\infty }((\mathbb{R}^{n})^{2})$ and satisfies the conditions 
 $$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\end{eqnarray}$$
$$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\end{eqnarray}$$and
 $$\begin{eqnarray}|m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-s+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\end{eqnarray}$$
$$\begin{eqnarray}|m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-s+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\end{eqnarray}$$ for some  $\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}>0$,
$\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}>0$,  $|\unicode[STIX]{x1D6FC}|\leqslant s$ and
$|\unicode[STIX]{x1D6FC}|\leqslant s$ and  $n+1\leqslant s\leqslant 2n$ for some integer
$n+1\leqslant s\leqslant 2n$ for some integer  $s.$
$s.$
Remark 1.4. Note that, for the same  $\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}$,
$\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}$,  $\unicode[STIX]{x1D6FC}$ and
$\unicode[STIX]{x1D6FC}$ and  $s$, conditions (1.1) and (1.2) are more weaker than the following condition:
$s$, conditions (1.1) and (1.2) are more weaker than the following condition: 
 $$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \left\{\begin{array}{@{}l@{}}\displaystyle (|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-s-|\unicode[STIX]{x1D6FC}|-\unicode[STIX]{x1D700}_{2}},\quad ~|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|>1;\\ \displaystyle (|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}},\quad ~0<|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|\leqslant 1.\end{array}\right.\end{eqnarray}$$
$$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \left\{\begin{array}{@{}l@{}}\displaystyle (|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-s-|\unicode[STIX]{x1D6FC}|-\unicode[STIX]{x1D700}_{2}},\quad ~|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|>1;\\ \displaystyle (|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}},\quad ~0<|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|\leqslant 1.\end{array}\right.\end{eqnarray}$$ Moreover, for  $|\unicode[STIX]{x1D6FC}|\leqslant s$, condition (1.3) is equivalent with
$|\unicode[STIX]{x1D6FC}|\leqslant s$, condition (1.3) is equivalent with 
 $$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \left\{\begin{array}{@{}l@{}}\displaystyle \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{s+\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}},\quad ~|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|>1;\\[2.0pt] \displaystyle \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{s+\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}},\quad ~0<|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|\leqslant 1.\end{array}\right.\end{eqnarray}$$
$$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\lesssim \left\{\begin{array}{@{}l@{}}\displaystyle \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{s+\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}},\quad ~|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|>1;\\[2.0pt] \displaystyle \frac{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D700}_{1}}}{(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{s+\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}},\quad ~0<|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|\leqslant 1.\end{array}\right.\end{eqnarray}$$These facts show that conditions (1.1) and (1.2) are still more weaker than (1.4), which, in turn, also indicates that our conditions (1.1) and (1.2) are reasonable.
The main results of this paper are:
Theorem 1.1. Let  $s$ be an integer with
$s$ be an integer with  $s\in [n+1,2n]$ and
$s\in [n+1,2n]$ and  $\unicode[STIX]{x1D706}>2s/n+1$,
$\unicode[STIX]{x1D706}>2s/n+1$,  $p_{0}$ be a number satisfying
$p_{0}$ be a number satisfying  $2n/s\leqslant p_{0}\leqslant 2$. Let
$2n/s\leqslant p_{0}\leqslant 2$. Let  $p_{0}\leqslant p_{1},p_{2}<\infty$,
$p_{0}\leqslant p_{1},p_{2}<\infty$,  $1/p=1/p_{1}+1/p_{2}$, and
$1/p=1/p_{1}+1/p_{2}$, and  $\vec{\unicode[STIX]{x1D714}}\in A_{\vec{P}/p_{0}}$. Suppose that
$\vec{\unicode[STIX]{x1D714}}\in A_{\vec{P}/p_{0}}$. Suppose that  $m\in L^{\infty }((\mathbb{R}^{n})^{2})$ satisfies (1.1) and (1.2) and that the bilinear square Fourier multiplier operator
$m\in L^{\infty }((\mathbb{R}^{n})^{2})$ satisfies (1.1) and (1.2) and that the bilinear square Fourier multiplier operator  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from  $L^{q_{1}}\times L^{q_{2}}$ into
$L^{q_{1}}\times L^{q_{2}}$ into  $L^{q,\infty }$, for any
$L^{q,\infty }$, for any  $p_{0}<q_{1},q_{2}$ and
$p_{0}<q_{1},q_{2}$ and  $1/q=1/q_{1}+1/q_{2}$. Then the following weighted estimates hold.
$1/q=1/q_{1}+1/q_{2}$. Then the following weighted estimates hold.
- (i) If  $p_{1},p_{2}>p_{0}$, then $p_{1},p_{2}>p_{0}$, then $||\mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})||_{L^{p}(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||f_{1}||_{L^{p_{1}}(\unicode[STIX]{x1D714}_{1})}||f_{2}||_{L^{p_{2}}(\unicode[STIX]{x1D714}_{2})}$. $||\mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})||_{L^{p}(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||f_{1}||_{L^{p_{1}}(\unicode[STIX]{x1D714}_{1})}||f_{2}||_{L^{p_{2}}(\unicode[STIX]{x1D714}_{2})}$.
- (ii) If  $p_{0}>2n/s$ and $p_{0}>2n/s$ and $p_{1}=p_{0}$ or $p_{1}=p_{0}$ or $p_{2}=p_{0}$, then $p_{2}=p_{0}$, then $$\begin{eqnarray}||\mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})||_{L^{p,\infty }(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||f_{1}||_{L^{p_{1}}(\unicode[STIX]{x1D714}_{1})}||f_{2}||_{L^{p_{2}}(\unicode[STIX]{x1D714}_{2})}.\end{eqnarray}$$ $$\begin{eqnarray}||\mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})||_{L^{p,\infty }(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||f_{1}||_{L^{p_{1}}(\unicode[STIX]{x1D714}_{1})}||f_{2}||_{L^{p_{2}}(\unicode[STIX]{x1D714}_{2})}.\end{eqnarray}$$
Theorem 1.2. Let  $s$,
$s$,  $\unicode[STIX]{x1D706}$,
$\unicode[STIX]{x1D706}$,  $p_{0},p_{1},p_{2},p$,
$p_{0},p_{1},p_{2},p$,  $\vec{\unicode[STIX]{x1D714}}$,
$\vec{\unicode[STIX]{x1D714}}$,  $m$ and
$m$ and  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ be the same as in Theorem 1.1. Then the following weighted estimates hold for the commutators of
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ be the same as in Theorem 1.1. Then the following weighted estimates hold for the commutators of  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})$.
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})$.
- (i) If  $p_{1},p_{2}>p_{0}$, then for any $p_{1},p_{2}>p_{0}$, then for any $\vec{b}\in BMO^{2}$, it holds that where $\vec{b}\in BMO^{2}$, it holds that where $$\begin{eqnarray}||\mathfrak{T}_{\unicode[STIX]{x1D706},m}^{\vec{b}}(\vec{f})||_{L^{p}(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||\vec{b}||_{BMO}||f_{1}||_{L^{p_{1}}(\unicode[STIX]{x1D714}_{1})}||f_{2}||_{L^{p_{2}}(\unicode[STIX]{x1D714}_{2})},\end{eqnarray}$$ $$\begin{eqnarray}||\mathfrak{T}_{\unicode[STIX]{x1D706},m}^{\vec{b}}(\vec{f})||_{L^{p}(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||\vec{b}||_{BMO}||f_{1}||_{L^{p_{1}}(\unicode[STIX]{x1D714}_{1})}||f_{2}||_{L^{p_{2}}(\unicode[STIX]{x1D714}_{2})},\end{eqnarray}$$ $||\vec{b}||_{BMO}=\max _{j}||b_{j}||_{BMO}$. $||\vec{b}||_{BMO}=\max _{j}||b_{j}||_{BMO}$.
- (ii) Let  $\vec{\unicode[STIX]{x1D714}}\in A_{(1,1)}$ and $\vec{\unicode[STIX]{x1D714}}\in A_{(1,1)}$ and $\vec{b}\in BMO^{2}.$ Then, there exists a constant $\vec{b}\in BMO^{2}.$ Then, there exists a constant $C$ (depending on $C$ (depending on $\vec{b}$) such that where $\vec{b}$) such that where $$\begin{eqnarray}\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}}\big(\big\{x\in \mathbb{R}^{n}:|\mathfrak{T}_{\unicode[STIX]{x1D706},m}^{\vec{b}}(\vec{f})(x)|>t^{2}\big\}\big)\leqslant C\mathop{\prod }_{j=1}^{2}\Big(\int _{\mathbb{R}^{n}}\unicode[STIX]{x1D6F7}\Big(\frac{|f_{j}(x)|}{t}\Big)\unicode[STIX]{x1D714}_{j}(x)\Big)^{1/2},\end{eqnarray}$$ $$\begin{eqnarray}\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}}\big(\big\{x\in \mathbb{R}^{n}:|\mathfrak{T}_{\unicode[STIX]{x1D706},m}^{\vec{b}}(\vec{f})(x)|>t^{2}\big\}\big)\leqslant C\mathop{\prod }_{j=1}^{2}\Big(\int _{\mathbb{R}^{n}}\unicode[STIX]{x1D6F7}\Big(\frac{|f_{j}(x)|}{t}\Big)\unicode[STIX]{x1D714}_{j}(x)\Big)^{1/2},\end{eqnarray}$$ $\unicode[STIX]{x1D6F7}(t)=t^{p_{0}}(1+\log ^{+}t)^{p_{0}}$, and the function $\unicode[STIX]{x1D6F7}(t)=t^{p_{0}}(1+\log ^{+}t)^{p_{0}}$, and the function $\log ^{+}t$ is defined by $\log ^{+}t$ is defined by $\log ^{+}t=\log t$, if $\log ^{+}t=\log t$, if $t>1$, otherwise $t>1$, otherwise $\log ^{+}t=0$. $\log ^{+}t=0$.
 The article is organized as follows. Proof of Theorems 1.1 and 1.2 will be shown in Section 2. In Section 3, we give an example to show that the assumption that  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from  $L^{q_{1}}\times L^{q_{2}}$ into
$L^{q_{1}}\times L^{q_{2}}$ into  $L^{q,\infty }$ in Theorems 1.1 and 1.2 is reasonable.
$L^{q,\infty }$ in Theorems 1.1 and 1.2 is reasonable.
2 Proofs of Theorems 1.1 and 1.2
This section will be devoted to prove Theorems 1.1 and 1.2. The following two propositions provide a foundation for our proofs.
2.1 Two key propositions
Proposition 2.1. Let  $s\in \mathbb{N}$ satisfy
$s\in \mathbb{N}$ satisfy  $n+1\leqslant s\leqslant 2n$. Suppose
$n+1\leqslant s\leqslant 2n$. Suppose  $m\in L^{\infty }((\mathbb{R}^{n})^{2})$ satisfies (1.1) and (1.2). Then, for any
$m\in L^{\infty }((\mathbb{R}^{n})^{2})$ satisfies (1.1) and (1.2). Then, for any  $2n/s<p\leqslant 2$,
$2n/s<p\leqslant 2$,  $\unicode[STIX]{x1D706}>2s/n+1$, there exist
$\unicode[STIX]{x1D706}>2s/n+1$, there exist  $C>0$ and
$C>0$ and  $\unicode[STIX]{x1D6FF}>n/p$, such that
$\unicode[STIX]{x1D6FF}>n/p$, such that 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q)}\int _{S_{k}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{x-z-y_{1}}{t},\frac{x-z-y_{2}}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}\Big(\frac{\bar{x}-y_{1}}{t},\frac{\bar{x}-y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{|x-\bar{x}|^{2(\unicode[STIX]{x1D6FF}-n/p)}}{|Q|^{2\unicode[STIX]{x1D6FF}/n}}2^{-2\unicode[STIX]{x1D6FF}\max (j,k)}\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q)}\int _{S_{k}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{x-z-y_{1}}{t},\frac{x-z-y_{2}}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}\Big(\frac{\bar{x}-y_{1}}{t},\frac{\bar{x}-y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{|x-\bar{x}|^{2(\unicode[STIX]{x1D6FF}-n/p)}}{|Q|^{2\unicode[STIX]{x1D6FF}/n}}2^{-2\unicode[STIX]{x1D6FF}\max (j,k)}\end{eqnarray}$$ for all balls  $Q$, all
$Q$, all  $x,\bar{x}\in (1/2)Q$ and
$x,\bar{x}\in (1/2)Q$ and  $(j,k)\neq (0,0)$.
$(j,k)\neq (0,0)$.
Proof. For convenience, we denote the left-hand side of (2.1) by  $A_{j,k}(m,Q)(x,\bar{x})$. Let
$A_{j,k}(m,Q)(x,\bar{x})$. Let  $u=ax$
$u=ax$ $(a>0)$,
$(a>0)$,  $Q=B(x_{0},R)$,
$Q=B(x_{0},R)$,  $v=az$ and
$v=az$ and  $\unicode[STIX]{x1D70F}=at$, we may get
$\unicode[STIX]{x1D70F}=at$, we may get 
 $$\begin{eqnarray}\displaystyle A_{j,k}(m,Q)(x,\bar{x}) & = & \displaystyle a^{1/2-2n/p^{\prime }}\Big(\int _{S_{j}(Q^{a})}\int _{S_{k}(Q^{a})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{at}{|v|+at}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{x^{a}-v-u_{1}}{at},~~~\frac{x^{a}-v-u_{2}}{at}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{\bar{x}^{a}-u_{1}}{at},\frac{\bar{x}^{a}-u_{2}}{at}\Big)\Big|^{2}\frac{dvdt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,du_{1}\,du_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & = & \displaystyle a^{2n/p}\Big(\int _{S_{j}(Q^{a})}\int _{S_{k}(Q^{a})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{\unicode[STIX]{x1D70F}}{|v|+\unicode[STIX]{x1D70F}}\Big)^{n\unicode[STIX]{x1D706}}\Big|\nonumber\\ \displaystyle & & \displaystyle \times \,\check{m}\Big(\frac{x^{a}-v-u_{1}}{\unicode[STIX]{x1D70F}},\frac{x^{a}-v-u_{2}}{\unicode[STIX]{x1D70F}}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{\bar{x}^{a}-u_{1}}{\unicode[STIX]{x1D70F}},\frac{\bar{x}^{a}-u_{2}}{\unicode[STIX]{x1D70F}}\Big)\Big|^{2}\frac{dvd\unicode[STIX]{x1D70F}}{\unicode[STIX]{x1D70F}^{4n+1}}\Big)^{p^{\prime }/2}\,du_{1}\,du_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & = & \displaystyle a^{2n/p}A_{j,k}(m,Q^{a})(x^{a},\bar{x}^{a}),\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{j,k}(m,Q)(x,\bar{x}) & = & \displaystyle a^{1/2-2n/p^{\prime }}\Big(\int _{S_{j}(Q^{a})}\int _{S_{k}(Q^{a})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{at}{|v|+at}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{x^{a}-v-u_{1}}{at},~~~\frac{x^{a}-v-u_{2}}{at}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{\bar{x}^{a}-u_{1}}{at},\frac{\bar{x}^{a}-u_{2}}{at}\Big)\Big|^{2}\frac{dvdt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,du_{1}\,du_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & = & \displaystyle a^{2n/p}\Big(\int _{S_{j}(Q^{a})}\int _{S_{k}(Q^{a})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{\unicode[STIX]{x1D70F}}{|v|+\unicode[STIX]{x1D70F}}\Big)^{n\unicode[STIX]{x1D706}}\Big|\nonumber\\ \displaystyle & & \displaystyle \times \,\check{m}\Big(\frac{x^{a}-v-u_{1}}{\unicode[STIX]{x1D70F}},\frac{x^{a}-v-u_{2}}{\unicode[STIX]{x1D70F}}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{\bar{x}^{a}-u_{1}}{\unicode[STIX]{x1D70F}},\frac{\bar{x}^{a}-u_{2}}{\unicode[STIX]{x1D70F}}\Big)\Big|^{2}\frac{dvd\unicode[STIX]{x1D70F}}{\unicode[STIX]{x1D70F}^{4n+1}}\Big)^{p^{\prime }/2}\,du_{1}\,du_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & = & \displaystyle a^{2n/p}A_{j,k}(m,Q^{a})(x^{a},\bar{x}^{a}),\nonumber\end{eqnarray}$$ where  $Q^{a}=B(ax_{0},aR)$,
$Q^{a}=B(ax_{0},aR)$,  $x^{a}=ax$ and
$x^{a}=ax$ and  $\bar{x}^{a}=a\bar{x}$. Thus, if we take
$\bar{x}^{a}=a\bar{x}$. Thus, if we take  $a=1/(2^{\max (j,k)}R)$, it is easy to see that the following estimate implies the desired one.
$a=1/(2^{\max (j,k)}R)$, it is easy to see that the following estimate implies the desired one. 
 $$\begin{eqnarray}\displaystyle A_{j,k}(m,Q^{a})(x^{a},\bar{x}^{a}) & {\lesssim} & \displaystyle \frac{|x^{a}-\bar{x}^{a}|^{2(\unicode[STIX]{x1D6FF}-n/p)}}{|Q^{a}|^{2\unicode[STIX]{x1D6FF}/n}}2^{-2\unicode[STIX]{x1D6FF}\max (j,k)}\nonumber\\ \displaystyle & = & \displaystyle |x^{a}-\bar{x}^{a}|^{2(\unicode[STIX]{x1D6FF}-n/p)}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{j,k}(m,Q^{a})(x^{a},\bar{x}^{a}) & {\lesssim} & \displaystyle \frac{|x^{a}-\bar{x}^{a}|^{2(\unicode[STIX]{x1D6FF}-n/p)}}{|Q^{a}|^{2\unicode[STIX]{x1D6FF}/n}}2^{-2\unicode[STIX]{x1D6FF}\max (j,k)}\nonumber\\ \displaystyle & = & \displaystyle |x^{a}-\bar{x}^{a}|^{2(\unicode[STIX]{x1D6FF}-n/p)}.\end{eqnarray}$$ Since  $x^{a},\bar{x}^{a}\in (1/2)Q^{a}$,
$x^{a},\bar{x}^{a}\in (1/2)Q^{a}$,  $aR=1/2^{\max (j,k)}$. Therefore, in order to prove (2.2), we only need to show (2.1) is true for all balls
$aR=1/2^{\max (j,k)}$. Therefore, in order to prove (2.2), we only need to show (2.1) is true for all balls  $Q$ with radius
$Q$ with radius  $R=1/2^{\max (j,k)}$. Without loss of generality, we may assume
$R=1/2^{\max (j,k)}$. Without loss of generality, we may assume  $|h|=|x-\bar{x}|<1/2$ and
$|h|=|x-\bar{x}|<1/2$ and  $k\geqslant j$ (hence
$k\geqslant j$ (hence  $k\geqslant 1$). Thus, the proof of Proposition 2.1 is reduced to show that
$k\geqslant 1$). Thus, the proof of Proposition 2.1 is reduced to show that 
 $$\begin{eqnarray}A_{j,k}(m,Q)(x,\bar{x})\lesssim |x-\bar{x}|^{2(\unicode[STIX]{x1D6FF}-n/p)},\end{eqnarray}$$
$$\begin{eqnarray}A_{j,k}(m,Q)(x,\bar{x})\lesssim |x-\bar{x}|^{2(\unicode[STIX]{x1D6FF}-n/p)},\end{eqnarray}$$ where  $Q=B(x_{0},2^{-k})$ and
$Q=B(x_{0},2^{-k})$ and  $\unicode[STIX]{x1D6FF}>n/p$.
$\unicode[STIX]{x1D6FF}>n/p$.
 Let  $\unicode[STIX]{x1D6F9}\in {\mathcal{S}}(\mathbb{R}^{2n})$ satisfying
$\unicode[STIX]{x1D6F9}\in {\mathcal{S}}(\mathbb{R}^{2n})$ satisfying  $\operatorname{supp}\unicode[STIX]{x1D6F9}\in \{(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}):1/2\leqslant |\unicode[STIX]{x1D709}|+|\unicode[STIX]{x1D702}|\leqslant 2\}$ and
$\operatorname{supp}\unicode[STIX]{x1D6F9}\in \{(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}):1/2\leqslant |\unicode[STIX]{x1D709}|+|\unicode[STIX]{x1D702}|\leqslant 2\}$ and 
 $$\begin{eqnarray}\mathop{\sum }_{j\in \mathbb{Z}}\unicode[STIX]{x1D6F9}(2^{-j}\unicode[STIX]{x1D709},2^{-j}\unicode[STIX]{x1D702})=1,\quad forall(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})\in (\mathbb{R}^{2n})\setminus \{0\}.\end{eqnarray}$$
$$\begin{eqnarray}\mathop{\sum }_{j\in \mathbb{Z}}\unicode[STIX]{x1D6F9}(2^{-j}\unicode[STIX]{x1D709},2^{-j}\unicode[STIX]{x1D702})=1,\quad forall(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})\in (\mathbb{R}^{2n})\setminus \{0\}.\end{eqnarray}$$Thus, we can write
 $$\begin{eqnarray}\displaystyle m(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})=\mathop{\sum }_{j\in \mathbb{Z}}m_{j}(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}):=\mathop{\sum }_{j\in \mathbb{Z}}\unicode[STIX]{x1D6F9}(2^{-j}\unicode[STIX]{x1D709},2^{-j}\unicode[STIX]{x1D702})m(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}) & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle m(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})=\mathop{\sum }_{j\in \mathbb{Z}}m_{j}(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}):=\mathop{\sum }_{j\in \mathbb{Z}}\unicode[STIX]{x1D6F9}(2^{-j}\unicode[STIX]{x1D709},2^{-j}\unicode[STIX]{x1D702})m(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}) & & \displaystyle \nonumber\end{eqnarray}$$ and hence  $\operatorname{supp}m_{j}\subseteq \{(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}):2^{j-1}\leqslant |\unicode[STIX]{x1D709}|+|\unicode[STIX]{x1D702}|\leqslant 2^{j+1}\}$.
$\operatorname{supp}m_{j}\subseteq \{(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702}):2^{j-1}\leqslant |\unicode[STIX]{x1D709}|+|\unicode[STIX]{x1D702}|\leqslant 2^{j+1}\}$.
Using the change of variables, (2.3) is equivalent to that
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\leqslant C|h|^{2(\unicode[STIX]{x1D6FF}-n/p)},\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\leqslant C|h|^{2(\unicode[STIX]{x1D6FF}-n/p)},\nonumber\end{eqnarray}$$ for  $Q=B(x_{0},2^{-k})$,
$Q=B(x_{0},2^{-k})$,  $h=x-\bar{x}$ and
$h=x-\bar{x}$ and  $Q_{\bar{x}}=Q-\bar{x}$. We prove this in the following three cases.
$Q_{\bar{x}}=Q-\bar{x}$. We prove this in the following three cases.
 (a) The case $2n/p<s<2n/p+1$. Since (1.1) and (1.2) remain valid for any smaller positive number than
$2n/p<s<2n/p+1$. Since (1.1) and (1.2) remain valid for any smaller positive number than  $\unicode[STIX]{x1D700}_{1}$, we may take
$\unicode[STIX]{x1D700}_{1}$, we may take  $\unicode[STIX]{x1D700}_{1}$ sufficiently close to
$\unicode[STIX]{x1D700}_{1}$ sufficiently close to  $s-2n/p$ so that
$s-2n/p$ so that  $0<\unicode[STIX]{x1D700}_{1}<s-2n/p$.
$0<\unicode[STIX]{x1D700}_{1}<s-2n/p$.
 First we introduce  $A_{\ell }$ and
$A_{\ell }$ and  $A_{\ell }(I)$ as follows,
$A_{\ell }(I)$ as follows, 
 $$\begin{eqnarray}\displaystyle A_{\ell } & := & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }};\nonumber\\ \displaystyle A_{\ell }(I) & := & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\!\int _{\mathbb{R}^{n}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }},\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell } & := & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }};\nonumber\\ \displaystyle A_{\ell }(I) & := & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\!\int _{\mathbb{R}^{n}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }},\nonumber\end{eqnarray}$$ where  $I$ is any interval in
$I$ is any interval in  $\mathbb{R}_{+}$, in particular,
$\mathbb{R}_{+}$, in particular,  $I$ could be right half-infinite.
$I$ could be right half-infinite.
In addition, we denote
 $$\begin{eqnarray}\displaystyle & & \displaystyle E_{1}=\{z\in \mathbb{R}^{n}:|z|<t,|z|<1/8\},\qquad E_{2}=\{z\in \mathbb{R}^{n}:|z|<t,1/8\leqslant |z|<3\},\nonumber\\ \displaystyle & & \displaystyle E_{3}=\{z\in \mathbb{R}^{n}:|z|<t,|z|\geqslant 3\},\qquad E_{4}=\{z\in \mathbb{R}^{n}:|z|\geqslant t,|z|<1/8\},\nonumber\\ \displaystyle & & \displaystyle E_{5}=\{z\in \mathbb{R}^{n}:|z|\geqslant t,1/8\leqslant |z|<3\},\qquad E_{6}=\{z\in \mathbb{R}^{n}:|z|\geqslant t,|z|\geqslant 3\},\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle E_{1}=\{z\in \mathbb{R}^{n}:|z|<t,|z|<1/8\},\qquad E_{2}=\{z\in \mathbb{R}^{n}:|z|<t,1/8\leqslant |z|<3\},\nonumber\\ \displaystyle & & \displaystyle E_{3}=\{z\in \mathbb{R}^{n}:|z|<t,|z|\geqslant 3\},\qquad E_{4}=\{z\in \mathbb{R}^{n}:|z|\geqslant t,|z|<1/8\},\nonumber\\ \displaystyle & & \displaystyle E_{5}=\{z\in \mathbb{R}^{n}:|z|\geqslant t,1/8\leqslant |z|<3\},\qquad E_{6}=\{z\in \mathbb{R}^{n}:|z|\geqslant t,|z|\geqslant 3\},\nonumber\end{eqnarray}$$ then we have  $A_{\ell }(I)\leqslant \sum _{i=1}^{6}A_{\ell }^{i}(I)$, where
$A_{\ell }(I)\leqslant \sum _{i=1}^{6}A_{\ell }^{i}(I)$, where 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{i}(I) & := & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{E_{i}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{i}(I) & := & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{E_{i}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}.\nonumber\end{eqnarray}$$ Now, we begin with the estimate of  $A_{\ell }^{1}(I)$.
$A_{\ell }^{1}(I)$.
 Estimate for $A_{\ell }^{1}(I)$. Since
$A_{\ell }^{1}(I)$. Since  $Q_{\bar{x}}=B(x_{0}-\bar{x},1/2^{k})$, then
$Q_{\bar{x}}=B(x_{0}-\bar{x},1/2^{k})$, then  $2^{-2}\leqslant |y_{1}+h|\leqslant 2$ and
$2^{-2}\leqslant |y_{1}+h|\leqslant 2$ and  $|y_{2}+h|\leqslant 2^{j-k+1}$ for all
$|y_{2}+h|\leqslant 2^{j-k+1}$ for all  $y_{1}\in S_{k}(Q_{\bar{x}})$ and
$y_{1}\in S_{k}(Q_{\bar{x}})$ and  $y_{2}\in S_{j}(Q_{\bar{x}})$. Note that
$y_{2}\in S_{j}(Q_{\bar{x}})$. Note that  $|z|<1/8$, we have
$|z|<1/8$, we have  $1/8<|y_{1}+h-z|\leqslant 17/8$. This implies that
$1/8<|y_{1}+h-z|\leqslant 17/8$. This implies that 
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{1}(I)\leqslant \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant \min \{1/8,t\}}\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad \qquad -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\Big(\int _{|z|\leqslant \min \{1/8,t\}}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\Big(\int _{I}\Big|\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{1}(I)\leqslant \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant \min \{1/8,t\}}\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad \qquad -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\Big(\int _{|z|\leqslant \min \{1/8,t\}}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\Big(\int _{I}\Big|\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}.\nonumber\end{eqnarray}$$ Note that  $|y_{1}|\sim 1$ in the last integration above, by the Minkowski inequality and the Hausdorff–Young inequality, for
$|y_{1}|\sim 1$ in the last integration above, by the Minkowski inequality and the Hausdorff–Young inequality, for  $|\unicode[STIX]{x1D6FC}|=s$, we have
$|\unicode[STIX]{x1D6FC}|=s$, we have 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{1}(I) & {\lesssim} & \displaystyle \Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big(\int _{I}|y_{1}^{\unicode[STIX]{x1D6FC}}|^{2}\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{|ty_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|ty_{1}|\leqslant 17/8}\nonumber\\ \displaystyle & & \displaystyle \times \,|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{1}(I) & {\lesssim} & \displaystyle \Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big(\int _{I}|y_{1}^{\unicode[STIX]{x1D6FC}}|^{2}\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{|y_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|y_{1}|\leqslant 17/8}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{|ty_{2}|\leqslant 2^{j-k+2}}\int _{1/8<|ty_{1}|\leqslant 17/8}\nonumber\\ \displaystyle & & \displaystyle \times \,|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\end{eqnarray}$$Hence, we obtain
 $$\begin{eqnarray}A_{\ell }^{1}(I)\lesssim \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\end{eqnarray}$$
$$\begin{eqnarray}A_{\ell }^{1}(I)\lesssim \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\end{eqnarray}$$ Now, setting  $\unicode[STIX]{x1D711}_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})=m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)$, we have
$\unicode[STIX]{x1D711}_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})=m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)$, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \displaystyle \check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)-\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \displaystyle \quad =\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \displaystyle \check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)-\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \displaystyle \quad =\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big).\nonumber\end{eqnarray}$$Proceeding the same argument as before, we have
 $$\begin{eqnarray}\displaystyle A_{\ell }^{1}(I) & {\lesssim} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant \min \{1/8,t\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|(y_{1}-z)^{\unicode[STIX]{x1D6FC}}\Big(\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D711}_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{1}(I) & {\lesssim} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant \min \{1/8,t\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|(y_{1}-z)^{\unicode[STIX]{x1D6FC}}\Big(\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D711}_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\end{eqnarray}$$Estimate for $A_{\ell }^{2}(I)$.
$A_{\ell }^{2}(I)$. 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{2}(I) & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{1/8\leqslant |z|\leqslant \min \{3,t\}}\int _{I}\frac{1}{t^{5n+1}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}dzdt\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{1/8\leqslant |z|\leqslant \min \{3,t\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{1/8\leqslant |z|\leqslant \min \{3,t\}}\int _{I}\Big|\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & =: & \displaystyle A_{\ell }^{2,1}(I)+A_{\ell }^{2,2}(I).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{2}(I) & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{1/8\leqslant |z|\leqslant \min \{3,t\}}\int _{I}\frac{1}{t^{5n+1}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}dzdt\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{1/8\leqslant |z|\leqslant \min \{3,t\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{1/8\leqslant |z|\leqslant \min \{3,t\}}\int _{I}\Big|\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & =: & \displaystyle A_{\ell }^{2,1}(I)+A_{\ell }^{2,2}(I).\nonumber\end{eqnarray}$$ We observe that if  $z\in E_{2}$, then
$z\in E_{2}$, then  $t\geqslant 1/8$. The Minkowski inequality and the Hausdorff–Young inequality yield that
$t\geqslant 1/8$. The Minkowski inequality and the Hausdorff–Young inequality yield that 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{2,1}(I) & {\lesssim} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\int _{\{t\in I:t\geqslant 1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{\{t\in I:t\geqslant 1/8\}}\int _{|z|\leqslant t}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{p^{\prime }}dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{\{t\in I:t\geqslant 1/8\}}\int _{|z|\leqslant t}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}_{\ell }\Big(\frac{u_{1}}{t},\frac{u_{2}}{t}\Big)\Big|^{p^{\prime }}\,du_{1}\,du_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{5n+1-4n/p^{\prime }}}\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\Big(\int _{\{t\in I:t\geqslant 1/8\}}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{2,1}(I) & {\lesssim} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\int _{\{t\in I:t\geqslant 1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{\{t\in I:t\geqslant 1/8\}}\int _{|z|\leqslant t}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{p^{\prime }}dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{\{t\in I:t\geqslant 1/8\}}\int _{|z|\leqslant t}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}_{\ell }\Big(\frac{u_{1}}{t},\frac{u_{2}}{t}\Big)\Big|^{p^{\prime }}\,du_{1}\,du_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{5n+1-4n/p^{\prime }}}\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\Big(\int _{\{t\in I:t\geqslant 1/8\}}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$Repeating the same estimates above, we may obtain
 $$\begin{eqnarray}\displaystyle A_{\ell }^{2,2}(I)\lesssim \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}. & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{2,2}(I)\lesssim \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}. & & \displaystyle \nonumber\end{eqnarray}$$On the other hand, similar to inequality (2.6), we have
 $$\begin{eqnarray}\displaystyle A_{\ell }^{2}(I) & {\lesssim} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\int _{\{t\in I:t\geqslant 1/8\}}\frac{1}{t^{5n+1}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\Big(\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big)\Big|^{2}dzdt\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{|z|\leqslant t}\int _{\{t\in I:t\geqslant 1/8\}}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dz\,dt}{t^{2s+5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{2}(I) & {\lesssim} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\int _{\{t\in I:t\geqslant 1/8\}}\frac{1}{t^{5n+1}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\Big(\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big)\Big|^{2}dzdt\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{|z|\leqslant t}\int _{\{t\in I:t\geqslant 1/8\}}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dz\,dt}{t^{2s+5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & = & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$Estimate for $A_{\ell }^{3}(I)$.
$A_{\ell }^{3}(I)$. 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{3}(I) & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{3<|z|\leqslant t}\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & =: & \displaystyle A_{\ell }^{3,1}(I)+A_{\ell }^{3,2}(I).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{3}(I) & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{3<|z|\leqslant t}\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{|z|\leqslant t}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & =: & \displaystyle A_{\ell }^{3,1}(I)+A_{\ell }^{3,2}(I).\nonumber\end{eqnarray}$$  Note that  $z>3$ and
$z>3$ and  $1/2^{2}\leqslant |y_{1}+h|\leqslant 2$, then
$1/2^{2}\leqslant |y_{1}+h|\leqslant 2$, then  $|y_{1}+h-z|>|z|-|y_{1}+h|>1$ and
$|y_{1}+h-z|>|z|-|y_{1}+h|>1$ and  $|y_{1}-z|>|z|-|y_{1}|>2$. Similar to the estimate for
$|y_{1}-z|>|z|-|y_{1}|>2$. Similar to the estimate for  $A_{\ell }^{1}(I)$, we get
$A_{\ell }^{1}(I)$, we get 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{3}(I)\lesssim \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p} & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{3}(I)\lesssim \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p} & & \displaystyle \nonumber\end{eqnarray}$$and
 $$\begin{eqnarray}\displaystyle A_{\ell }^{3}(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}\big[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})\nonumber\\ \displaystyle & & \displaystyle \times \,(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)\big]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{3}(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}\big[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})\nonumber\\ \displaystyle & & \displaystyle \times \,(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)\big]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$Estimate for $A_{\ell }^{4}(I)$. Note that
$A_{\ell }^{4}(I)$. Note that  $|y_{1}+h-z|\sim 1$,
$|y_{1}+h-z|\sim 1$,  $|y_{1}-z|\sim 1$ and
$|y_{1}-z|\sim 1$ and  $\unicode[STIX]{x1D706}>2s/p+1$, employ the Minkowski inequality and the Hausdorff–Young inequality, we may obtain
$\unicode[STIX]{x1D706}>2s/p+1$, employ the Minkowski inequality and the Hausdorff–Young inequality, we may obtain 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{4}(I) & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|(y_{1})^{\unicode[STIX]{x1D6FC}}\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{I}\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}\nonumber\\ \displaystyle & & \displaystyle \times \,|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{-5n-1+2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\,dzdt\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2-in/2}\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}\nonumber\\ \displaystyle & & \displaystyle \times \,|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{4}(I) & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{I}\Big|(y_{1})^{\unicode[STIX]{x1D6FC}}\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{I}\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}\nonumber\\ \displaystyle & & \displaystyle \times \,|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{-5n-1+2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\,dzdt\Big)^{1/2}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2-in/2}\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}\nonumber\\ \displaystyle & & \displaystyle \times \,|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\nonumber\end{eqnarray}$$Recall that
 $$\begin{eqnarray}\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)-\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)=\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big).\end{eqnarray}$$
$$\begin{eqnarray}\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)-\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)=\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big).\end{eqnarray}$$Similarly,
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{4}(I)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{i=1}^{\infty }\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|(y_{1}-z)^{\unicode[STIX]{x1D6FC}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2-in/2}\Big(\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D711}_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{4}(I)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{i=1}^{\infty }\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{2^{i-1}t\leqslant |z|\leqslant \min \{2^{i}t,1/8\}}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|(y_{1}-z)^{\unicode[STIX]{x1D6FC}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2-in/2}\Big(\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}|y_{1}^{\unicode[STIX]{x1D6FC}}\check{\unicode[STIX]{x1D711}}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D711}_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$Estimate for $A_{\ell }^{5}(I)$. Denote
$A_{\ell }^{5}(I)$. Denote  $F=\{2^{i-1}t,1/8\}\leqslant |z|\leqslant \min \{2^{i}t,3\}$, we get
$F=\{2^{i-1}t,1/8\}\leqslant |z|\leqslant \min \{2^{i}t,3\}$, we get 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{5}(I) & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{F}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{F}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}+\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big(\int _{F}\int _{I}\Big|\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & =: & \displaystyle A_{\ell }^{5,1}(I)+A_{\ell }^{5,2}(I).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{5}(I) & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{F}\int _{I}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle -\,\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\int _{F}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big|\check{m}\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}+\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big(\int _{F}\int _{I}\Big|\check{m}\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & =: & \displaystyle A_{\ell }^{5,1}(I)+A_{\ell }^{5,2}(I).\nonumber\end{eqnarray}$$ We observe that if  $\{2^{i-1}t,1/8\}\leqslant |z|\leqslant \min \{2^{i}t,3\}$, then
$\{2^{i-1}t,1/8\}\leqslant |z|\leqslant \min \{2^{i}t,3\}$, then  $t\sim 2^{-i}$. By the Minkowski inequality and the Hausdorff–Young inequality, we have
$t\sim 2^{-i}$. By the Minkowski inequality and the Hausdorff–Young inequality, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{5,1}(I)\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{F}\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{F}\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}_{\ell }\Big(u_{1},u_{2}\Big)\Big|^{p^{\prime }}\,du_{1}\,du_{2}\Big)^{2/p^{\prime }}\frac{dz\,dt}{t^{5n+1-4n/p^{\prime }}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2+in/2+2s}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{5,1}(I)\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{F}\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{F}\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{\bar{x}})}\int _{S_{k}(t^{-1}Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}_{\ell }\Big(u_{1},u_{2}\Big)\Big|^{p^{\prime }}\,du_{1}\,du_{2}\Big)^{2/p^{\prime }}\frac{dz\,dt}{t^{5n+1-4n/p^{\prime }}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2+in/2+2s}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$Repeating the same estimates above, we may obtain
 $$\begin{eqnarray}\displaystyle A_{\ell }^{5,2}(I)\lesssim \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}. & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{5,2}(I)\lesssim \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}. & & \displaystyle \nonumber\end{eqnarray}$$On the other hand, similar to inequality (2.6), we have
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{5}(I)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\!\Big(\!\int _{F}\int _{I}\Big|\Big(\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{F}\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dz\,dt}{t^{2s+5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2+in/2+2s}\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }^{5}(I)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\!\Big(\!\int _{F}\int _{I}\Big|\Big(\check{m}_{\ell }\Big(\frac{y_{1}+h-z}{t},\frac{y_{2}+h-z}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}_{\ell }\Big(\frac{y_{1}-z}{t},\frac{y_{2}-z}{t}\Big)\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{F}\int _{I}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{\unicode[STIX]{x1D711}}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dz\,dt}{t^{2s+5n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2+in/2+2s}\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$ Finally, we consider for  $A_{\ell }^{6}(I)$.
$A_{\ell }^{6}(I)$.
 Estimate for $A_{\ell }^{6}(I)$. Since
$A_{\ell }^{6}(I)$. Since  $|z|>3$, then
$|z|>3$, then  $|y_{1}+h-z|>1$,
$|y_{1}+h-z|>1$,  $|y_{1}-z|>2$. Repeating the similar estimate for
$|y_{1}-z|>2$. Repeating the similar estimate for  $A_{\ell }^{4}(I)$, the Minkowski inequality and the Hausdorff–Young inequality yield
$A_{\ell }^{4}(I)$, the Minkowski inequality and the Hausdorff–Young inequality yield 
 $$\begin{eqnarray}\displaystyle A_{\ell }^{6}(I)\lesssim \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p} & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{6}(I)\lesssim \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p} & & \displaystyle \nonumber\end{eqnarray}$$and
 $$\begin{eqnarray}\displaystyle A_{\ell }^{6}(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }^{6}(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$Combining all estimates of these six terms, it yields that
 $$\begin{eqnarray}\displaystyle A_{\ell }(I) & {\lesssim} & \displaystyle \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle +\,\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }(I) & {\lesssim} & \displaystyle \Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2s-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle +\,\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+2n/p}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\end{eqnarray}$$and
 $$\begin{eqnarray}\displaystyle A_{\ell }(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle +\,\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}\nonumber\\ \displaystyle & & \displaystyle \times \,t^{2s-4n/p-1}\,dt\Big)^{1/2}.\nonumber\end{eqnarray}$$By the following fact
 $$\begin{eqnarray}\displaystyle & & \displaystyle |\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \frac{2^{\ell }|h|}{t}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=1}^{|\unicode[STIX]{x1D6FC}|}\Big(\frac{|h|}{t}\Big)^{\unicode[STIX]{x1D6FD}}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D6FD}}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle |\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}[m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)]|\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \frac{2^{\ell }|h|}{t}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=1}^{|\unicode[STIX]{x1D6FC}|}\Big(\frac{|h|}{t}\Big)^{\unicode[STIX]{x1D6FD}}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D6FD}}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\nonumber\end{eqnarray}$$and
 $$\begin{eqnarray}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|\lesssim \frac{2^{\ell }|h|}{t}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}},\end{eqnarray}$$
$$\begin{eqnarray}|m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})(e^{-2\unicode[STIX]{x1D70B}it^{-1}h\cdot (\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}-1)|\lesssim \frac{2^{\ell }|h|}{t}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-s}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}},\end{eqnarray}$$it follows that
 $$\begin{eqnarray}\displaystyle A_{\ell }(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\frac{2^{\ell }|h|}{t}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=1}^{|\unicode[STIX]{x1D6FC}|}\Big(\frac{|h|}{t}\Big)^{\unicode[STIX]{x1D6FD}}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D6FD}}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big)^{2}\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }(I) & {\lesssim} & \displaystyle \Big(\int _{I}\Big(\frac{2^{\ell }|h|}{t}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=1}^{|\unicode[STIX]{x1D6FC}|}\Big(\frac{|h|}{t}\Big)^{\unicode[STIX]{x1D6FD}}\frac{(2^{\ell })^{\unicode[STIX]{x1D700}_{1}-|\unicode[STIX]{x1D6FC}|+\unicode[STIX]{x1D6FD}}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\Big)^{2}\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & & \displaystyle \times \,2^{4n\ell /p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\max (\unicode[STIX]{x1D6FD},1)}\frac{2^{\ell (-|\unicode[STIX]{x1D6FC}|+2n/p+\max (\unicode[STIX]{x1D6FD},1)+\unicode[STIX]{x1D700}_{1})}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big(\int _{I}t^{2(|\unicode[STIX]{x1D6FC}|-2n/p-\max (\unicode[STIX]{x1D6FD},1))-1}\,dt\Big)^{1/2}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \times \,2^{4n\ell /p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\max (\unicode[STIX]{x1D6FD},1)}\frac{2^{\ell (-|\unicode[STIX]{x1D6FC}|+2n/p+\max (\unicode[STIX]{x1D6FD},1)+\unicode[STIX]{x1D700}_{1})}}{(1+2^{\ell })^{\unicode[STIX]{x1D700}_{1}+\unicode[STIX]{x1D700}_{2}}}\nonumber\\ \displaystyle & & \displaystyle \times \,\Big(\int _{I}t^{2(|\unicode[STIX]{x1D6FC}|-2n/p-\max (\unicode[STIX]{x1D6FD},1))-1}\,dt\Big)^{1/2}.\end{eqnarray}$$ Now, we fix sufficiently small  $\unicode[STIX]{x1D700}>0$ so that
$\unicode[STIX]{x1D700}>0$ so that  $\unicode[STIX]{x1D700}(s-2n/p)<\min \{\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}\}$. Then, if
$\unicode[STIX]{x1D700}(s-2n/p)<\min \{\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}\}$. Then, if  $2^{\ell }|h|\geqslant 1$, noting
$2^{\ell }|h|\geqslant 1$, noting  $2n/p<s<2n/p+1$ and using (2.5) for
$2n/p<s<2n/p+1$ and using (2.5) for  $I=(0,(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}}]$, we have
$I=(0,(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}}]$, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }((0,(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}}])\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim 2^{-\ell (s+\unicode[STIX]{x1D700}_{2}-2n/p)}(2^{\ell }|h|)^{(1+\unicode[STIX]{x1D700})(s-2n/p)}=|h|^{(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{2})}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }((0,(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}}])\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim 2^{-\ell (s+\unicode[STIX]{x1D700}_{2}-2n/p)}(2^{\ell }|h|)^{(1+\unicode[STIX]{x1D700})(s-2n/p)}=|h|^{(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{2})}.\nonumber\end{eqnarray}$$ By (2.8) for  $I=[(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}},\infty )$, we have
$I=[(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}},\infty )$, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }([(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}},\infty ))\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\max (\unicode[STIX]{x1D6FD},1)}2^{\ell (-|\unicode[STIX]{x1D6FC}|+2n/p+\max (\unicode[STIX]{x1D6FD},1))}(2^{\ell }|h|)^{(1+\unicode[STIX]{x1D700})(s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{-\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell \unicode[STIX]{x1D700}((s-2n/p)-\max (\unicode[STIX]{x1D6FD},1))}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }([(2^{\ell }|h|)^{1+\unicode[STIX]{x1D700}},\infty ))\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\max (\unicode[STIX]{x1D6FD},1)}2^{\ell (-|\unicode[STIX]{x1D6FC}|+2n/p+\max (\unicode[STIX]{x1D6FD},1))}(2^{\ell }|h|)^{(1+\unicode[STIX]{x1D700})(s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{-\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell \unicode[STIX]{x1D700}((s-2n/p)-\max (\unicode[STIX]{x1D6FD},1))}.\nonumber\end{eqnarray}$$ Thus, noting  $\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{2}<0$ and
$\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{2}<0$ and  $|h|<1$, we obtain
$|h|<1$, we obtain 
 $$\begin{eqnarray}\displaystyle \mathop{\sum }_{2^{\ell }|h|\geqslant 1}A_{\ell } & {\lesssim} & \displaystyle \mathop{\sum }_{2^{\ell }|h|\geqslant 1}|h|^{(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{2})}\nonumber\\ \displaystyle & & \displaystyle +\mathop{\sum }_{2^{\ell }|h|\geqslant 1}\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{-\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell \unicode[STIX]{x1D700}((s-2n/p)-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle |h|^{s-2n/p+\unicode[STIX]{x1D700}_{2}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{s-2n/p}\lesssim |h|^{s-2n/p}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \mathop{\sum }_{2^{\ell }|h|\geqslant 1}A_{\ell } & {\lesssim} & \displaystyle \mathop{\sum }_{2^{\ell }|h|\geqslant 1}|h|^{(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{2})}\nonumber\\ \displaystyle & & \displaystyle +\mathop{\sum }_{2^{\ell }|h|\geqslant 1}\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{-\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1+\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell \unicode[STIX]{x1D700}((s-2n/p)-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle |h|^{s-2n/p+\unicode[STIX]{x1D700}_{2}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{s-2n/p}\lesssim |h|^{s-2n/p}.\end{eqnarray}$$ In the case  $2^{\ell }|h|<1$, using (2.5) for
$2^{\ell }|h|<1$, using (2.5) for  $I=(0,(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}}]$, we have
$I=(0,(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}}]$, we have 
 $$\begin{eqnarray}\displaystyle A_{\ell }((0,(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}}]) & {\lesssim} & \displaystyle 2^{\ell (-s+2n/p+\unicode[STIX]{x1D700}_{1})}(2^{\ell }|h|)^{(1-\unicode[STIX]{x1D700})(s-2n/p)}\nonumber\\ \displaystyle & = & \displaystyle |h|^{(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (-\unicode[STIX]{x1D700}(s-2n/p)+\unicode[STIX]{x1D700}_{1})}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle A_{\ell }((0,(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}}]) & {\lesssim} & \displaystyle 2^{\ell (-s+2n/p+\unicode[STIX]{x1D700}_{1})}(2^{\ell }|h|)^{(1-\unicode[STIX]{x1D700})(s-2n/p)}\nonumber\\ \displaystyle & = & \displaystyle |h|^{(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (-\unicode[STIX]{x1D700}(s-2n/p)+\unicode[STIX]{x1D700}_{1})}.\nonumber\end{eqnarray}$$ Furthermore, by using (2.8) for  $I=[(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}},\infty )$, we have
$I=[(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}},\infty )$, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }([(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}},\infty ))\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\max (\unicode[STIX]{x1D6FD},1)}2^{\ell (-s+2n/p+\max (\unicode[STIX]{x1D6FD},1))}(2^{\ell }|h|)^{(1-\unicode[STIX]{x1D700})(s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{-\unicode[STIX]{x1D700}\ell (s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle A_{\ell }([(2^{\ell }|h|)^{1-\unicode[STIX]{x1D700}},\infty ))\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\max (\unicode[STIX]{x1D6FD},1)}2^{\ell (-s+2n/p+\max (\unicode[STIX]{x1D6FD},1))}(2^{\ell }|h|)^{(1-\unicode[STIX]{x1D700})(s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{-\unicode[STIX]{x1D700}\ell (s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}.\nonumber\end{eqnarray}$$ By the fact that  $\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{1}<0$ and
$\unicode[STIX]{x1D700}(s-2n/p)-\unicode[STIX]{x1D700}_{1}<0$ and  $|h|<1$, we obtain
$|h|<1$, we obtain 
 $$\begin{eqnarray}\displaystyle \mathop{\sum }_{2^{\ell }|h|<1}A_{\ell } & {\lesssim} & \displaystyle \mathop{\sum }_{2^{\ell }|h|<1}|h|^{(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (-\unicode[STIX]{x1D700}(s-2n/p)+\unicode[STIX]{x1D700}_{1})}\nonumber\\ \displaystyle & & \displaystyle +\mathop{\sum }_{2^{\ell }|h|<1}\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{-\unicode[STIX]{x1D700}\ell (s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle |h|^{s-2n/p-\unicode[STIX]{x1D700}_{1}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{s-2n/p}\lesssim |h|^{s-2n/p-\unicode[STIX]{x1D700}_{1}}+|h|^{s-2n/p}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \mathop{\sum }_{2^{\ell }|h|<1}A_{\ell } & {\lesssim} & \displaystyle \mathop{\sum }_{2^{\ell }|h|<1}|h|^{(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{\ell (-\unicode[STIX]{x1D700}(s-2n/p)+\unicode[STIX]{x1D700}_{1})}\nonumber\\ \displaystyle & & \displaystyle +\mathop{\sum }_{2^{\ell }|h|<1}\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{\unicode[STIX]{x1D700}\max (\unicode[STIX]{x1D6FD},1)+(1-\unicode[STIX]{x1D700})(s-2n/p)}2^{-\unicode[STIX]{x1D700}\ell (s-2n/p-\max (\unicode[STIX]{x1D6FD},1))}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle |h|^{s-2n/p-\unicode[STIX]{x1D700}_{1}}+\mathop{\sum }_{\unicode[STIX]{x1D6FD}=0}^{|\unicode[STIX]{x1D6FC}|}|h|^{s-2n/p}\lesssim |h|^{s-2n/p-\unicode[STIX]{x1D700}_{1}}+|h|^{s-2n/p}.\end{eqnarray}$$ Noting that  $0<\unicode[STIX]{x1D700}_{1}<s-2n/p$ and taking
$0<\unicode[STIX]{x1D700}_{1}<s-2n/p$ and taking  $\unicode[STIX]{x1D6FF}=(s-\unicode[STIX]{x1D700}_{1})/2$, by (2.9) and (2.10), it holds that
$\unicode[STIX]{x1D6FF}=(s-\unicode[STIX]{x1D700}_{1})/2$, by (2.9) and (2.10), it holds that 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy\,dz\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{\ell \in \mathbb{Z}}A_{\ell }\lesssim |h|^{2(\unicode[STIX]{x1D6FF}-n/p)}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad -\,\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy\,dz\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{\ell \in \mathbb{Z}}A_{\ell }\lesssim |h|^{2(\unicode[STIX]{x1D6FF}-n/p)}.\nonumber\end{eqnarray}$$ This leads to the conclusion of Proposition 2.1 in the case  $2n/p<s<2n/p+1$.
$2n/p<s<2n/p+1$.
 (b) The case $2n/p<s=2n/p+1$. First, we choose
$2n/p<s=2n/p+1$. First, we choose  $1<p_{0}<p$ such that
$1<p_{0}<p$ such that  $2n/p_{0}<s$. Then
$2n/p_{0}<s$. Then  $p_{0}$ satisfies
$p_{0}$ satisfies  $2n/p_{0}<s=2n/p+1<2n/p_{0}+1$. Hence, for all balls
$2n/p_{0}<s=2n/p+1<2n/p_{0}+1$. Hence, for all balls  $Q$, all
$Q$, all  $x,\bar{x}\in \frac{1}{2}Q$ and
$x,\bar{x}\in \frac{1}{2}Q$ and  $(j,k)\neq (0,0)$, by step (a), we have
$(j,k)\neq (0,0)$, by step (a), we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\!\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)-\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p_{0}^{\prime }/2}\,dy\,dz\Big)^{1/p_{0}^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{|h|^{2\unicode[STIX]{x1D6FF}-2n/p_{0}}}{|Q|^{2\unicode[STIX]{x1D6FF}/n}}2^{-2\unicode[STIX]{x1D6FF}\max (j,k)}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\!\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)-\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p_{0}^{\prime }/2}\,dy\,dz\Big)^{1/p_{0}^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{|h|^{2\unicode[STIX]{x1D6FF}-2n/p_{0}}}{|Q|^{2\unicode[STIX]{x1D6FF}/n}}2^{-2\unicode[STIX]{x1D6FF}\max (j,k)}.\nonumber\end{eqnarray}$$By the Hölder inequality, it yields that
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\!\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)-\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy\,dz\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant (2^{n(j+k)}|Q|^{2})^{(1/p_{0})-(1/p)}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)-\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy\,dz\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{2n\max (j,k)}|Q|^{2})^{(1/p_{0})-(1/p)}\frac{|h|^{2\unicode[STIX]{x1D6FF}-2n/p_{0}}}{|Q|^{2\unicode[STIX]{x1D6FF}/n}}\frac{1}{2^{2\unicode[STIX]{x1D6FF}\max (j,k)}}\nonumber\\ \displaystyle & & \displaystyle \quad =\frac{|h|^{(2\unicode[STIX]{x1D6FF}-2n/p_{0}+2n/p)-2n/p}}{|Q|^{(2\unicode[STIX]{x1D6FF}-2n/p_{0}+2n/p)/n}}2^{-(2\unicode[STIX]{x1D6FF}-2n/p_{0}+2n/p)\max (j,k)}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\!\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)-\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy\,dz\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant (2^{n(j+k)}|Q|^{2})^{(1/p_{0})-(1/p)}\Big(\int _{S_{j}(Q_{\bar{x}})}\int _{S_{k}(Q_{\bar{x}})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{y_{1}+h}{t},\frac{y_{2}+h}{t}\Big)-\check{m}\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy\,dz\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{2n\max (j,k)}|Q|^{2})^{(1/p_{0})-(1/p)}\frac{|h|^{2\unicode[STIX]{x1D6FF}-2n/p_{0}}}{|Q|^{2\unicode[STIX]{x1D6FF}/n}}\frac{1}{2^{2\unicode[STIX]{x1D6FF}\max (j,k)}}\nonumber\\ \displaystyle & & \displaystyle \quad =\frac{|h|^{(2\unicode[STIX]{x1D6FF}-2n/p_{0}+2n/p)-2n/p}}{|Q|^{(2\unicode[STIX]{x1D6FF}-2n/p_{0}+2n/p)/n}}2^{-(2\unicode[STIX]{x1D6FF}-2n/p_{0}+2n/p)\max (j,k)}.\nonumber\end{eqnarray}$$ Therefore, taking  $\unicode[STIX]{x1D6FF}-n/p_{0}+n/p>n/p$ as
$\unicode[STIX]{x1D6FF}-n/p_{0}+n/p>n/p$ as  $\unicode[STIX]{x1D6FF}$ newly, we obtain the desired estimate.
$\unicode[STIX]{x1D6FF}$ newly, we obtain the desired estimate.
 (c) The case $2n/p+1<s\leqslant 2n$. In this case there is an integer
$2n/p+1<s\leqslant 2n$. In this case there is an integer  $l$ such that
$l$ such that  $2n/p+l<s\leqslant 2n/p+1+l$. Then it follows that
$2n/p+l<s\leqslant 2n/p+1+l$. Then it follows that  $2n/p<s-l\leqslant 2n/p+1$. Thus, regarding
$2n/p<s-l\leqslant 2n/p+1$. Thus, regarding  $s-l$ as
$s-l$ as  $s$, we may deduce this case to the previous case (a) or case (b). This completes the proof of Proposition  2.1.
$s$, we may deduce this case to the previous case (a) or case (b). This completes the proof of Proposition  2.1.
Proposition 2.2. Let  $s\in \mathbb{N}$ with
$s\in \mathbb{N}$ with  $n+1\leqslant s\leqslant 2n$. Let
$n+1\leqslant s\leqslant 2n$. Let  $m\in L^{\infty }((\mathbb{R}^{n})^{2})$ and satisfy (1.1) and (1.2). Then, for
$m\in L^{\infty }((\mathbb{R}^{n})^{2})$ and satisfy (1.1) and (1.2). Then, for  $2n/s<p\leqslant 2$,
$2n/s<p\leqslant 2$,  $\unicode[STIX]{x1D706}>2s/n+1$, there exists a constant
$\unicode[STIX]{x1D706}>2s/n+1$, there exists a constant  $C>0$, such that the following inequality holds for all balls
$C>0$, such that the following inequality holds for all balls  $Q$ with center at
$Q$ with center at  $x$ and
$x$ and  $(j,k)\neq (0,0)$.
$(j,k)\neq (0,0)$. 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q)}\int _{S_{k}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{x-y_{1}}{t},\frac{x-y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{1}{|Q|^{2/p}}2^{-2n\max (j,k)/p}.\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q)}\int _{S_{k}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{x-y_{1}}{t},\frac{x-y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{1}{|Q|^{2/p}}2^{-2n\max (j,k)/p}.\end{eqnarray}$$Proof. Let  $Q=B(x,R)$,
$Q=B(x,R)$,  $u=ax$
$u=ax$ $(a>0)$ and
$(a>0)$ and  $s=at$, we have
$s=at$, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}(m,Q)(x):\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\int _{S_{j}(Q)}\int _{S_{k}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{x-y_{1}}{t},\frac{x-y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad =a^{2n/p}\Big(\int _{S_{j}(Q^{a})}\int _{S_{k}(Q^{a})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{s}{|x^{a}-v|+s}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{x^{a}-u_{1}}{t},\frac{x^{a}-u_{2}}{s}\Big)\Big|^{2}\frac{dvds}{s^{5n+1}}\Big)^{p^{\prime }/2}\,du_{1}\,du_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad =a^{2n/p}B_{j,k}(m,Q^{a})(x^{a}),\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}(m,Q)(x):\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\int _{S_{j}(Q)}\int _{S_{k}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\Big|\check{m}\Big(\frac{x-y_{1}}{t},\frac{x-y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad =a^{2n/p}\Big(\int _{S_{j}(Q^{a})}\int _{S_{k}(Q^{a})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{s}{|x^{a}-v|+s}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{x^{a}-u_{1}}{t},\frac{x^{a}-u_{2}}{s}\Big)\Big|^{2}\frac{dvds}{s^{5n+1}}\Big)^{p^{\prime }/2}\,du_{1}\,du_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad =a^{2n/p}B_{j,k}(m,Q^{a})(x^{a}),\nonumber\end{eqnarray}$$ where  $Q^{a}=B(ax,aR)$,
$Q^{a}=B(ax,aR)$,  $x^{a}=ax$. So, taking
$x^{a}=ax$. So, taking  $a=1/(2^{\max (j,k)}R)$, the estimate
$a=1/(2^{\max (j,k)}R)$, the estimate  $B_{j,k}(m,Q^{a})(x^{a})\lesssim 1$ implies the desired estimate. Thus, we only need to show (2.11) in the case
$B_{j,k}(m,Q^{a})(x^{a})\lesssim 1$ implies the desired estimate. Thus, we only need to show (2.11) in the case  $R=1/2^{\max (j,k)}$. We may also assume
$R=1/2^{\max (j,k)}$. We may also assume  $k\geqslant j$ and hence
$k\geqslant j$ and hence  $k\geqslant 1$. Then, for
$k\geqslant 1$. Then, for  $Q=B(x,2^{-k})$, it is sufficient to show that
$Q=B(x,2^{-k})$, it is sufficient to show that 
 $$\begin{eqnarray}B_{j,k}(m,Q)(x)\lesssim 1.\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m,Q)(x)\lesssim 1.\end{eqnarray}$$By changing variables, it is enough to show that
 $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{y}{t},\frac{z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{1}{|Q|^{2/p}}2^{-2n\max (j,k)/p},\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}\Big(\frac{y}{t},\frac{z}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{1}{|Q|^{2/p}}2^{-2n\max (j,k)/p},\end{eqnarray}$$ where  $Q_{x}=Q-x$.
$Q_{x}=Q-x$.
 For every interval  $I$ in
$I$ in  $\mathbb{R}_{+}$, let
$\mathbb{R}_{+}$, let 
 $$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad =B_{j,k}^{1}(m_{\ell },Q,I)(x)+B_{j,k}^{2}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad :=\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{\mathbb{R}^{n}}\int _{I}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{|x-z|<t}\int _{I}\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \qquad +\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{2^{i-1}t\leqslant |x-z|<2^{i}t}\int _{I}\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad =B_{j,k}^{1}(m_{\ell },Q,I)(x)+B_{j,k}^{2}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad :=\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{\mathbb{R}^{n}}\int _{I}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{|x-z|<t}\int _{I}\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \qquad +\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{2^{i-1}t\leqslant |x-z|<2^{i}t}\int _{I}\Big|\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}.\nonumber\end{eqnarray}$$ Note that  $y_{1}\sim 1$. The Minkowski inequality, together with the Hausdorff–Young inequality implies that
$y_{1}\sim 1$. The Minkowski inequality, together with the Hausdorff–Young inequality implies that 
 $$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}^{1}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{|x-z|<t}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad =C(2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{x})}\int _{S_{k}(t^{-1}Q_{x})}|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}^{1}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{|x-z|<t}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad =C(2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}\Big(\int _{S_{j}(t^{-1}Q_{x})}\int _{S_{k}(t^{-1}Q_{x})}|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }(y_{1},y_{2})|^{p^{\prime }}\,dy_{1}\,dy_{2}\Big)^{2/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,t^{2|\unicode[STIX]{x1D6FC}|+4n/p^{\prime }}\frac{dt}{t^{4n+1}}\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{2/p}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\nonumber\end{eqnarray}$$Similarly,
 $$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}^{2}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{2^{i-1}t\leqslant |x-z|<2^{i}t}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2+in/2}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{I}\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle B_{j,k}^{2}(m_{\ell },Q,I)(x)\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{2^{i-1}t\leqslant |x-z|<2^{i}t}\int _{I}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\frac{dz\,dt}{t^{5n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\mathop{\sum }_{i=1}^{\infty }2^{-(i-1)n\unicode[STIX]{x1D706}/2+in/2}\Big(\int _{S_{j}(Q_{x})}\int _{S_{k}(Q_{x})}\Big(\int _{I}\Big|y_{1}^{\unicode[STIX]{x1D6FC}}\check{m}_{\ell }\Big(\frac{y_{1}}{t},\frac{y_{2}}{t}\Big)\Big|^{2}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{dt}{t^{4n+1}}\Big)^{p^{\prime }/2}\,dy_{1}\,dy_{2}\Big)^{1/p^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim (2^{k}R)^{-|\unicode[STIX]{x1D6FC}|}\Big(\int _{I}t^{2|\unicode[STIX]{x1D6FC}|-4n/p-1}\,dt\Big)^{1/2}\Big(\int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}}|\unicode[STIX]{x2202}_{\unicode[STIX]{x1D709}}^{\unicode[STIX]{x1D6FC}}m_{\ell }(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})|^{p}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\Big)^{1/p}.\nonumber\end{eqnarray}$$ Next, we consider two cases according to the value of  $\ell .$
$\ell .$
 Case (a).  $\ell <0$. In this case, taking
$\ell <0$. In this case, taking  $|\unicode[STIX]{x1D6FC}|=0$ and
$|\unicode[STIX]{x1D6FC}|=0$ and  $I=[2^{\ell (1+\unicode[STIX]{x1D700})},\infty )$, the estimate in (1.2) implies that
$I=[2^{\ell (1+\unicode[STIX]{x1D700})},\infty )$, the estimate in (1.2) implies that 
 $$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[2^{\ell (1+\unicode[STIX]{x1D700})},\infty ))\lesssim 2^{\ell (1+\unicode[STIX]{x1D700})(-2n/p)}2^{\ell \unicode[STIX]{x1D700}_{1}}2^{\ell (2n/p)}=2^{\ell (\unicode[STIX]{x1D700}_{1}-2\unicode[STIX]{x1D700}n/p)}.\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[2^{\ell (1+\unicode[STIX]{x1D700})},\infty ))\lesssim 2^{\ell (1+\unicode[STIX]{x1D700})(-2n/p)}2^{\ell \unicode[STIX]{x1D700}_{1}}2^{\ell (2n/p)}=2^{\ell (\unicode[STIX]{x1D700}_{1}-2\unicode[STIX]{x1D700}n/p)}.\end{eqnarray}$$ In virtue of  $2^{k}R=1$, taking
$2^{k}R=1$, taking  $|\unicode[STIX]{x1D6FC}|=s$ and
$|\unicode[STIX]{x1D6FC}|=s$ and  $I=[0,2^{\ell (1+\unicode[STIX]{x1D700})}]$, the estimate in (1.1) implies that
$I=[0,2^{\ell (1+\unicode[STIX]{x1D700})}]$, the estimate in (1.1) implies that 
 $$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,2^{\ell (1+\unicode[STIX]{x1D700})}])\lesssim 2^{\ell (1+\unicode[STIX]{x1D700})(s-2n/p)}2^{-\ell (s-2n/p)}=2^{\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,2^{\ell (1+\unicode[STIX]{x1D700})}])\lesssim 2^{\ell (1+\unicode[STIX]{x1D700})(s-2n/p)}2^{-\ell (s-2n/p)}=2^{\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$Hence,
 $$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,\infty ))\lesssim 2^{\ell (\unicode[STIX]{x1D700}_{1}-2\unicode[STIX]{x1D700}n/p)}+2^{\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,\infty ))\lesssim 2^{\ell (\unicode[STIX]{x1D700}_{1}-2\unicode[STIX]{x1D700}n/p)}+2^{\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$ Case (b).  $\ell \geqslant 0$. By repeating the same arguments as in case (a), we get
$\ell \geqslant 0$. By repeating the same arguments as in case (a), we get 
 $$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[2^{\ell (1-\unicode[STIX]{x1D700})},\infty ))\lesssim 2^{\ell (1-\unicode[STIX]{x1D700})(-2n/p)}2^{-\ell \unicode[STIX]{x1D700}_{2}}2^{\ell (2n/p)}=2^{\ell (2\unicode[STIX]{x1D700}n/p-\unicode[STIX]{x1D700}_{2})}\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[2^{\ell (1-\unicode[STIX]{x1D700})},\infty ))\lesssim 2^{\ell (1-\unicode[STIX]{x1D700})(-2n/p)}2^{-\ell \unicode[STIX]{x1D700}_{2}}2^{\ell (2n/p)}=2^{\ell (2\unicode[STIX]{x1D700}n/p-\unicode[STIX]{x1D700}_{2})}\end{eqnarray}$$and
 $$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,2^{\ell (1-\unicode[STIX]{x1D700})}])\lesssim 2^{\ell (1-\unicode[STIX]{x1D700})(s-2n/p)}2^{-\ell (s-2n/p)}=2^{-\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,2^{\ell (1-\unicode[STIX]{x1D700})}])\lesssim 2^{\ell (1-\unicode[STIX]{x1D700})(s-2n/p)}2^{-\ell (s-2n/p)}=2^{-\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$Therefore,
 $$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,\infty ))\lesssim 2^{\ell (2\unicode[STIX]{x1D700}n/p-\unicode[STIX]{x1D700}_{2})}+2^{-\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$
$$\begin{eqnarray}B_{j,k}(m_{\ell },Q,[0,\infty ))\lesssim 2^{\ell (2\unicode[STIX]{x1D700}n/p-\unicode[STIX]{x1D700}_{2})}+2^{-\ell \unicode[STIX]{x1D700}(s-2n/p)}.\end{eqnarray}$$ Choosing  $\unicode[STIX]{x1D700}>0$ so that
$\unicode[STIX]{x1D700}>0$ so that  $2n\unicode[STIX]{x1D700}/p<\min (\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2})$, we obtain from case (a) and case (b)
$2n\unicode[STIX]{x1D700}/p<\min (\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2})$, we obtain from case (a) and case (b) 
 $$\begin{eqnarray}\displaystyle B_{j,k}(m,Q)(x) & {\leqslant} & \displaystyle \mathop{\sum }_{\ell <0}B_{j,k}(m_{\ell },Q,[0,\infty ))+\mathop{\sum }_{\ell \geqslant 0}B_{j,k}(m_{\ell },Q,[0,\infty ))\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{\ell <0}[2^{\ell (\unicode[STIX]{x1D700}_{1}-2\unicode[STIX]{x1D700}n/p)}+2^{\ell \unicode[STIX]{x1D700}(s-2n/p)}]\nonumber\\ \displaystyle & & \displaystyle +\,\mathop{\sum }_{\ell \geqslant 0}[2^{\ell (2\unicode[STIX]{x1D700}n/p-\unicode[STIX]{x1D700}_{2})}+2^{-\ell \unicode[STIX]{x1D700}(s-2n/p)}]\lesssim 1.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle B_{j,k}(m,Q)(x) & {\leqslant} & \displaystyle \mathop{\sum }_{\ell <0}B_{j,k}(m_{\ell },Q,[0,\infty ))+\mathop{\sum }_{\ell \geqslant 0}B_{j,k}(m_{\ell },Q,[0,\infty ))\nonumber\\ \displaystyle & {\lesssim} & \displaystyle \mathop{\sum }_{\ell <0}[2^{\ell (\unicode[STIX]{x1D700}_{1}-2\unicode[STIX]{x1D700}n/p)}+2^{\ell \unicode[STIX]{x1D700}(s-2n/p)}]\nonumber\\ \displaystyle & & \displaystyle +\,\mathop{\sum }_{\ell \geqslant 0}[2^{\ell (2\unicode[STIX]{x1D700}n/p-\unicode[STIX]{x1D700}_{2})}+2^{-\ell \unicode[STIX]{x1D700}(s-2n/p)}]\lesssim 1.\nonumber\end{eqnarray}$$This completes the proof of Proposition 2.2.
2.2 Related multilinear square function
In order to finish our proof, we need to introduce some definitions and necessary Lemmas.
Definition 2.1. (multilinear square function  $T_{\unicode[STIX]{x1D706}}$)
$T_{\unicode[STIX]{x1D706}}$)
 Let  $K$ be a locally integrable function defined away from the diagonal
$K$ be a locally integrable function defined away from the diagonal  $x=y_{1}=\cdots =y_{m}$ in
$x=y_{1}=\cdots =y_{m}$ in  $(\mathbb{R}^{n})^{m+1}$ and
$(\mathbb{R}^{n})^{m+1}$ and  $K_{t}=t^{-mn}K(\cdot /t)$. Then, the multilinear square function
$K_{t}=t^{-mn}K(\cdot /t)$. Then, the multilinear square function  $T_{\unicode[STIX]{x1D706}}$ is defined as follows
$T_{\unicode[STIX]{x1D706}}$ is defined as follows 
 $$\begin{eqnarray}T_{\unicode[STIX]{x1D706}}(\vec{f})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\!\Big(\!\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\bigg|\int _{\mathbb{R}^{mn}}\!K_{t}(z,\vec{y})\mathop{\prod }_{j=1}^{m}f_{j}(y_{j})\,d\vec{y}\bigg|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2},\end{eqnarray}$$
$$\begin{eqnarray}T_{\unicode[STIX]{x1D706}}(\vec{f})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\!\Big(\!\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\bigg|\int _{\mathbb{R}^{mn}}\!K_{t}(z,\vec{y})\mathop{\prod }_{j=1}^{m}f_{j}(y_{j})\,d\vec{y}\bigg|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2},\end{eqnarray}$$ where  $\vec{f}=(f_{1},\ldots ,f_{m})\in {\mathcal{S}}(\mathbb{R}^{n})\times \cdots \times {\mathcal{S}}(\mathbb{R}^{n})$ and all
$\vec{f}=(f_{1},\ldots ,f_{m})\in {\mathcal{S}}(\mathbb{R}^{n})\times \cdots \times {\mathcal{S}}(\mathbb{R}^{n})$ and all  $x\notin \bigcap _{j=1}^{m}\text{supp}f_{j}$.
$x\notin \bigcap _{j=1}^{m}\text{supp}f_{j}$.
 For  $x\in \mathbb{R}^{n}$,
$x\in \mathbb{R}^{n}$,  $r,a>0$, we set
$r,a>0$, we set  $B(x,r)=\{y\in \mathbb{R}^{n}:|y-x|<r\}$ and
$B(x,r)=\{y\in \mathbb{R}^{n}:|y-x|<r\}$ and  $aB(x,r)=\{y\in \mathbb{R}^{n}:|y-x|<ar\}$. For all balls
$aB(x,r)=\{y\in \mathbb{R}^{n}:|y-x|<ar\}$. For all balls  $Q$, let
$Q$, let  $S_{j}(Q)=2^{j}Q\setminus 2^{j-1}Q$ if
$S_{j}(Q)=2^{j}Q\setminus 2^{j-1}Q$ if  $j\geqslant 1,$ and
$j\geqslant 1,$ and  $S_{0}(Q)=Q$.
$S_{0}(Q)=Q$.
Definition 2.2. (kernel condition)
 Let  $1\leqslant p_{0}<\infty .$ Then, assume that
$1\leqslant p_{0}<\infty .$ Then, assume that
- (H1) For all  $p_{0}\leqslant q_{1},q_{2},\ldots ,q_{m}<\infty$ and $p_{0}\leqslant q_{1},q_{2},\ldots ,q_{m}<\infty$ and $0<q<\infty$ with $0<q<\infty$ with $1/q_{1}+\cdots +1/q_{m}=1/q,$ $1/q_{1}+\cdots +1/q_{m}=1/q,$ $T$ maps $T$ maps $L^{q_{1}}\times \cdots \times L^{q_{m}}$ into $L^{q_{1}}\times \cdots \times L^{q_{m}}$ into $L^{q,\infty }.$ $L^{q,\infty }.$
- (H2) There exists  $\unicode[STIX]{x1D6FF}>n/p_{0}$ so that for the conjugate exponent $\unicode[STIX]{x1D6FF}>n/p_{0}$ so that for the conjugate exponent $p_{0}^{\prime }$ of $p_{0}^{\prime }$ of $p_{0},$ one has for all balls $p_{0},$ one has for all balls $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j_{m}}(Q)}\cdots \int _{S_{j_{1}}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\big|K_{t}(x-z,\vec{y})-K_{t}(x^{\prime }-z,\vec{y})|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{p_{0}^{\prime }/2}\,d\vec{y}\Big)^{1/p_{0}^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{|x-x^{\prime }|^{m(\unicode[STIX]{x1D6FF}-n/p_{0})}}{|Q|^{m\unicode[STIX]{x1D6FF}/n}}2^{-m\unicode[STIX]{x1D6FF}j_{0}}\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j_{m}}(Q)}\cdots \int _{S_{j_{1}}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\big|K_{t}(x-z,\vec{y})-K_{t}(x^{\prime }-z,\vec{y})|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{p_{0}^{\prime }/2}\,d\vec{y}\Big)^{1/p_{0}^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{|x-x^{\prime }|^{m(\unicode[STIX]{x1D6FF}-n/p_{0})}}{|Q|^{m\unicode[STIX]{x1D6FF}/n}}2^{-m\unicode[STIX]{x1D6FF}j_{0}}\nonumber\end{eqnarray}$$ $Q$, all $Q$, all $x,z\in (1/2)Q$ and $x,z\in (1/2)Q$ and $(j_{1},\ldots ,j_{m})\neq (0,\ldots ,0),$ where $(j_{1},\ldots ,j_{m})\neq (0,\ldots ,0),$ where $j_{0}=\max _{k=1,\ldots ,m}\{j_{k}\}$. $j_{0}=\max _{k=1,\ldots ,m}\{j_{k}\}$.
- (H3) There exists some positive constant  $C>0$ such that for all balls $C>0$ such that for all balls $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j_{m}}(Q)}\cdots \int _{S_{j_{1}}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\big|K_{t}(x,\vec{y})|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{p_{0}^{\prime }/2}\,d\vec{y}\Big)^{1/p_{0}^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{2^{-mnj_{0}/p_{0}}}{|Q|^{m/p_{0}}}\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & & \displaystyle \Big(\int _{S_{j_{m}}(Q)}\cdots \int _{S_{j_{1}}(Q)}\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\big|K_{t}(x,\vec{y})|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{p_{0}^{\prime }/2}\,d\vec{y}\Big)^{1/p_{0}^{\prime }}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant C\frac{2^{-mnj_{0}/p_{0}}}{|Q|^{m/p_{0}}}\nonumber\end{eqnarray}$$ $Q$ with center at $Q$ with center at $x$ and $x$ and $(j_{1},\ldots ,j_{m})\neq (0,\ldots ,0),$ where $(j_{1},\ldots ,j_{m})\neq (0,\ldots ,0),$ where $j_{0}=\max _{k=1,\ldots ,m}\{j_{k}\}$. $j_{0}=\max _{k=1,\ldots ,m}\{j_{k}\}$.
Definition 2.3. (Commutators of multilinear square operator)
 The commutators of multilinear square operator  $T_{\unicode[STIX]{x1D706}}$ with BMO functions
$T_{\unicode[STIX]{x1D706}}$ with BMO functions  $\vec{b}=(b_{1},b_{2},\ldots ,b_{m})$ are defined by
$\vec{b}=(b_{1},b_{2},\ldots ,b_{m})$ are defined by 
 $$\begin{eqnarray}\displaystyle & & \displaystyle T_{\unicode[STIX]{x1D706},\vec{b}}(\vec{f})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\bigg|\int _{\mathbb{R}^{mn}}(b_{i}(x)-b_{i}(y_{i}))K_{t}(z,\vec{y})\mathop{\prod }_{j=1}^{m}f_{j}(y_{j})\,d\vec{y}\bigg|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2},\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle T_{\unicode[STIX]{x1D706},\vec{b}}(\vec{f})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\bigg|\int _{\mathbb{R}^{mn}}(b_{i}(x)-b_{i}(y_{i}))K_{t}(z,\vec{y})\mathop{\prod }_{j=1}^{m}f_{j}(y_{j})\,d\vec{y}\bigg|^{2}\frac{dz\,dt}{t^{n+1}}\Big)^{1/2},\end{eqnarray}$$ for any  $\vec{f}=(f_{1},\ldots ,f_{m})\in {\mathcal{S}}(\mathbb{R}^{n})\times \cdots \times {\mathcal{S}}(\mathbb{R}^{n})$ and all
$\vec{f}=(f_{1},\ldots ,f_{m})\in {\mathcal{S}}(\mathbb{R}^{n})\times \cdots \times {\mathcal{S}}(\mathbb{R}^{n})$ and all  $x\notin \bigcap _{j=1}^{m}\text{supp}f_{j}.$
$x\notin \bigcap _{j=1}^{m}\text{supp}f_{j}.$
We may obtain the following weighted estimates.
Lemma 2.3. Let  $T_{\unicode[STIX]{x1D706}}$ be the multilinear square function with a kernel satisfying conditions (H1), (H2) and (H3) for some
$T_{\unicode[STIX]{x1D706}}$ be the multilinear square function with a kernel satisfying conditions (H1), (H2) and (H3) for some  $1\leqslant p_{0}<\infty .$ Then, for any
$1\leqslant p_{0}<\infty .$ Then, for any  $p_{0}\leqslant p_{1},\ldots ,p_{m}<\infty$,
$p_{0}\leqslant p_{1},\ldots ,p_{m}<\infty$,  $1/p=1/p_{1}+\cdots +1/p_{m}$ and
$1/p=1/p_{1}+\cdots +1/p_{m}$ and  $\vec{\unicode[STIX]{x1D714}}\in A_{\vec{P}/p_{0}}$, the following weighted estimates hold.
$\vec{\unicode[STIX]{x1D714}}\in A_{\vec{P}/p_{0}}$, the following weighted estimates hold.
- (i) If there is no  $p_{i}=p_{0}$, then $p_{i}=p_{0}$, then $\Vert T_{\unicode[STIX]{x1D706}}(\vec{f})\Vert _{L^{p}(\unicode[STIX]{x1D708}_{\vec{w}})}\leqslant C\prod _{i=1}^{m}\Vert f_{i}\Vert _{L^{p_{i}}(w_{i})}.$ $\Vert T_{\unicode[STIX]{x1D706}}(\vec{f})\Vert _{L^{p}(\unicode[STIX]{x1D708}_{\vec{w}})}\leqslant C\prod _{i=1}^{m}\Vert f_{i}\Vert _{L^{p_{i}}(w_{i})}.$
- (ii) If there is a  $p_{i}=p_{0}$, then $p_{i}=p_{0}$, then $\Vert T_{\unicode[STIX]{x1D706}}(\vec{f})\Vert _{L^{p,\infty }(\unicode[STIX]{x1D708}_{\vec{w}})}\leqslant C\prod _{i=1}^{m}\Vert f_{i}\Vert _{L^{p_{i}}(w_{i})}.$ $\Vert T_{\unicode[STIX]{x1D706}}(\vec{f})\Vert _{L^{p,\infty }(\unicode[STIX]{x1D708}_{\vec{w}})}\leqslant C\prod _{i=1}^{m}\Vert f_{i}\Vert _{L^{p_{i}}(w_{i})}.$
 As for the commutators of  $T$, we obtain the following weighted estimates.
$T$, we obtain the following weighted estimates.
Lemma 2.4. Let  $T_{\unicode[STIX]{x1D706}}$ be the multilinear square function with a kernel satisfying conditions (H1), (H2) and (H3) for some
$T_{\unicode[STIX]{x1D706}}$ be the multilinear square function with a kernel satisfying conditions (H1), (H2) and (H3) for some  $1\leqslant p_{0}<\infty$. Let
$1\leqslant p_{0}<\infty$. Let  $\vec{b}\in BMO^{m}$. Then, for any
$\vec{b}\in BMO^{m}$. Then, for any  $p_{0}<p_{1},\ldots ,p_{m}<\infty$,
$p_{0}<p_{1},\ldots ,p_{m}<\infty$,  $1/p=1/p_{1}+\cdots +1/p_{m}$ and
$1/p=1/p_{1}+\cdots +1/p_{m}$ and  $\vec{\unicode[STIX]{x1D714}}\in A_{\vec{P}/p_{0}}$, we have
$\vec{\unicode[STIX]{x1D714}}\in A_{\vec{P}/p_{0}}$, we have 
 $$\begin{eqnarray}||T_{\unicode[STIX]{x1D706},\vec{b}}\vec{f}||_{L^{p}(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||\vec{b}||_{BMO}\mathop{\prod }_{i=1}^{m}||f_{i}||_{L^{p_{i}}(\unicode[STIX]{x1D714}_{i})},\end{eqnarray}$$
$$\begin{eqnarray}||T_{\unicode[STIX]{x1D706},\vec{b}}\vec{f}||_{L^{p}(\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}})}\leqslant C||\vec{b}||_{BMO}\mathop{\prod }_{i=1}^{m}||f_{i}||_{L^{p_{i}}(\unicode[STIX]{x1D714}_{i})},\end{eqnarray}$$ where  $||\vec{b}||_{BMO}=\max _{j}||b_{j}||_{BMO}.$
$||\vec{b}||_{BMO}=\max _{j}||b_{j}||_{BMO}.$
Lemma 2.5. Let  $T_{\unicode[STIX]{x1D706}}$ be the multilinear square function with a kernel satisfying conditions (H1), (H2) and (H3) for some
$T_{\unicode[STIX]{x1D706}}$ be the multilinear square function with a kernel satisfying conditions (H1), (H2) and (H3) for some  $1\leqslant p_{0}<\infty$. Let
$1\leqslant p_{0}<\infty$. Let  $\vec{b}\in BMO^{m}$. Let
$\vec{b}\in BMO^{m}$. Let  $\vec{\unicode[STIX]{x1D714}}\in A_{(1,\ldots ,1)}$ and
$\vec{\unicode[STIX]{x1D714}}\in A_{(1,\ldots ,1)}$ and  $\vec{b}\in BMO^{m}.$ Then, there exists a constant
$\vec{b}\in BMO^{m}.$ Then, there exists a constant  $C$ (depending on
$C$ (depending on  $\vec{b}$) such that
$\vec{b}$) such that 
 $$\begin{eqnarray}\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}}(\big\{x\in \mathbb{R}^{n}:|T_{\unicode[STIX]{x1D706},\vec{b}}\vec{f}(x)|>t^{m}\big\})\leqslant C\mathop{\prod }_{j=1}^{m}\Big(\int _{\mathbb{R}^{n}}\unicode[STIX]{x1D6F7}\Big(\frac{|f_{j}(x)|}{t}\Big)\unicode[STIX]{x1D714}_{j}(x)\,dx\Big)^{1/m},\end{eqnarray}$$
$$\begin{eqnarray}\unicode[STIX]{x1D708}_{\vec{\unicode[STIX]{x1D714}}}(\big\{x\in \mathbb{R}^{n}:|T_{\unicode[STIX]{x1D706},\vec{b}}\vec{f}(x)|>t^{m}\big\})\leqslant C\mathop{\prod }_{j=1}^{m}\Big(\int _{\mathbb{R}^{n}}\unicode[STIX]{x1D6F7}\Big(\frac{|f_{j}(x)|}{t}\Big)\unicode[STIX]{x1D714}_{j}(x)\,dx\Big)^{1/m},\end{eqnarray}$$ where  $\unicode[STIX]{x1D6F7}(t)=t^{p_{0}}(1+\log ^{+}t)^{p_{0}}$.
$\unicode[STIX]{x1D6F7}(t)=t^{p_{0}}(1+\log ^{+}t)^{p_{0}}$.
Remark 2.4. The proofs of Lemmas 2.3–2.5 are almost the same as the [Reference Zengyan, Xue and Yabuta28, proofs of Theorems 1.3–1.5] with few modifications, so we omit them here.
With Propositions 2.1–2.2 and Lemmas 2.3–2.5 in hand, the proofs of Theorems 1.1 and 1.2 will be quite direct.
2.3 Proofs of Theorems 1.1 and 1.2.
Proof. (a) The case  $p_{0}>2n/s$. By Proposition 2.1 and Proposition 2.2, it is easy to see that the associated kernel of
$p_{0}>2n/s$. By Proposition 2.1 and Proposition 2.2, it is easy to see that the associated kernel of  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ satisfies the conditions (H2) and (H3). Since we have supposed (H1) from the beginning, applying Lemmas 2.3–2.5, we obtain the desired conclusions in Theorems 1.1 and 1.2.
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ satisfies the conditions (H2) and (H3). Since we have supposed (H1) from the beginning, applying Lemmas 2.3–2.5, we obtain the desired conclusions in Theorems 1.1 and 1.2.
 (b) The case  $p_{0}=2n/s$. By the property of
$p_{0}=2n/s$. By the property of  $A_{p}$ weights, there exists a real number
$A_{p}$ weights, there exists a real number  $\tilde{p}_{0}$ satisfying
$\tilde{p}_{0}$ satisfying  $p_{0}=2n/s<\tilde{p}_{0}<\min (p_{1},p_{2},2)$ and
$p_{0}=2n/s<\tilde{p}_{0}<\min (p_{1},p_{2},2)$ and  $\vec{\unicode[STIX]{x1D714}}\in A_{\vec{p}/\tilde{p}_{0}}$ (see [Reference Bui and Duong1] or [Reference Lerner, Ombrosi, Pérez, Torres and Trujillo-González19]). Therefore, by step (a), we finish the proofs of Theorems 1.1 and 1.2.
$\vec{\unicode[STIX]{x1D714}}\in A_{\vec{p}/\tilde{p}_{0}}$ (see [Reference Bui and Duong1] or [Reference Lerner, Ombrosi, Pérez, Torres and Trujillo-González19]). Therefore, by step (a), we finish the proofs of Theorems 1.1 and 1.2.
3 An example
 In this section, an example will be given to show that there are some multilinear Fourier multiplier operators  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ which are bounded from
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ which are bounded from  $L^{q_{1}}\times L^{q_{2}}$ to
$L^{q_{1}}\times L^{q_{2}}$ to  $L^{q}$. Thus, the assumption that
$L^{q}$. Thus, the assumption that  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from  $L^{q_{1}}\times L^{q_{2}}$ into
$L^{q_{1}}\times L^{q_{2}}$ into  $L^{q,\infty }$ in Theorems 1.1–1.2 is reasonable.
$L^{q,\infty }$ in Theorems 1.1–1.2 is reasonable.
 Denote  $h_{t}(x,u)=(1+|x-u|/t)^{-n\unicode[STIX]{x1D706}}$. The bilinear Fourier multiplier operators
$h_{t}(x,u)=(1+|x-u|/t)^{-n\unicode[STIX]{x1D706}}$. The bilinear Fourier multiplier operators  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ can be written as
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ can be written as 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(f_{1},f_{2})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big|\int _{(\mathbb{R}^{n})^{2}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\Big|^{2}h_{t}(x,u)\frac{du\,dt}{t^{n+1}}\Big)^{1/2}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(f_{1},f_{2})(x)=\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big|\int _{(\mathbb{R}^{n})^{2}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\Big|^{2}h_{t}(x,u)\frac{du\,dt}{t^{n+1}}\Big)^{1/2}.\nonumber\end{eqnarray}$$First, we consider its bilinearization in the following form:
 $$\begin{eqnarray}\displaystyle & & \displaystyle \widetilde{{\mathcal{T}}}_{\unicode[STIX]{x1D706},m}(\vec{f})(x)\nonumber\\ \displaystyle & & \displaystyle \quad =\iint _{\mathbb{R}_{+}^{n+1}}\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\,h_{t}(x,u)\frac{du\,dt}{t^{n+1}}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{(\mathbb{R}^{n})^{4}}\iint _{\mathbb{R}_{+}^{n+1}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,\Big(1+\frac{|x-u|}{t}\Big)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{(\mathbb{R}^{n})^{4}}\Big(\iint _{\mathbb{R}_{+}^{n+1}}e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \widetilde{{\mathcal{T}}}_{\unicode[STIX]{x1D706},m}(\vec{f})(x)\nonumber\\ \displaystyle & & \displaystyle \quad =\iint _{\mathbb{R}_{+}^{n+1}}\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\,h_{t}(x,u)\frac{du\,dt}{t^{n+1}}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{(\mathbb{R}^{n})^{4}}\iint _{\mathbb{R}_{+}^{n+1}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,\Big(1+\frac{|x-u|}{t}\Big)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{(\mathbb{R}^{n})^{4}}\Big(\iint _{\mathbb{R}_{+}^{n+1}}e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\Big)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})\mathop{\prod }_{i=1}^{4}\hat{f}_{i}(\unicode[STIX]{x1D709}_{i})\,d\unicode[STIX]{x1D709}_{i}\nonumber\end{eqnarray}$$where
 $$\begin{eqnarray}\displaystyle & & \displaystyle \tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})\nonumber\\ \displaystyle & & \displaystyle \quad =\iint _{\mathbb{R}_{+}^{n+1}}e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle \tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})\nonumber\\ \displaystyle & & \displaystyle \quad =\iint _{\mathbb{R}_{+}^{n+1}}e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}.\nonumber\end{eqnarray}$$Example 3.1. Suppose that  $m(0,0)=0$ and there exists some
$m(0,0)=0$ and there exists some  $\unicode[STIX]{x1D700}>0$ such that
$\unicode[STIX]{x1D700}>0$ such that 
 $$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\leqslant (1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-2n-1-\unicode[STIX]{x1D700}},\quad forall|\unicode[STIX]{x1D6FC}|\leqslant 2n+1.\end{eqnarray}$$
$$\begin{eqnarray}|\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\leqslant (1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{-2n-1-\unicode[STIX]{x1D700}},\quad forall|\unicode[STIX]{x1D6FC}|\leqslant 2n+1.\end{eqnarray}$$ Then, there exists a constant  $\unicode[STIX]{x1D6FF},$ with
$\unicode[STIX]{x1D6FF},$ with  $0<\unicode[STIX]{x1D6FF}\leqslant 1$, such that
$0<\unicode[STIX]{x1D6FF}\leqslant 1$, such that
- (i)  $\widetilde{{\mathcal{T}}}_{\unicode[STIX]{x1D706},m}$ is bounded from $\widetilde{{\mathcal{T}}}_{\unicode[STIX]{x1D706},m}$ is bounded from $L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})\times L^{q_{3}}(\mathbb{R}^{n})\times L^{q_{4}}(\mathbb{R}^{n})$ to $L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})\times L^{q_{3}}(\mathbb{R}^{n})\times L^{q_{4}}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$ for $L^{q}(\mathbb{R}^{n})$ for $2-\unicode[STIX]{x1D6FF}<q_{1},q_{2},q_{3},q_{4}<\infty$ with $2-\unicode[STIX]{x1D6FF}<q_{1},q_{2},q_{3},q_{4}<\infty$ with $1/q=1/q_{1}+1/q_{2}+1/q_{3}+1/q_{4}$. $1/q=1/q_{1}+1/q_{2}+1/q_{3}+1/q_{4}$.
- (ii)  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from $L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})$ to $L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$ for $L^{q}(\mathbb{R}^{n})$ for $2-\unicode[STIX]{x1D6FF}<q_{1},q_{2}<\infty$ with $2-\unicode[STIX]{x1D6FF}<q_{1},q_{2}<\infty$ with $1/q=1/q_{1}+1/q_{2}$. $1/q=1/q_{1}+1/q_{2}$.
Proof. (i) The assumption  $m(0,0)=0$ and the mean-value theorem gives that
$m(0,0)=0$ and the mean-value theorem gives that  $|m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\leqslant |\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|$. This together with (3.1) implies that
$|m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\leqslant |\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|$. This together with (3.1) implies that  $|m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\leqslant (|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{1/4}/(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{3/4}$ for
$|m(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})|\leqslant (|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{1/4}/(1+|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|)^{3/4}$ for  $\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2}\in \mathbb{R}^{n}$. Note that
$\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2}\in \mathbb{R}^{n}$. Note that  $\unicode[STIX]{x1D706}>1$, we have
$\unicode[STIX]{x1D706}>1$, we have 
 $$\begin{eqnarray}\displaystyle & & \displaystyle |\tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})|\nonumber\\ \displaystyle & & \displaystyle \quad =\bigg|\iint _{\mathbb{R}_{+}^{n+1}}e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\bigg|\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \int _{\mathbb{R}^{n}}(1+|u|)^{-n\unicode[STIX]{x1D706}}\,du\int _{0}^{\infty }\frac{(|t\unicode[STIX]{x1D709}_{1}|+|t\unicode[STIX]{x1D709}_{2}|)^{1/4}}{(1+|t\unicode[STIX]{x1D709}_{1}|+|t\unicode[STIX]{x1D709}_{2}|)^{3/4}}\frac{(|t\unicode[STIX]{x1D709}_{3}|+|t\unicode[STIX]{x1D709}_{4}|)^{1/4}}{(1+|t\unicode[STIX]{x1D709}_{3}|+|t\unicode[STIX]{x1D709}_{4}|)^{3/4}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \int _{0}^{\infty }\frac{(t(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|))(t(|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|))^{1/4}}{(1+t(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|+|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|))^{3/4}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \int _{0}^{\infty }\frac{s^{1/2}}{(1+s)^{3/4}}\frac{ds}{s}<\infty .\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle |\tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})|\nonumber\\ \displaystyle & & \displaystyle \quad =\bigg|\iint _{\mathbb{R}_{+}^{n+1}}e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\bigg|\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \int _{\mathbb{R}^{n}}(1+|u|)^{-n\unicode[STIX]{x1D706}}\,du\int _{0}^{\infty }\frac{(|t\unicode[STIX]{x1D709}_{1}|+|t\unicode[STIX]{x1D709}_{2}|)^{1/4}}{(1+|t\unicode[STIX]{x1D709}_{1}|+|t\unicode[STIX]{x1D709}_{2}|)^{3/4}}\frac{(|t\unicode[STIX]{x1D709}_{3}|+|t\unicode[STIX]{x1D709}_{4}|)^{1/4}}{(1+|t\unicode[STIX]{x1D709}_{3}|+|t\unicode[STIX]{x1D709}_{4}|)^{3/4}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \int _{0}^{\infty }\frac{(t(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|))(t(|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|))^{1/4}}{(1+t(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|+|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|))^{3/4}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \int _{0}^{\infty }\frac{s^{1/2}}{(1+s)^{3/4}}\frac{ds}{s}<\infty .\nonumber\end{eqnarray}$$ Next we consider the case  $0<s\leqslant 2n+1$. We get
$0<s\leqslant 2n+1$. We get 
 $$\begin{eqnarray}\displaystyle & & \displaystyle |\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}\tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})|\nonumber\\ \displaystyle & & \displaystyle \quad =\Big|\iint _{\mathbb{R}_{+}^{n+1}}\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}\big(e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\big)\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\Big|\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{0\leqslant |\unicode[STIX]{x1D6FD}|\leqslant s}\Big|\iint _{\mathbb{R}_{+}^{n+1}}\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}-\unicode[STIX]{x1D6FD}}\big(m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\big)\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FD}}\big(e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\big)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\Big|\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{0\leqslant |\unicode[STIX]{x1D6FD}|\leqslant s}\int _{\mathbb{R}^{n}}(1+|u|)^{-n\unicode[STIX]{x1D706}}\,du\int _{0}^{\infty }\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{t^{|\unicode[STIX]{x1D6FC}|}}{(1+|t\unicode[STIX]{x1D709}_{1}|+|t\unicode[STIX]{x1D709}_{2}|)^{2n+1+\unicode[STIX]{x1D700}}(1+|t\unicode[STIX]{x1D709}_{3}|+|t\unicode[STIX]{x1D709}_{4}|)^{2n+1+\unicode[STIX]{x1D700}}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \int _{0}^{\infty }\frac{t^{|\unicode[STIX]{x1D6FC}|}}{(1+t(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|+|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|))^{2n+1+\unicode[STIX]{x1D700}}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad =\frac{1}{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|+|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|)^{|\unicode[STIX]{x1D6FC}|}}\int _{0}^{\infty }\frac{s^{|\unicode[STIX]{x1D6FC}|}}{(1+s)^{2n+1+\unicode[STIX]{x1D700}}}\frac{ds}{s}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle & & \displaystyle |\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}\tilde{m}(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2},\unicode[STIX]{x1D709}_{3},\unicode[STIX]{x1D709}_{4})|\nonumber\\ \displaystyle & & \displaystyle \quad =\Big|\iint _{\mathbb{R}_{+}^{n+1}}\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}}\big(e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\big)\,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\Big|\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{0\leqslant |\unicode[STIX]{x1D6FD}|\leqslant s}\Big|\iint _{\mathbb{R}_{+}^{n+1}}\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FC}-\unicode[STIX]{x1D6FD}}\big(m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})\big)\unicode[STIX]{x2202}^{\unicode[STIX]{x1D6FD}}\big(e^{-2\unicode[STIX]{x1D70B}itu\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}\big)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,(1+|u|)^{-n\unicode[STIX]{x1D706}}\frac{du\,dt}{t^{n+1}}\Big|\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \mathop{\sum }_{0\leqslant |\unicode[STIX]{x1D6FD}|\leqslant s}\int _{\mathbb{R}^{n}}(1+|u|)^{-n\unicode[STIX]{x1D706}}\,du\int _{0}^{\infty }\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\frac{t^{|\unicode[STIX]{x1D6FC}|}}{(1+|t\unicode[STIX]{x1D709}_{1}|+|t\unicode[STIX]{x1D709}_{2}|)^{2n+1+\unicode[STIX]{x1D700}}(1+|t\unicode[STIX]{x1D709}_{3}|+|t\unicode[STIX]{x1D709}_{4}|)^{2n+1+\unicode[STIX]{x1D700}}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad \lesssim \int _{0}^{\infty }\frac{t^{|\unicode[STIX]{x1D6FC}|}}{(1+t(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|+|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|))^{2n+1+\unicode[STIX]{x1D700}}}\frac{dt}{t}\nonumber\\ \displaystyle & & \displaystyle \quad =\frac{1}{(|\unicode[STIX]{x1D709}_{1}|+|\unicode[STIX]{x1D709}_{2}|+|\unicode[STIX]{x1D709}_{3}|+|\unicode[STIX]{x1D709}_{4}|)^{|\unicode[STIX]{x1D6FC}|}}\int _{0}^{\infty }\frac{s^{|\unicode[STIX]{x1D6FC}|}}{(1+s)^{2n+1+\unicode[STIX]{x1D700}}}\frac{ds}{s}.\nonumber\end{eqnarray}$$ By Theorem 1 in [Reference Grafakos and Si15], we may obtain that there exists  $0<\unicode[STIX]{x1D6FF}\leqslant 1$ such that
$0<\unicode[STIX]{x1D6FF}\leqslant 1$ such that  $\widetilde{{\mathcal{T}}}_{\unicode[STIX]{x1D706},m}$ is bounded from
$\widetilde{{\mathcal{T}}}_{\unicode[STIX]{x1D706},m}$ is bounded from  $L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})\times L^{q_{3}}(\mathbb{R}^{n})\times L^{q_{4}}(\mathbb{R}^{n})$ to
$L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})\times L^{q_{3}}(\mathbb{R}^{n})\times L^{q_{4}}(\mathbb{R}^{n})$ to  $L^{q}(\mathbb{R}^{n})$ for
$L^{q}(\mathbb{R}^{n})$ for  $2-\unicode[STIX]{x1D6FF}<q_{1},q_{2},q_{3},q_{4}$ with
$2-\unicode[STIX]{x1D6FF}<q_{1},q_{2},q_{3},q_{4}$ with  $1/q=1/q_{1}+1/q_{2}+1/q_{3}+1/q_{4}$.
$1/q=1/q_{1}+1/q_{2}+1/q_{3}+1/q_{4}$.
(ii) Note that
 $$\begin{eqnarray}\displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})(x)^{2} & = & \displaystyle \iint _{\mathbb{R}_{+}^{n+1}}\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}-\unicode[STIX]{x1D709}_{3}-\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\overline{m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})}\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\nonumber\\ \displaystyle & & \displaystyle \times \,\overline{\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})}\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\,d\unicode[STIX]{x1D709}_{3}\,d\unicode[STIX]{x1D709}_{4}\,h_{t}(x,u)\frac{du\,dt}{t^{n+1}}\nonumber\\ \displaystyle & = & \displaystyle \iint _{\mathbb{R}_{+}^{n+1}}\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\overline{m(-t\unicode[STIX]{x1D709}_{3},-t\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \times \,\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\overline{\hat{f}_{1}(-\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(-\unicode[STIX]{x1D709}_{2})}\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\,d\unicode[STIX]{x1D709}_{3}\,d\unicode[STIX]{x1D709}_{4}\,h_{t}(x,u)\frac{du\,dt}{t^{n+1}}.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(\vec{f})(x)^{2} & = & \displaystyle \iint _{\mathbb{R}_{+}^{n+1}}\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}-\unicode[STIX]{x1D709}_{3}-\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \times \,m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\overline{m(t\unicode[STIX]{x1D709}_{3},t\unicode[STIX]{x1D709}_{4})}\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\nonumber\\ \displaystyle & & \displaystyle \times \,\overline{\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})}\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\,d\unicode[STIX]{x1D709}_{3}\,d\unicode[STIX]{x1D709}_{4}\,h_{t}(x,u)\frac{du\,dt}{t^{n+1}}\nonumber\\ \displaystyle & = & \displaystyle \iint _{\mathbb{R}_{+}^{n+1}}\int _{(\mathbb{R}^{n})^{4}}e^{2\unicode[STIX]{x1D70B}ix\cdot (\unicode[STIX]{x1D709}_{1}+\unicode[STIX]{x1D709}_{2}+\unicode[STIX]{x1D709}_{3}+\unicode[STIX]{x1D709}_{4})}m(t\unicode[STIX]{x1D709}_{1},t\unicode[STIX]{x1D709}_{2})\overline{m(-t\unicode[STIX]{x1D709}_{3},-t\unicode[STIX]{x1D709}_{4})}\nonumber\\ \displaystyle & & \displaystyle \times \,\hat{f}_{1}(\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(\unicode[STIX]{x1D709}_{2})\overline{\hat{f}_{1}(-\unicode[STIX]{x1D709}_{1})\hat{f}_{2}(-\unicode[STIX]{x1D709}_{2})}\,d\unicode[STIX]{x1D709}_{1}\,d\unicode[STIX]{x1D709}_{2}\,d\unicode[STIX]{x1D709}_{3}\,d\unicode[STIX]{x1D709}_{4}\,h_{t}(x,u)\frac{du\,dt}{t^{n+1}}.\nonumber\end{eqnarray}$$ Then, as a consequence of (i), we obtain that  $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from
$\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is bounded from  $L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})$ to
$L^{q_{1}}(\mathbb{R}^{n})\times L^{q_{2}}(\mathbb{R}^{n})$ to  $L^{q}(\mathbb{R}^{n})$ for
$L^{q}(\mathbb{R}^{n})$ for  $2-\unicode[STIX]{x1D6FF}<q_{1},q_{2}<\infty$ with
$2-\unicode[STIX]{x1D6FF}<q_{1},q_{2}<\infty$ with  $1/q=1/q_{1}+1/q_{2}$.
$1/q=1/q_{1}+1/q_{2}$.
Acknowledgment
The authors would like to thank the referee for his/her nice comments and suggestions which made this paper more readable.
 
 






























































