Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-09-18T00:30:02.122Z Has data issue: false hasContentIssue false

EFFECTIVE BOUND FOR SINGULARITIES ON TORIC FIBRATIONS

Published online by Cambridge University Press:  17 September 2025

BINGYI CHEN*
Affiliation:
Department of Mathematics https://ror.org/0064kty71 Sun Yat-sen University Guangzhou P. R. China

Abstract

It was conjectured by McKernan and Shokurov that for any Fano contraction $f:X \to Z$ of relative dimension r with X being $\epsilon $-lc, there is a positive $\delta $ depending only on $r,\epsilon $ such that Z is $\delta $-lc and the multiplicity of the fiber of f over a codimension one point of Z is bounded from above by $1/\delta $. Recently, this conjecture was confirmed by Birkar [9]. In this article, we give an explicit value for $\delta $ in terms of $\epsilon ,r$ in the toric case, which belongs to $O(\epsilon ^{2^r})$ as $\epsilon \rightarrow 0$. The order $O(\epsilon ^{2^r})$ is optimal in some sense.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexeev, V. and Borisov, A., On the log discrepancies in toric Mori contractions , Proc. Amer. Math. Soc. 12 (2014), no. 11, 36873694.10.1090/S0002-9939-2014-12159-9CrossRefGoogle Scholar
Ambro, F., The adjunction conjecture and its applications, preprint, 1999, arXiv: math/9903060v3.Google Scholar
Ambro, F., The moduli b-divisor of an lc-trivial fibration , Compos. Math. 141 (2005), no. 2, 385403.Google Scholar
Ambro, F., Variation of log canonical thresholds in linear systems , Int. Math. Res. Notices 2016 (2016), no. 14, 44184448.CrossRefGoogle Scholar
Birkar, C., Singularities on the base of a Fano type fibration , J. Reine Angew. Math. 715 (2016), 125142.CrossRefGoogle Scholar
Birkar, C., Log Calabi-Yau fibrations, preprint, 2018, arXiv:1811.10709v2.Google Scholar
Birkar, C., Anti-pluricanonical systems on Fano varieties , Ann. Math. 190 (2019), no .2, 345463.10.4007/annals.2019.190.2.1CrossRefGoogle Scholar
Birkar, C., Singularities of linear systems and boundedness of Fano varieties , Ann. Math. 193 (2021), 347405.CrossRefGoogle Scholar
Birkar, C., Singularities on Fano fibrations and beyond, preprint, 2023, arXiv:2305.18770.Google Scholar
Birkar, C., Boundedness of Fano type fibrations , Ann. Sci. Éc. Norm. Supér. 57 (2024), no. 3, 787840.Google Scholar
Birkar, C. and Chen, Y., Singularities on toric fibrations , Sb. Math. 212 (2021), no. 3, 2038.CrossRefGoogle Scholar
Birkar, C., Cascini, P., Hacon, C. D. and McKernan, J., Existence of minimal models for varieties of log general type , J. Amer. Math. Soc. 23 (2010), no. 2, 405468.CrossRefGoogle Scholar
Birkar, C. and Zhang, D.-Q., Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs , Publ. Math. IHES. 123 (2016), 283331.Google Scholar
Chen, B., Optimal bound for singularities on Fano type fibrations of relative dimension one, preprint, 2024, arXiv:2210.08469v3.Google Scholar
Chen, G., Han, J., Liu, J. and Xie, L., Minimal model program for algebraically integrable foliations and generalized pairs, preprint, 2023, arXiv:2309.15823v2.Google Scholar
Cox, D. A., Little, J. B. and Schenck, H. K., Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011.CrossRefGoogle Scholar
Filipazzi, S., On a generalized canonical bundle formula and generalized adjunction , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 11871221.Google Scholar
Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993.CrossRefGoogle Scholar
Han, H., Jiang, C. and Luo, Y., Shokurov’s conjecture on conic bundles with canonical singularities , Forum Math. Sigma 10 (2022), e38.10.1017/fms.2022.32CrossRefGoogle Scholar
Hacon, C. D. and Liu, J., Existence of flips for generalized lc pairs , Camb. J. Math. 11 (2023), no. 4, 795828.Google Scholar
Jiao, J., Liu, J. and Xie, L., On generalized lc pairs with b-log abundant nef part, preprint, 2022, arXiv:2202.11256v2.Google Scholar
Kawamata, Y., Subadjunction of log canonical divisors for a variety of codimension 2 , Contemp. Math. 207 (1997), 7988.10.1090/conm/207/02721CrossRefGoogle Scholar
Kawamata, Y., Subadjuntion of log canonical divisors. II , Amer. J. Math. 120 (1998), 893899.CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998.10.1017/CBO9780511662560CrossRefGoogle Scholar
Matsuki, K., Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002.CrossRefGoogle Scholar
Mori, S. and Prokhorov, Y. G., On $\mathbb{Q}$ -conic bundles , Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 315369.CrossRefGoogle Scholar
Mori, S. and Prokhorov, Y. G., Multiple fibers of del Pezzo fibrations , Proc. Steklov Inst. Math. 264 (2009), 131145.10.1134/S0081543809010167CrossRefGoogle Scholar
Oda, T., Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3., 15, Springer-Verlag, Berlin, 1988. Transl. from the Japan.Google Scholar
Prokhorov, Y. G. and Shokurov, V. V., Towards the second main theorem on complements , J. Algebraic Geom. 18 (2009), no. 1, 151199.10.1090/S1056-3911-08-00498-0CrossRefGoogle Scholar
Zou, Y., Optimal upper bounds for anti-canonical volumes of singular toric Fano varieties, preprint, 2024, arXiv:2407.19870v2.Google Scholar