Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-13T22:50:37.515Z Has data issue: false hasContentIssue false

Molecular Dynamics of Cation Hydration in the Presence ofCarboxylated Molecules: Implications for Calcification

Published online by Cambridge University Press:  09 February 2011

Laura M. Hamm
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Adam F. Wallace
Affiliation:
Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Patricia M. Dove
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Get access

Abstract

Biomolecules rich in aspartic acid (Asp) are known to play a role inbiomineral morphology and polymorph selection, and have been shown togreatly enhance the growth kinetics of calcite. The mechanism by which thesecompounds favor calcification may be related to their effects upon cationsolvation. Using molecular dynamics, we investigated the influence of smallcarboxylated molecules on the hydration states and water exchange rates ofdivalent cations. We show that the carboxylate moieties of Asp promotedehydration of Ca2+ and Sr2+ and that contact ion pair(CIP) formation is not required to disrupt the hydration of these cations. Ca2+- Asp and Sr2+ - Asp CIP formation decreasesthe total inner sphere coordination from an average of 8.0 and 8.4 in bulkwater to 7.5 and 8.0, respectively. Water residence times estimated for Mg2+, Ca2+and Sr2+ follow the expectedtrend of decreasing residence time with increasing ionic radius. In thepresence of Asp, both solvent-separated ion pair (SSIP) and CIP formationdecrease the residence times of Ca2+and Sr2+ innersphere water molecules. Comparable impacts on Mg2+ hydration arenot observed. Mg2+ - Asp CIP formation is energeticallyunfavorable and Asp does not affect Mg2+ inner sphere waterresidence times.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Belcher, A. M., Wu, X. H., Christensen, R. J., Hansma, P. K., Stucky, G. D., Morse, D. E., Nature 381, 56 (1996).Google Scholar
2. Addadi, L., Weiner, S., Proc Natl Acad Sci U S A 82, 4110 (1985).Google Scholar
3. Aizenberg, J., Addadi, L., Weiner, S., Lambert, G., Adv. Mater. 8, 222 (1996).Google Scholar
4. Falini, G., Albeck, S., Weiner, S., Addadi, L., Science 271, 67 (1996).Google Scholar
5. Albeck, S., Addadi, L., Weiner, S., Connect. Tissue Res. 35, 365 (1996).Google Scholar
6. Weiner, S., Troub, W., and Lowenstam, H.A., Biomineralization and Biological Metal Accumulation. Westbrowek, P. a. E. W. d. J., Ed., (Reidel Publishing Company, Dordrecht, 1983).Google Scholar
7. Elhadj, S., De Yoreo, J. J., Hoyer, J. R., Dove, P. M., Proc Natl Acad Sci U S A 103, 19237 (2006).Google Scholar
8. Stephenson, A. E., DeYoreo, J. J., Wu, L., Wu, K. J., Hoyer, J., Dove, P. M., Science 322, 724 (2008).Google Scholar
9. Chen, S., Yu, S., Jiang, J., Li, F., Liu, Y., Chem. Mater. 18, 115 (2006).Google Scholar
10. Piana, S., Jones, F., Gale, J. D., J. Am. Chem. Soc. 128, 13568 (2006).Google Scholar
11. Kowacz, M., Putnis, C., Putnis, A., Geochim Cosmochim Ac 71, 5168 (2007).Google Scholar
12. Kowacz, M., Putnis, A., Geochim. Cosmochim. Acta 72, 4476 (2008).Google Scholar
13. Kerisit, S., Cook, D. J., Spagnoli, D., Parker, S. C., J. Mater. Chem. 15, 1454 (2005).Google Scholar
14. Piana, S., Jones, F., Gale, J. D., Crystengcomm 9, 1187 (2007).Google Scholar
15. Hamm, L. M., Wallace, A. F., Dove, P. M., J Phys Chem B 114, 10488 (2010).Google Scholar
16. Hamm, L. M., Wallace, A. F., Dove, P. M., J. Phys. Chem. B in prep, (2010).Google Scholar
17. Plimpton, S. J., J. Comp. Phys. 117, 1 (1995).Google Scholar
18. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. B 102, 3586 (1998).Google Scholar
19. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L., J. Chem. Phys. 79, 926 (1983).Google Scholar
20. Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. C., J. Comput. Phys. 23, 327 (1977).Google Scholar
21. Aqvist, J., J. Phys. Chem. 94, 8021 (1990).Google Scholar
22. Babu, C. S., Lim, C., J Phys Chem A 110, 691 (2006).Google Scholar
23. Leach, A. R., Molecular modeling: principles and applications - 2nd edition. (Pearson Education Limited, Edinburgh Gate, 2001), pp. 580585.Google Scholar
24. Torrie, G. M., Valleau, J. P., J. Comp. Phys. 23, 187 (1977).Google Scholar
25. Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A., Rosenberg, J. M., J. Comp. Chem. 13, 1011 (1992).Google Scholar
26. Rey, R., Hynes, J. T., J Phys-Condens Mat 8, 9411 (1996).Google Scholar
27. Impey, R. W., Madden, P. A., Mcdonald, I. R., J Phys Chem-Us 87, 5071 (1983).Google Scholar
28. Caminiti, R., Licheri, G., Piccaluga, G., Pinna, G., J. Appl. Cryst. 12, 34 (1972).Google Scholar
29. Tongraar, A., Rode, B. M., Chem. Phys. Lett. 409, 304 (2005).Google Scholar
30. Jalilehvand, F., Spångberg, D., Lindqvist-Reis, P., Hermansson, K., Persson, I., Sandström, M., J. Am. Chem. Soc. 123, 431 (2001).Google Scholar
31. Fulton, J. L., Heald, S. M., J. Phys. Chem. A 107, 4688 (2003).Google Scholar
32. Piquemal, J. P., Perera, L., Cisneros, G. A., Ren, P. Y., Pedersen, L. G., Darden, T. A., J Chem Phys 125, (2006).Google Scholar
33. Seward, T. M., Henderson, C. M. B., Charnock, J. M., Driesner, T., Geochim. Cosmochim. Acta 63, 2409 (1999).Google Scholar
34. Parkman, R. H., Charnock, J. M., Livens, F. R., Vaughan, D. J., Geochim Cosmochim Ac 62, 1481 (1998).Google Scholar
35. Caminiti, R., Musinu, A., Paschina, G., Pinna, G., J. Appl. Cryst. 15, 482 (1982).Google Scholar
36. Larentzos, J. P., Criscenti, L. J., J Phys Chem B 112, 14243 (2008).Google Scholar
37. Bleuzen, A., Pittet, P.-A., Helm, L., Merbach, A. E., Magn. Reson. chem. 35, 765 (1997).Google Scholar
38. Marcus, Y., Ion Solvation. (John Wiley & Sons, Chinchester, 1985).Google Scholar
39. Kerisit, S., Parker, S. C., J Am Chem Soc 126, 10152 (2004).Google Scholar
40. Friddle, R. W., Weaver, M. L., Qiu, S. R., Wierzbicki, A., Casey, W. H., De Yoreo, J. J., P Natl Acad Sci USA 107, 11 (2010).Google Scholar
41. Gebauer, D., Völkel, A., Cölfen, H., Science 322, 1819 (2008).Google Scholar
42. Pouget, E. M., Bomans, P. H. H., Goos, J. A. C. M., Frederik, P. M., With, G. d., Sommerdijk, N. A. J. M., Science 323, 1455 (2009).Google Scholar
43. Gebauer, D., Volkel, A., Colfen, H., Science 322, 1819 (2008).Google Scholar
44. Pouget, E. M., Bomans, P. H., Goos, J. A., Frederik, P. M., de With, G., Sommerdijk, N. A., Science 323, 1455 (2009).Google Scholar
45. Wang, D., Wallace, A. F., DeYoreo, J. J., Dove, P. M., Proc. Natl. Acad. Sci. USA 106, 21511 (2009).Google Scholar