Hostname: page-component-857557d7f7-wf4rb Total loading time: 0 Render date: 2025-11-22T00:38:15.470Z Has data issue: false hasContentIssue false

Kantorite, K2NaMg(SO4)2F, a new fumarolic mineral from the tolbachik volcano, Kamchatka, Russia

Published online by Cambridge University Press:  21 May 2025

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Sergey N. Britvin
Affiliation:
Saint Petersburg State University, St.Petersburg, Russia
Maria O. Bulakh
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Anna G. Turchkova
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Leonid P. Anikin
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia
*
Corresponding author: Igor V. Pekov; Email: igorpekov@mail.ru

Abstract

The new mineral kantorite was found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. The associated minerals are aphthitalite, langbeinite, arcanite, krasheninnikovite, vanthoffite, kononovite, wulffite, halite, sylvite, flinteite, fluoborite, chubarovite, johillerite, urusovite, zincite, tenorite, pseudobrookite, hematite, sanidine and fluorophlogopite. Kantorite occurs as long-prismatic to acicular crystals up to 0.1 × 0.01 mm which form near-parallel and bush-like open-work clusters up to 0.2 mm across. It is transparent, colourless, with vitreous lustre. Dcalc is 2.498 g cm–3. Kantorite is optically biaxial (+), α = 1.447(2), β = 1.449(2), γ = 1.452(2) and 2Vcalc = 79°. The chemical composition (wt.%, electron microprobe data) is: Na2O 9.80, K2O 27.17, Rb2O 0.12, MgO 12.02, CaO 0.09, SO3 47.46, F 5.68, Cl 0.11, –O=(F,Cl) 2.42, total 100.03. The empirical formula calculated based on (O+F+Cl) = 9 apfu is (K1.94Na0.06)Σ2.00(Na1.00Ca0.01)Σ1.01Mg1.00(SO4.01)1.99(F1.01Cl0.01)Σ1.02. The idealised formula is K2NaMg(SO4)2F. Kantorite is orthorhombic, Pna21, a = 6.9894(7), b = 7.1378(7), c = 17.925(2) Å, V = 894.25(16) Å3 and Z = 4. Strong reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 8.99(91)(002), 4.83(57)(111), 4.498(43)(004), 3.588(47)(020), 3.511(74)(200), 3.270(43)(202), 2.926(100)(115), 2.805(44)(024), 2.768(53)(204) and 2.510(55)(220). The crystal structure was solved from single-crystal XRD data, R1 = 0.031. The structure of kantorite is unique. It represents a quasi-framework in which the basic units are octahedra [MgO4F2]. They are linked via bridging F atoms to form infinite chains. These chains are encrusted by [SO4] tetrahedra and assembled into the quasi-framework by alkali cations. The sulfate-encrusted chains of octahedra [MgO4F2] are topologically identical in the structures of kantorite and krasheninnikovite KNa2CaMg(SO4)3F. The mineral is named in honour of the Russian mineralogist Boris Zinovievich Kantor (1930–2022).

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Irina O. Galuskina

References

Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Orlandi, P. (2008) Thermessaite, K2[AlF3SO4], a new ino-aluminofluoride-sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 46, 693700.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Fedotov, S.A and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, 341.Google Scholar
Ilinca, G. (2022) Charge distribution and bond valence sum analysis of sulfosalts – The ECoN21 Computer Program. Minerals, 12, paper 924.CrossRefGoogle Scholar
Kampf, A.R., Dunn, P.J. and Foord, E.E. (1989) Grandreefite, pseudograndreefite, laurelite, and aravaipaite: Four new minerals from the Grandreef mine, Graham Co., AZ. American Mineralogist, 74, 927933.Google Scholar
Kantor, B.Z. (1982) The Mineral Collecting. Nedra Publishing, Moscow. 173. [in Russian].Google Scholar
Kantor, B.Z. (1985) The Mineral Talks About Itself. Nedra Publishing, Moscow, 135. [in Russian].Google Scholar
Kantor, B.Z. (1991) The Mineral Collecting (2nd edition, revised and extend ed). Nedra Publishing, Moscow, 187 pp. [in Russian].Google Scholar
Kantor, B.Z. (2001) Mineral collecting in Russia. Rocks & Minerals, 76, 1016.CrossRefGoogle Scholar
Kantor, B.Z. (2003) Crystal growth & development, interpreted from a mineral’s present form. Mineralogical Almanac, 6, 128.Google Scholar
Kantor, B.Z. (2020) Beginner Collector’s School. The Mineral Collecting. Russian Minerals & Mineralogical Almanac, Moscow, 127 pp. [in Russian].Google Scholar
Kantor, B.Z. (2021) On the splitting of crystals. Mineralogical Almanac, 26, 1023.Google Scholar
Kogarko, L.N. (1961) Chlorine-free schairerite from the nepheline syenites of the Lovozero massif (Kola Peninsula). Doklady Akademii Nauk SSSR, 139, 435437 [in Russian].Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 14, 498502.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York.Google Scholar
Pabst, A. and Sharp, W.N. (1973) Kogarkoite, a new natural phase in the system Na2SO4–NaF–NaCl. American Mineralogist, 58, 116127.Google Scholar
Pekov, I.V., Zelenski, M.E., Zubkova, N.V., Ksenofontov, D.A., Kabalov, Y.K., Chukanov, N.V., Yapaskurt, V.O., Zadov, A.E. and Pushcharovsky, D.Yu. (2012) Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia. American Mineralogist, 97, 17881795.CrossRefGoogle Scholar
Pekov, I.V., Krzhizhanovskaya, M.G., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Lykova, I.S. and Sidorov, E.G. (2015) Kononovite, NaMg(SO4)F, a new mineral from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 27, 575580.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Britvin, S.N., Chukanov, N.V., Yapaskurt, V.O., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016) Shuvalovite, K2(Ca2Na)(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 28, 5362.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.V., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G. and Sidorov, E.G. (2020) Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russian Geology and Geophysics, 61, 675688.CrossRefGoogle Scholar
Pekov, I.V., Britvin, S.N., Bulakh, M.O., Belakovskiy, D.I., Yapaskurt, V.O., Turchkova, A.G. and Anikin, L.P. (2024) Kantorite, IMA 2024-042. CNMNC Newsletter 81. Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2024.77Google Scholar
Prieto-Taboada, N., Fdez-Ortiz de Vallejuelo, S., Veneranda, M., Lama, E., Castro, K., Arana, G., Larrañag, A. and Madariaga, J.M. (2019) The Raman spectra of the Na2SO4–K2SO4 system: Applicability to soluble salts studies in built heritage. Journal of Raman Spectroscopy, 50, 175183.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.CrossRefGoogle Scholar
Westrip, S.P. (2010) PublCIF: software for editing, validating and formatting crystallographic information files. Journal of Applied Crystallography, 43, 920925.CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material 1

Pekov et al. supplementary material
Download Pekov et al. supplementary material 1(File)
File 248.4 KB
Supplementary material: File

Pekov et al. supplementary material 2

Pekov et al. supplementary material
Download Pekov et al. supplementary material 2(File)
File 90.2 KB