Hostname: page-component-857557d7f7-bvshn Total loading time: 0 Render date: 2025-11-21T07:32:59.930Z Has data issue: false hasContentIssue false

On The Schinzel–Wójcik Problem Under Hypothesis H

Published online by Cambridge University Press:  03 November 2025

M. ANWAR*
Affiliation:
Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt. Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA. e-mail: mohamedanwar@sci.asu.edu.eg

Abstract

Given r non-zero rational numbers $a_1, \ldots, a_r$ which are not $\pm1$, we complete, under Hypothesis H, a characterisation of the Schinzel–Wójcik r-rational tuples (i.e. r-tuples of rational numbers for which the Schinzel–Wójcik problem has an affirmative answer) which satisfy that the sum of the exponents of the positive elements $a_i$ in the representation of $-1$ in terms of the elements $a_i$ in the multiplicative group $\langle a_1,\dots, a_r\rangle\subset \mathbb{Q}^*$ is even whenever $-1 \in \langle a_1,\dots, a_r\rangle.$

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anwar, M.. On Schinzel-Wójcik problem. Università degli studi Roma Tre, 2018.Google Scholar
Anwar, M. and Pappalardi, F.. On simultaneous primitive roots. Acta Arith., 180 (2017), 3543.10.4064/aa8566-3-2017CrossRefGoogle Scholar
Hasse, H.. Bericht Über neuere untersuchungen und problem aus der theorie der algebraischen zahlkörper teil ii: Reziprozitätsgesetz. Acta Arith., 180 (1965), 3543, Wüzburg-Wien.Google Scholar
Järviniemi, O.. Equality of orders of a set of integers modulo a prime. Proc. Amer. Math. Soc., 149(09) (2021), 36513668.10.1090/proc/15498CrossRefGoogle Scholar
Matthews, K.. A generalisation of Artin’s conjecture for primitive roots. Acta Arith., 29(2) (1976), 113146.10.4064/aa-29-2-113-146CrossRefGoogle Scholar
May, W.. Multiplicative groups of fields. Proc. London Math. Soc. (1972), pages 295306.10.1112/plms/s3-24.2.295CrossRefGoogle Scholar
Pappalardi, F. and Susa, A.. On a problem of Schinzel and Wójcik involving equalities between multiplicative orders. Math. Proc. Camb. Phil. Soc. 146(2) (2009), 303319.10.1017/S0305004108002053CrossRefGoogle Scholar
Schinzel, A. and Sierpiński, W.. Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4(3) (1958), 185208.10.4064/aa-4-3-185-208CrossRefGoogle Scholar
Schinzel, A. and Wójcik, J.. On a problem in elementary number theory. Math. Proc. Camb. Phil. Soc. 112(2) (1992), 225232.10.1017/S0305004100070912CrossRefGoogle Scholar
Wójcik, J.. On a problem in algebraic number theory. Math. Proc. Camb. Phil. Soc. 119(2) (1996), 191200.10.1017/S0305004100074090CrossRefGoogle Scholar