Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-09-11T14:38:33.121Z Has data issue: false hasContentIssue false

Greenflation, climateflation and monetary policy: the dynamics of sustainable transition

Published online by Cambridge University Press:  01 September 2025

Andrea Bacchiocchi*
Affiliation:
Department of Economics, Society, Politics (DESP), University of Urbino Carlo Bo, Urbino, Italy
Federico Favaretto
Affiliation:
Department of Economics, Society, Politics (DESP), University of Urbino Carlo Bo, Urbino, Italy
Germana Giombini
Affiliation:
Department of Economics, Society, Politics (DESP), University of Urbino Carlo Bo, Urbino, Italy
Fabio Tramontana
Affiliation:
Department of Economics, Society, Politics (DESP), University of Urbino Carlo Bo, Urbino, Italy
*
Corresponding author: Andrea Bacchiocchi; Email: andrea.bacchiocchi@uniurb.it

Abstract

The green transition to reduce greenhouse gas emissions requires substantial investments in a narrow time window to avoid climate-related disruptions, adding two new dimensions for monetary policy and exacerbating the trade-offs that central banks face. First, climate-related physical disruptions lead to higher inflation (i.e., Climateflation). Second, the rush to green technology may result in inflation due to supply bottlenecks (i.e., Greenflation). As a consequence, central banks implement restrictive monetary policy that have a detrimental effect on the high up-front costs of renewable energy projects. This slows down the dynamics of green technologies adoption. We build a dynamic non-linear model to study these interactions under reasonable parameterizations. Both Climateflation and Greenflation are quantitatively significant, creating a dilemma for central banks between raising interest rates to counteract inflation and easing them to facilitate renewable investment. We further show that, under specific stochastic scenarios, the trade-off between inflation control and green transition can improve when structural costs for green technologies decrease or when supply-side constraints relax.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

U.S. Energy Information Administration. (2023). Cost and performance characteristics of new generating technologies. Annual energy outlook 2023. Technical report, Washington, D.C: U.S. Energy Information Administration.Google Scholar
Alogoskoufis, S., Carbone, S., Coussens, W., Fahr, S., Giuzio, M., Kuik, F., Parisi, L., Salakhova, D. and Spaggiari, M.. (2021). Climate-related risks to financial stability. Financial Stability Review 1. https://www.ecb.europa.eu/press/financial-stability-publications/fsr/special/html/ecb.fsrart202105_02~d05518fc6b.en.html.Google Scholar
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J. and Lenton, T. M.. (2022). Exceeding 1.5 $^\circ$ c global warming could trigger multiple climate tipping points. Science 377(6611), eabn7950.10.1126/science.abn7950CrossRefGoogle Scholar
Bacchiocchi, A. and Giombini, G.. (2021). An optimal control problem of monetary policy. Discrete and Continuous Dynamical Systems - Series B 26(11), 57695786.10.3934/dcdsb.2021224CrossRefGoogle Scholar
Bacchiocchi, A., Ille, S. and Giombini, G.. (2024). The effects of a green monetary policy on firms’ financing cost. Journal of Economic Interaction and Coordination 19, 727757.10.1007/s11403-023-00400-0CrossRefGoogle Scholar
Barmes, D., Claeys, I., Dikau, S. and da Silva, L. A. P.. (2024). The Case for Adaptive Inflation Targeting: Monetary Policy in a Hot and Volatile World. LSE. CETEX - Center for Economic Transition Expertise.Google Scholar
Bolton, P., Després, M., Pereira da Silva, L., Samama, F. and Svartzman, R.. (2020). Green swans’: Central banks in the age of climate-related risks. Banque de France Bulletin 229(8), 115.Google Scholar
Boneva, L., Ferrucci, G. and Mongelli, F. P.. (2021). To be or not to be “green”: How can monetary policy react to climate change? ECB Occasional Paper 2021/285.10.2139/ssrn.3971287CrossRefGoogle Scholar
Cabrales, A. and Sobel, J.. (1992). On the limit points of discrete selection dynamics. Journal of Economic Theory 57(2), 407419.10.1016/0022-0531(92)90043-HCrossRefGoogle Scholar
Carney, M. (2015). Breaking the tragedy of the horizon–climate change and financial stability. Speech given at Lloyd’s of London 29, 220230.Google Scholar
Chen, S.-S. and Lin, T.-Y.. (2024). Monetary policy and renewable energy production. Energy Economics 132, 107495.10.1016/j.eneco.2024.107495CrossRefGoogle Scholar
Clarida, R., Galí, J. and Gertler, M.. (2000). Monetary policy rules and macroeconomic stability: Evidence and some theory. Quarterly Journal of Economics 115(1), 147180.10.1162/003355300554692CrossRefGoogle Scholar
Colacito, R., Hoffmann, B. and Phan, T.. (2019). Temperature and growth: A panel analysis of the United States. Journal of Money, Credit and Banking 51(2-3), 313368.10.1111/jmcb.12574CrossRefGoogle Scholar
Dávila-Fernández, M., Giombini, G. and Sánchez-Carrera, E.. (2025). Climateflation and monetary policy in an environmental olg growth model. Environmental and Resource Economics. Online ahead of print.10.1007/s10640-025-00991-1CrossRefGoogle Scholar
Del Negro, M., Di Giovanni, J. and Dogra, K.. (2023). Is the green transition inflationary? Technical Report Staff Reports, no. 1053, Federal Reserve Bank of New York.10.2139/ssrn.4359216CrossRefGoogle Scholar
Dennis, B. (2022). Climate change and financial policy: A literature review. Finance and Economics Discussion Series, 2022-048.10.17016/feds.2022.048CrossRefGoogle Scholar
Dietrich, A., Müller, G. J. and Schoenle, R.. (2021). The expectations channel of climate change: Implications for monetary policy. CEPR Discussion Paper, No. DP15866.Google Scholar
Dirnbacher, M. (2024). The costs of solar broken down. Technical report, Electrifying World - ENcome Energy Performance. Online blog.Google Scholar
Drudi, F., Moench, E., Holthausen, C., Weber, P.-F., Ferrucci, G., Setzer, R., Adao, B., Dees, S., Alogoskoufis, S., Delgado-Téllez, M. and et al. (2021). Climate change and monetary policy in the euro area. Technical report, European Central Bank.10.2139/ssrn.3928292CrossRefGoogle Scholar
Economides, G. and Xepapadeas, A.. (2018). Monetary policy under climate change. Technical report, CESifo Working Paper.10.2139/ssrn.3200266CrossRefGoogle Scholar
Egli, F., Steffen, B. and Schmidt, T. S.. (2018). A dynamic analysis of financing conditions for renewable energy technologies. Nature Energy 3(12), 10841092.10.1038/s41560-018-0277-yCrossRefGoogle Scholar
European Technology and Innovation Platform for Photovoltaics (ETIP PV). (2024). Low-cost pv - the key for sustainable future energy system. Funded by the European Union under the Horizon Europe programme, Grant agreement number 101075398.Google Scholar
Favaretto, F. and Masciandaro, D.. (2016). Doves, hawks and pigeons: Behavioral monetary policy and interest rate inertia. Journal of Financial Stability 27, 5058.10.1016/j.jfs.2016.09.002CrossRefGoogle Scholar
Ferrari, A. and Nispi Landi, V.. (2024). Correction: Will the green transition be inflationary? Expectations matter. IMF Economic Review 72(3), 11251151.Google Scholar
Flores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., Levis, C., Lapola, D. M., Esquível-Muelbert, A., Jakovac, C., Nobre, C. A., Oliveira, R. S., Borma, L. S., Nian, D., Boers, N., Hecht, S. B., ter Steege, H., Arieira, J., Lucas, I. L., Berenguer, E., Marengo, J. A., Gatti, L. V., Mattos, C. R. C., Hirota, M.. (2024). Critical transitions in the Amazon forest system. Nature 626(8005), 555564.10.1038/s41586-023-06970-0CrossRefGoogle ScholarPubMed
Fraunhofer Institute for Solar Energy Systems ISE. (2024). Levelized cost of electricity - Renewable energy technologies. Technical report, Freiburg, Germany: Fraunhofer ISE.Google Scholar
Galı, J. and Gertler, M.. (1999). Inflation dynamics: A structural econometric analysis. Journal of Monetary Economics 44(2), 195222.10.1016/S0304-3932(99)00023-9CrossRefGoogle Scholar
Giraud, G. and Valcke, P.. (2023). Macrodynamics and Climate: Reformulation. Oxford Open Economics.Google Scholar
Gourdel, R., Monasterolo, I., Dunz, N., Mazzocchetti, A. and Parisi, L.. (2024). The double materiality of climate physical and transition risks in the euro area. Journal of Financial Stability 71, 101233.10.1016/j.jfs.2024.101233CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC). (2014). Energy systems. In Intergovernmental Panel on Climate Change (IPCC). (eds.), Climate Change 2014: Mitigation of Climate Change. Cambridge University Press, pp. 511597.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2018). Global Warming of 1.5C. An IPCC Special Report on the Impacts of Global Warming of 1.5C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways. Cambridge University Press.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2021). Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
International Energy Agency (IEA). (2024). Renewables 2024: Analysis and forecast to 2030. Technical report, International Energy Agency.Google Scholar
International Energy Agency (IEA) and OECD Nuclear Energy Agency (NEA). (2020). Projected costs of generating electricity 2020. Technical report, International Energy Agency (IEA) and OECD Nuclear Energy Agency (NEA).Google Scholar
International Renewable Energy Agency (IRENA). (2024). Renewable energy highlights 2024. Technical report, International Renewable Energy Agency.Google Scholar
Jawadi, F., Rozin, P. and Cheffou, A. I.. (2024). Toward green central banking: Proposing an augmented Taylor rule. Energy Economics 134, 107539.10.1016/j.eneco.2024.107539CrossRefGoogle Scholar
Känzig, D. R. (2023). The unequal economic consequences of carbon pricing. Working Paper 31221, National Bureau of Economic Research.10.3386/w31221CrossRefGoogle Scholar
Kotz, M., Levermann, A. and Wenz, L.. (2024b). The economic commitment of climate change. Nature 628(8008), 551557.10.1038/s41586-024-07219-0CrossRefGoogle ScholarPubMed
Kotz, M., Kuik, F., Lis, E. and Nickel, C.. (2024a). Global warming and heat extremes to enhance inflationary pressures. Communications Earth & Environment 5(1), 116.10.1038/s43247-023-01173-xCrossRefGoogle Scholar
Lai, C. S. and McCulloch, M. D.. (2017). Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied Energy 190, 191203.10.1016/j.apenergy.2016.12.153CrossRefGoogle Scholar
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W. and Schellnhuber, H. J.. (2019). Climate tipping points—too risky to bet against. Nature 575(7784), 592595.10.1038/d41586-019-03595-0CrossRefGoogle ScholarPubMed
Lo, C. (2014). Power plant O&M: How does the industry stack up on cost? Technical report, Power Technology. Blog post.Google Scholar
Lorenzoni, A. and Bano, L.. (2007). I costi di generazione dell’energia elettrica da fonti rinnovabili. Technical report, Dipartimento di Ingegneria Elettrica, Università degli Studi di Padova.Google Scholar
Monnin, P. (2015). The Impact of Interest Rates on Electricity Production Costs. Zurich, Switzerland: Council on Economic Policies.Google Scholar
National Renewable Energy Laboratory (NREL). (2020). Model of operation and maintenance costs for photovoltaic systems. Technical report, Golden, CO, U.S: U.S. Department of Energy.Google Scholar
National Renewable Energy Laboratory (NREL). (2024a). Commercial pv - electricity annual technology baseline 2024. Technical report, Golden, CO, U.S: U.S. Department of Energy.Google Scholar
National Renewable Energy Laboratory (NREL). (2024b). Fossil energy technologies - electricity annual technology baseline 2024. Technical report, Golden, CO, U.S: U.S. Department of Energy.Google Scholar
Polzin, F. (2017). Mobilizing private finance for low-carbon innovation–a systematic review of barriers and solutions. Renewable and Sustainable Energy Reviews 77, 525535.10.1016/j.rser.2017.04.007CrossRefGoogle Scholar
European Technology and Innovation Platform for Photovoltaics (ETIP PV). (2023). Solar lcoe may Decrease by up to 20 % in Europe by 2030. PV Magazine International.Google Scholar
Ricerca sul Sistema Energetico (RSE). (2019). Energia elettrica, anatomia dei costi: Aggiornamento dati al 2019. Alkes Publishing.Google Scholar
Schmidt, T. S., Steffen, B., Egli, F., Pahle, M., Tietjen, O. and Edenhofer, O.. (2019). Adverse effects of rising interest rates on sustainable energy transitions. Nature Sustainability 2(9), 879885.10.1038/s41893-019-0375-2CrossRefGoogle Scholar
Schnabel, I. (2022). A new age of energy inflation: climateflation, fossilflation and greenflation. In Speech at a panel on “Monetary Policy and Climate Change” at the ECB and its Watchers XXII Conference. Stockholm: Sveriges Riksbank.Google Scholar
Schnabel, I. (2023). Monetary policy tightening and the green transition. In International Symposium on Central Bank Independence. Stockholm: Sveriges Riksbank.Google Scholar
Stern, N. (2007). The Economics of Climate Change: The Stern Review. Cambridge University Press. Cabinet Office - HM Treasury10.1017/CBO9780511817434CrossRefGoogle ScholarPubMed
Taylor, J. B. (1999). A historical analysis of monetary policy rules. In Taylor, J. B. (ed.), Monetary Policy Rules. Chicago, IL: University of Chicago Press, pp. 319341.10.7208/chicago/9780226791265.001.0001CrossRefGoogle Scholar
Tufail, S., Alvi, S., Hoang, V.-N. and Wilson, C.. (2024). The effects of conventional and unconventional monetary policies of the US, EU, and China on global green investment. Energy Economics 134, 107549.10.1016/j.eneco.2024.107549CrossRefGoogle Scholar
U.S. Environmental Protection Agency (EPA). (2024). Emissions & generation resource integrated database (egrid) - related materials, U.S. Environmental Protection Agency, Technical report.Google Scholar
U.S. Environmental Protection Agency. (2019). Greenhouse gas reporting program: Industrial profile power plants sector. Washington, D.C: U.S. Environmental Protection Agency, Technical report.Google Scholar
U.K. Department for Energy Security and Net Zero. (2023). Official statistics solar photovoltaic (pv) cost data 2023–2024. Technical report, U.K. Government.Google Scholar
Weber, I. M., Thie, J.-E., Jauregui, J. L. and Teixeira, L.. (2024). Carbon Prices and Inflation in a World of Shocks. Gütersloh: Bertelsmann Stiftung Sustainable Social Market Economies.Google Scholar
Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton, NJ: Princeton University Press.Google Scholar