Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-09-15T23:06:46.492Z Has data issue: false hasContentIssue false

Home of the brave: is similarity in defensive behaviour of Neotropical snakes (Dipsadidae: Pseudoboini) predicted by sympatry?

Published online by Cambridge University Press:  15 August 2025

Filipe C. Serrano*
Affiliation:
Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 05508-090 São Paulo, SP, Brazil
Juan C. Diaz-Ricaurte
Affiliation:
Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 05508-090 São Paulo, SP, Brazil Semillero de Investigación en Ecofisiología y Biogeografía de Vertebrados, Grupo de investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Centro de investigaciones Amazónicas Macagual – Cesar Augusto Estrada Gonzales, Universidad de la Amazonia, Florencia, Caquetá, Colombia
Cristopher A. Antúnez-Fonseca
Affiliation:
Centro Zamorano de Biodiversidad, Departamento de Ambiente y Desarrollo, Escuela Agrícola Panamericana Zamorano, Valle de Yeguare, Francisco Morazán, Honduras Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070-900, Campo Grande, MS, Brazil
Yulfreiler Garavito-David
Affiliation:
Semillero de Investigación en Ecofisiología y Biogeografía de Vertebrados, Grupo de investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Centro de investigaciones Amazónicas Macagual – Cesar Augusto Estrada Gonzales, Universidad de la Amazonia, Florencia, Caquetá, Colombia
Aida Luz Garcia-Vargas
Affiliation:
Semillero de Investigación en Ecofisiología y Biogeografía de Vertebrados, Grupo de investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Centro de investigaciones Amazónicas Macagual – Cesar Augusto Estrada Gonzales, Universidad de la Amazonia, Florencia, Caquetá, Colombia
Rolland David Díaz-Morales
Affiliation:
Semillero de Investigación en Ecofisiología y Biogeografía de Vertebrados, Grupo de investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Centro de investigaciones Amazónicas Macagual – Cesar Augusto Estrada Gonzales, Universidad de la Amazonia, Florencia, Caquetá, Colombia
Silvia Regina Travaglia-Cardoso
Affiliation:
Museu Biológico, Instituto Butantan, 05503-900, São Paulo, SP, Brazil
*
Corresponding author: Filipe C Serrano; Email: filipe.c.serrano@gmail.com

Abstract

Predation is a strong driver of prey behaviour and sympatric species are likely exposed to similar selective predatory pressures. We test the hypothesis that this leads to similar anti-predator behaviours using the widespread Neotropical snake tribe Pseudoboini as our model. We reviewed and compiled documented defensive behaviours for all species, adding new unreported behaviours for three species. We used a cluster analysis to generate a matrix of defensive behaviour dissimilarity between species. We then used a phylogenetic generalized linear mixed model to test how behaviour dissimilarity changed with geographical overlap, similarity in ecological traits, and phylogenetic relatedness. Only 41 species had available data on defensive behaviour, with only 22 of those represented in the phylogeny. We found that similarity in defensive behaviour is significantly (albeit not strongly) correlated with geographical overlap, but only for species with similar body sizes. Phylogenetic relatedness by itself was a poor predictor of behaviour dissimilarity. This corroborates our hypothesis that defensive behaviours are spatially structured at larger scales but that this can be modulated by morphological differences. Testing inter-species ecogeographical differences of defensive behaviour and its implications can be broadly applied to other taxa.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

These authors contributed equally to this work.

References

Alcock, J (2009) Animal Behavior: An Evolutionary Approach. 9th edn. Sunderland (MA): Sinauer Associates.Google Scholar
Aguilera, MA, Weiß, M and Thiel, M (2019) Similarity in predator-specific anti-predator behavior in ecologically distinct limpet species, Scurria viridula (Lottiidae) and (Fissurellidae)., 113.10.1007/s00227-019-3485-5CrossRefGoogle Scholar
Araújo, MS and Martins, M (2006) Defensive behavior in pit vipers of the genus Bothrops (Serpentes, Viperidae). The Herpetological Journal 16, 297303.Google Scholar
Arnold, SJ (1992) Behavior al variation in natural populations. VI. Prey responses by two species of garter snakes in three regions of sympatry. Animal Behavior 44, 705719.CrossRefGoogle Scholar
Atkins, MC, Howarth, CR, Russello, MA, Tomal, JH and Larsen, KW (2022) Evidence of intrapopulation differences in rattlesnake defensive behavior across neighboring habitats. Behavioral Ecology and Sociobiology 76, 3.CrossRefGoogle Scholar
Aubret, F, Michniewicz, RJ and Shine, R (2011) Correlated geographic variation in predation risk and anti-predator behavior within a wide-ranging snake species (Notechis scutatus, Elapidae). Austral Ecology 36, 446452.10.1111/j.1442-9993.2010.02171.xCrossRefGoogle Scholar
Barton, K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. https://cran.r-project.org/package=MuMIn Google Scholar
Blomberg, SP, Garland, T Jr and Ives, AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717745.Google ScholarPubMed
Bosque, RJ, Noonan, BP and Colli, GR (2016) Geographical coincidence and mimicry between harmless snakes (Colubridae: Oxyrhopus) and harmful models (Elapidae: Micrurus). Global Ecology and Biogeography 25, 218226.10.1111/geb.12401CrossRefGoogle Scholar
Brodie III, ED and Russell, NH (1999) The consistency of individual differences in behavior: temperature effects on anti-predator behavior in garter snakes. Animal Behavior 57, 445451.10.1006/anbe.1998.0990CrossRefGoogle Scholar
Brooks, M, Bolker, B, Kristensen, K, Maechler, M, Magnusson, A and McGillycuddy, M (2023) Package ‘glmmtmb’. R Packag Vers 1, 7.Google Scholar
Cloudsley-Thompson, JL (1996) Secondary Anti-Predator Devices. In: Cloudsley-Thompson, JL, (ed.), Biotic Interactions in Arid Lands. Adaptations of Desert Organisms. Heidelberg (BER): Springer 6786.10.1007/978-3-642-60977-0_4CrossRefGoogle Scholar
Davis Rabosky, AR, Moore, TY, Sánchez-Paredes, CM, Westeen, EP, Larson, JG, Sealey, BA and Balinski, BA (2021) Convergence and divergence in anti-predator displays: A novel approach to quantitative behavioral comparison in snakes. Biological Journal Linnaean Society 132, 811828.10.1093/biolinnean/blaa222CrossRefGoogle Scholar
Delaney, DM (2019) Antipredation behavior covaries with body size in Neotropical snakes. Amphibia-Reptilia 40, 437445.10.1163/15685381-20191125CrossRefGoogle Scholar
Díaz-Ricaurte, JC, Serrano, FC and Fiorillo, BF (2018) Clelia clelia (Daudin, 1803). In: Catálogo de anfibios y reptiles de Colombia 4: 2331.Google Scholar
Díaz-Ricaurte, JC and Arteaga, A (2021). Common Mussurana (Clelia clelia). In: A, Arteaga, Bustamante, L, Vieira, J, Guayasamin, JM, (eds.), Reptiles of Ecuador: Life in the middle of the world. Available from: www.reptilesofecuador.com.Google Scholar
Dinerstein, E, et al. (2017) An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534545.CrossRefGoogle ScholarPubMed
Durso, AM and Mullin, SJ (2014) Intrinsic and extrinsic factors influence expression of defensive behavior in plains hog-nosed snakes (Heterodon nasicus). Ethology 120, 140148.CrossRefGoogle Scholar
Esqueda, LF, Natera-Muma, M, Bazo, S and La Marca, E (2008) Ecogeographical notes on a rare species of false coral snake, Oxyrhopus doliatus Duméril, Bibron & Duméril, 1854. The Herpetological Bulletin 104, 3638.Google Scholar
Gaiarsa, MP, Alencar, LR and Martins, M (2013) Natural history of Pseudoboine snakes. Papéis Avulsos de Zoologia 53, 261283.Google Scholar
Glasser, JW (1979) The role of predation in shaping and maintaining the structure of communities. The American Naturalist 113, 631641.CrossRefGoogle Scholar
Gray, BS (2015) A study of the defensive behaviors of free-ranging DeKay’s brownsnakes, Storeria dekayi (Holbrook, 1836). Journal of North American Herpetology 2015, 4352.10.17161/jnah.vi1.11906CrossRefGoogle Scholar
Greene, HW (1979) Behavioral convergence in the defensive displays of snakes. Experientia 35, 747748.CrossRefGoogle Scholar
Greene, HW (1988) Anti-predator mechanisms in reptiles. In: Gans, C, Huey, RB, (eds.), Biology of the Reptilia. New York (NY): John Wiley and Sons 1152.Google Scholar
Grigaltchik, VS, Ward, AJ and Seebacher, F (2012) Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship. Proceedings of the Royal Society B: Biological Sciences 279, 40584064.10.1098/rspb.2012.1277CrossRefGoogle ScholarPubMed
Herzog, HA Jr and Schwartz, JM (1990) Geographical variation in the anti-predator behavior of neonate garter snakes, Thamnophis sirtalis. Animal Behavior 40, 597598.10.1016/S0003-3472(05)80541-XCrossRefGoogle Scholar
Heynen, M, Bunnefeld, N and Borcherding, J (2017) Facing different predators: adaptiveness of behavioral and morphological traits under predation. Current Zoology 63, 249257.Google ScholarPubMed
Hoverman, JT and Relyea, RA (2009) Survival trade-offs associated with inducible defences in snails: The roles of multiple predators and developmental plasticity. Functional Ecology 23, 11791188.10.1111/j.1365-2435.2009.01586.xCrossRefGoogle Scholar
Klockmann, M, Günter, F and Fischer, K (2017) Heat resistance throughout ontogeny: body size constrains thermal tolerance. Global Change Biology 23, 686696.10.1111/gcb.13407CrossRefGoogle ScholarPubMed
Koski, SE (2014) Broader horizons for animal personality research. Frontiers in Ecology and Evolution 2, 70.CrossRefGoogle Scholar
Lind, J and Cresswell, W (2005) Determining the fitness consequences of antipredation behavior. Behavioral Ecology 16, 945956.10.1093/beheco/ari075CrossRefGoogle Scholar
Luque-Fernández, CR and Villegas Paredes, LN (2017) First record of the Fitzinger’s False Coral Snake, Oxyrhopus fitzingeri (Tschudi, 1845)(Reptilia: Dipsadidae) in Atiquipa, southwestern Peru. Check List 13, 2085.CrossRefGoogle Scholar
Martins, M, Araujo, MS, Sawaya, RJ and Nunes, R (2001) Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of Neotropical pitvipers (Bothrops). Journal of Zoology 254, 529538.10.1017/S0952836901001030CrossRefGoogle Scholar
Martins, M, Marques, OA and Sazima, I (2008) How to be arboreal and diurnal and still stay alive: microhabitat use, time of activity, and defense in Neotropical forest snakes. South American Journal of Herpetology, 3, 5867.CrossRefGoogle Scholar
Marques, OAV, Eterovic, A, Nogueira, CC and Sazima, I (2015) Serpentes do Cerrado: guia ilustrado. Ribeirão Preto (SP): Holos Editora.Google Scholar
McKee, CD, Hayman, DT, Kosoy, MY and Webb, CT (2016) Phylogenetic and geographic patterns of bartonella host shifts among bat species. Infection, Genetics and Evolution 44, 382394.10.1016/j.meegid.2016.07.033CrossRefGoogle ScholarPubMed
Meo, ID, Østbye, K, Kahilainen, KK, Hayden, B, Fagertun, CH and Poléo, AB, 2021. Predator community and resource use jointly modulate the inducible defense response in body height of crucian carp. Ecology and Evolution 11, 20722085.CrossRefGoogle ScholarPubMed
Miranda, RB, Klaczko, J, Tonini, JF and Brandão, RA (2022) Escaping from predators: a review of Neotropical lizards defence traits. Ethology Ecology & Evolution 35, 131.Google Scholar
Moura, MR, et al. (2023) Unwrapping broken tails: Biological and environmental correlates of predation pressure in limbless reptiles. Journal of Animal Ecology 92, 324337.CrossRefGoogle ScholarPubMed
Nogueira, CC, et al. (2019) Atlas of Brazilian snakes: verified point-locality maps to mitigate the Wallacean shortfall in a megadiverse snake fauna. South American Journal of Herpetology 14, 1274.10.2994/SAJH-D-19-00120.1CrossRefGoogle Scholar
Oskyrko, O, Mi, C, Meiri, S and Du, W (2024) ReptTraits: a comprehensive dataset of ecological traits in reptiles. Scientific Data 11, 243.10.1038/s41597-024-03079-5CrossRefGoogle ScholarPubMed
Placyk, JS (2012) The role of innate and environmental influences in shaping anti-predator behavior of mainland and insular gartersnakes (Thamnophis sirtalis). Journal of Ethology 30, 101108.CrossRefGoogle Scholar
R Core Team, (2020) R Core Team R: a language and environment for statistical computing. Foundation for Statistical Computing.Google Scholar
Réale, D, Reader, SM, Sol, D, McDougall, PT and Dingemanse, NJ (2007) Integrating animal temperament within ecology and evolution. Biological Reviews 82, 291318.10.1111/j.1469-185X.2007.00010.xCrossRefGoogle ScholarPubMed
Roll, U, et al. (2017) The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology & Evolution 1, 16771682.CrossRefGoogle ScholarPubMed
Romero, GQ, Gonçalves-Souza, T, Kratina, P, Marino, NA., Petry, WK, Sobral-Souza, T and Roslin, T (2018) Global predation pressure redistribution under future climate change. Nature Climate Change 8, 10871091.10.1038/s41558-018-0347-yCrossRefGoogle Scholar
Roth, ED and Johnson, JA (2004) Size-based variation in anti-predator behavior within a snake (Agkistrodon piscivorus) population. Behavioral Ecology 15, 365370.10.1093/beheco/arh024CrossRefGoogle Scholar
Santos, X, Feriche, M, Leon, R, Filippakopoulou, A, Vidal-Garcia, M, Llorente, GA and Pleguezuelos, JM (2011) Tail breakage frequency as an indicator of predation risk for the aquatic snake Natrix maura. Amphibia-Reptilia 32, 375383.Google Scholar
Saraçli, S, Doğan, N and Doğan, İ (2013) Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications 2013, 18.10.1186/1029-242X-2013-203CrossRefGoogle Scholar
Serrano, FC, Pontes-Nogueira, M, Sawaya, RJ, Alencar, LRV, Nogueira, CC and Grazziotin, FG (2024b) There and back again: when and how the world’s richest snake family (Dipsadidae) dispersed and speciated across the Neotropical region. Journal of Biogeography 51, 878893.10.1111/jbi.14790CrossRefGoogle Scholar
Serrano, FC, Farhat, C, Díaz-Ricaurte, JC and Martins, M (2024a) Citizen science and color pattern analysis indicate unreported Batesian mimicry between Neotropical snakes. Biotropica 56, e13380.10.1111/btp.13380CrossRefGoogle Scholar
Steinberg, PD, Estes, JA and Winter, FC (1995) Evolutionary consequences of food chain length in kelp forest communities. Proceedings of the National Academy of Sciences 92, 81458148.10.1073/pnas.92.18.8145CrossRefGoogle ScholarPubMed
Symonds, MR and Moussalli, A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65, 1321.10.1007/s00265-010-1037-6CrossRefGoogle Scholar
Thierry, B, Iwaniuk, AN and Pellis, SM (2000) The influence of phylogeny on the social behavior of macaques (Primates: Cercopithecidae, genus Macaca). Ethology 106, 713728.10.1046/j.1439-0310.2000.00583.xCrossRefGoogle Scholar
Toju, H and Sota, T (2006) Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection. The American Naturalist 167, 105117.10.1086/498277CrossRefGoogle ScholarPubMed
Trussell, GC and Smith, LD (2000) Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proceedings of the National Academy of Sciences 97, 21232127.CrossRefGoogle Scholar
Uetz, P, Freed, P, Aguilar, R and Hošek, J (2024) The Reptile Database, http://www.reptile-database.org, Accessed [Nov 07, 2024].Google Scholar
Urban, MC (2007) The growth–predation risk trade-off under a growing gape-limited predation threat. Ecology 88, 25872597.10.1890/06-1946.1CrossRefGoogle Scholar
Wilson, V, Guenther, A, Øverli, Ø, Seltmann, MW and Altschul, D (2019) Future directions for personality research: contributing new insights to the understanding of animal behavior. Animals 9, 240.10.3390/ani9050240CrossRefGoogle Scholar
Zocca, C, Lourenço-de-Moraes, R, Campos, FS and Ferreira, RB (2022) The high diversity and phylogenetic signal of anti-predator mechanisms of the horned frog species of Proceratophrys Miranda-Ribeiro, 1920 (Amphibia: Anura: Odontophrynidae). Acta Herpetologica 17, 7783.10.36253/a_h-11945CrossRefGoogle Scholar
Supplementary material: File

Serrano et al. supplementary material 1

Serrano et al. supplementary material
Download Serrano et al. supplementary material 1(File)
File 12.6 KB
Supplementary material: File

Serrano et al. supplementary material 2

Serrano et al. supplementary material
Download Serrano et al. supplementary material 2(File)
File 11.5 KB
Supplementary material: File

Serrano et al. supplementary material 3

Serrano et al. supplementary material
Download Serrano et al. supplementary material 3(File)
File 15.7 KB