Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-10-02T23:16:45.488Z Has data issue: false hasContentIssue false

Nutrient storage dynamics in male Mytilus coruscus: interplay of glycogen, amino acids, fatty acids, and nutritional elements (C, N, P) during reproductive development

Published online by Cambridge University Press:  27 August 2025

Xiaofei Tian
Affiliation:
Fishery College, Zhejiang Ocean University, Zhoushan, China
Lili Diao
Affiliation:
Fishery College, Zhejiang Ocean University, Zhoushan, China
Cheng Li
Affiliation:
Fishery College, Zhejiang Ocean University, Zhoushan, China
Xiumei Zhang*
Affiliation:
Fishery College, Zhejiang Ocean University, Zhoushan, China
*
Corresponding author: Xiumei Zhang; Email: xmzhang1227@163.com

Abstract

This study investigates the accumulation of glycogen, amino acids, and fatty acids in male Mytilus coruscus during different stages of gonadal development and explores their relationships with reproductive processes. Glycogen levels were highest during the resting phase, decreasing progressively during the proliferation and maturation phases. A positive correlation was observed between glycogen and carbon content, indicating a close association between energy storage and metabolic processes. Amino acid content, particularly essential amino acids (EAAs), increased during gonadal development, reflecting the higher demand for protein synthesis and cellular metabolism. Branched-chain amino acids (BCAAs) such as isoleucine, leucine, and lysine were key in activating protein synthesis and supporting gametogenesis. Non-essential amino acids like aspartic acid, glutamic acid, and glycine also accumulate, supporting cellular function and reproductive regulation. Fatty acids, especially unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), progressively accumulated in the testes, highlighting their role in energy supply and membrane integrity during gametogenesis. Phosphorus (P) accumulated in parallel with fatty acids, supporting DNA and RNA synthesis, energy metabolism, and cell membrane function. This study emphasizes the crucial role of these biochemical components in supporting gonadal development in male M. coruscus, providing insights into the metabolic pathways involved in marine bivalve reproduction.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adeva-Andany, MM, Carneiro-Freire, N, Seco-Filgueira, M, Fernández-Fernández, C and Mouriño-Bayolo, D (2019) Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 46, 7390. doi:10.1016/j.mito.2018.02.009CrossRefGoogle ScholarPubMed
Adeva-Andany, MM, Gonzalez-Lucan, M, Donapetry-Garcia, C, Fernández-Fernández, C, and Ameneiros-Rodríguez, E (2016) Glycogen metabolism in humans. BBA Clinical 5, 86100. doi:10.1016/j.bbacli.2016.02.001CrossRefGoogle ScholarPubMed
Alkanani, T, Parrish, CC, Thompson, RJ and McKenzie, CH (2007) Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundlan. Journal of Experimental Marine Biology and Ecology 348(1), 3345. doi:10.1016/j.jembe.2007.02.017CrossRefGoogle Scholar
Aragón, C and López-Corcuera, B (2003) Structure, function and regulation of glycine neurotransporters. European Journal of Pharmacology 479(1-3), 249262.CrossRefGoogle Scholar
Bacca, H, Huvet, A, Fabioux, C, Daniel, JY, Delaporte, M, Pouvreau, S, Van Wormhoudt, A and Moal, J (2005) Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 140(4), 635646. doi:10.1016/j.cbpc.2005.01.005CrossRefGoogle ScholarPubMed
Bandyopadhyay, U, Todorova, P, Pavlova, NN and Overholtzer, M (2022) Leucine retention in lysosomes is regulated by starvation. Proceedings of the National Academy of Sciences of the United States of America. 119(6), 2114912119. doi:10.1073/pnas.2114912119CrossRefGoogle ScholarPubMed
Bell, MV, Henderson, RJ and Sargent, JR (1986) The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 83(4), 711719. doi:10.1016/0305-0491(86)90135-5CrossRefGoogle ScholarPubMed
Bell, MV and Sargent, JR (1985) Fatty acid analyses of phosphoglycerides from tissues of the clam Chlamys islandica (Muller) and the starfish Ctenodiscus crispatus (Retzius) from Balsfjorden, Northern Norway. Journal of Experimental Marine Biology and Ecology 87(1), 3140. doi:10.1016/0022-0981(85)90189-3CrossRefGoogle Scholar
Berthelin, C, Kellner, K and Mathieu, M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 125(3), 359369. doi:10.1016/S0305-0491(99)00187-XCrossRefGoogle ScholarPubMed
Bibhas, H, Anoy, M, Mahesh, P, Gayen, S, Mandal, R, Sardar, A and Tarafdar, PK (2022) Lipidated lysine and fatty acids assemble into protocellular membranes to assist regioselective peptide formation: Correlation to the natural selection of lysine over nonproteinogenic lower analogues. Langmuir 38(49), 1542215432. doi:10.1021/acs.langmuir.2c02849Google Scholar
Bird, RP and Eskin, NAM (2021) The emerging role of phosphorus in human health. Advances in Food & Nutrition Research 96, 2788. doi:10.1016/bs.afnr.2021.02.001Google ScholarPubMed
Brosnan, JT and Margaret, EB (2013) Glutamate: A truly functional amino acid. Amino Acids 45(3), 413418. doi:10.1016/bs.afnr.2021.02.001CrossRefGoogle ScholarPubMed
Burke, LM, van Loon, L and Hawley, JA (2017) Postexercise muscle glycogen resynthesis in humans. Journal of Applied Physiology 122(5), 10551067. doi:10.1152/japplphysiol.00860.2016CrossRefGoogle ScholarPubMed
Chen, J, Huang, X, Zheng, J, Sun, Y, Dong, X, Zhou, D, Zhu, B and Qin, L (2021) Comprehensive metabolomic and lipidomic profiling of the seasonal variation of blue mussels (Mytilus edulis L.): Free amino acids, 5′-nucleotides, and lipids. LWT 149, 111835. doi:10.1016/j.lwt.2021.111835CrossRefGoogle Scholar
Chen, Y, Ju, X and Chen, G (2008) Classification and physiological function of saturated fatty acids. China Oils & Fats 33(3), 5 (Chinese with English abstract). doi:10.3321/j.issn:1003-7969.2008.03.010Google Scholar
Cheng, L (2014) Application of Micro-seaweed Powder Particles in the Culture of Cladocerans Chinese with English abstract. China:Ningbo University.Google Scholar
Cheng, L, Xu, S, Liu, F and Qi, C (2013) Study on the meat condition index and biochemical compositions of Mytilus coruscus in different gonad development stages. Journal of Marine Science 31(4), 6873 (Chinese with English abstract). doi:10.3969/j.issn.1001-909X.2013.04.011Google Scholar
Cumplido, M, Marinho, C and Bigatti, G (2020) Nutritional composition of Patagonian marine gastropods during reproductive seasonality. Journal of the Marine Biological Association of the United Kingdom 100(4), 567576. doi:10.1017/S0025315420000454CrossRefGoogle Scholar
Dong, M, Qin, L, Xue, J, Du, M, Lin, S, Xu, X and Zhu, B (2018) Simultaneous quantification of free amino acids and 5′-nucleotides in shiitake mushrooms by stable isotope labeling-LC-MS/MS analysis. Food Chemistry 268, 5765. doi:10.1016/j.foodchem.2018.06.054CrossRefGoogle ScholarPubMed
Dridi, S, Romdhane, MS and Elcafsi, M (2007) Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia. Aquaculture 263(1-4), 238248. doi:10.1016/j.aquaculture.2006.10.028CrossRefGoogle Scholar
Fearman, J, Bolch, C and Moltschaniwskyj, N (2009) Energy storage and reproduction in mussels, Mytilus galloprovincialis: The influence of diet quality. Journal of Shellfish Research 28(2), 305312.CrossRefGoogle Scholar
Folch, J, Lees, M and Stanley, GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226(1), 497509. doi:10.1016/S0021-9258(18)64849-5CrossRefGoogle ScholarPubMed
Freites, L, Fernández-Reiriz, MJ and Labarta, U (2002) Lipid classes of mussel seeds Mytilus galloprovincialis of subtidal and rocky shore origin. Aquaculture 207(1-2), 97111. doi:10.1016/S0044-8486(01)00752-9CrossRefGoogle Scholar
Gabbott, PA and Bayne, BL (1973) Biochemical effect of temperature and nutritive stress on Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom 53, 269286. doi:10.1017/S0025315400022268CrossRefGoogle Scholar
Grabner, GF, Xie, H, Schweiger, M, Zechner, R and Metabolism, N (2021) Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nature Metabolism 3(11), 14451465. doi:10.1038/s42255-021-00493-6CrossRefGoogle ScholarPubMed
Grienke, U, Silke, J and Tasdemir, D (2014) Bioactive compounds from marine mussels and their effects on human health. Food Chemistry 142, 4860. doi:10.1016/j.foodchem.2013.07.027CrossRefGoogle ScholarPubMed
Guo, X (2017) Biochemical components and energy metabolism of cold seep mussel Bathymodiolus platifrons in the South China Sea. University of Chinese Academy of Sciences (Chinese Academy of Sciences), China. (Chinese with English abstract).Google Scholar
Gupta, MN and Uversky, VN (2024) Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. International Journal of Biological Macromolecules 257, 128646.CrossRefGoogle ScholarPubMed
Halloran, KM, Stenhouse, C, Wu, G and Bazer, FW (2021) Arginine, agmatine, and polyamines: Key regulators of conceptus development in mammals. Advances in Experimental Medicine and Biology. 1332, 85105.CrossRefGoogle ScholarPubMed
He, W, Furukawa, K, Toyomizu, M, Nochi, T, Bailey, CA and Wu, G (2021) Interorgan metabolism, nutritional impacts, and safety of dietary L-glutamate and L-glutamine in poultry. Advances in Experimental Medicine and Biology. 1332, 107128. doi:10.1007/978-3-030-74180-8_7CrossRefGoogle ScholarPubMed
Holland, DL (1978) Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. Perspective Marine Biology 4, 85123.Google Scholar
Izquierdo, MS, Fernández-Palacios, H and Tacon, AGJ (2001) Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197(1), 2542. doi:10.1016/S0044-8486(01)00581-6CrossRefGoogle Scholar
Kritmetapak, K and Kumar, R (2021) Phosphate as a signaling molecule. Calcified Tissue International 108(1), 1631. doi:10.1007/s00223-019-00636-8CrossRefGoogle ScholarPubMed
Kunio, T, Hisayuki, U and Eiji, N (2013) Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. Journal Of Gastroenterology 48(4), 442451. doi:10.1007/s00535-013-0778-1Google Scholar
Laudicella, VA, Carboni, S, Whitfield, PD, Doherty, MK and Hughes, AD (2023) Sexual dimorphism in the gonad lipidome of blue mussels (Mytilus sp.): New insights from a global lipidomics approach. Comparative Biochemistry and Physiology D-Genomics & Proteomics 48, 101150. doi:10.1016/j.cbd.2023.101150CrossRefGoogle ScholarPubMed
Leonardos, N and Lucas, IAN (2000) The use of larval fatty acids as an index of growth in Mytilus edulis L. larvae. Aquaculture 184(1), 155166. https://10.1016/S0044-8486(99)00320-8CrossRefGoogle Scholar
Levental, KR, Malmberg, E, Symons, JL, Fan, YY, Chapkin, RS, Ernst, R and Levental, L (2020) Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nature Communications 11(1), 1339. doi:10.1038/s41467-020-15203-1CrossRefGoogle ScholarPubMed
Li, B, Song, K, Meng, J, Li, L and Zhang, G (2017) Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas. BMC Genomics 18(1), 713. doi:10.1186/s12864-017-4069-8CrossRefGoogle ScholarPubMed
Li, S, Li, L, Wang, W, Li, B and Zhang, G (2020) Characterization, fluctuation and tissue differences in nutrient content in the Pacific oyster (Crassostrea gigas) in Qingdao, northern China. Aquaculture Research 51(4), 13531364. doi:10.1111/are.14463CrossRefGoogle Scholar
Li, X, Han, T, Zheng, S and Wu, G (2021) Nutrition and functions of amino acids in aquatic crustaceans. Advances in Experimental Medicine and Biology. 1285, 169198. doi:10.1007/978-3-030-54462-1_9CrossRefGoogle ScholarPubMed
Li, Y, Han, H, Yin, J, Li, T and Yin, Y (2018) Role of D-aspartate on biosynthesis, racemization, and potential functions: A mini-review. Animal Nutrition 4(3), 311315.CrossRefGoogle ScholarPubMed
Li, Z, Zhao, L, Wang, Y, Chen, X, Ma, P, Liu, Z, Sun, X, Zhou, L, Ren, J, Dou, Y and Wu, B (2024) Glycogen variations and glycometabolism during the gametogenesis cycle of Jinjiang oyster Crassostrea (Magallana. Ariakensis. Aquaculture Reports 37, 102251.CrossRefGoogle Scholar
Liu, X, Ke, C, Li, C, Liao, X and Huang, H (2014) Composition of fatty acids from suspended particulate matter in southern South China Sea. Acta Ecologica Sinica 34 10, 25992607Chinese with English abstract. https://10.5846/stxb201212231849Google Scholar
Lovenberg, W, Weissbach, H and Udenfriend, S (1962) Aromatic l-amino acid decarboxylase. Journal of Biological Chemistry 237(1), 8993. doi:10.1385/0-89603-079-2:33CrossRefGoogle ScholarPubMed
Lubet, P, Brichon, G, Besnard, JY and Zwingelstein, G (1986) Sexual differences in the composition and metabolism of lipids in the mantle of the mussel Mytilus galloprovincialis LMK (Mollusca: Bivalvia). Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 84(3), 279285. doi:10.1016/0305-0491(86)90077-5Google Scholar
Lv, S, Han, B, Sun, S and Wang, X (2009) The composition and change of particulate fatty acids during a diatom bloom in Jiaozhou Bay, China. Acta Ecologica Sinica 29(5), 23912399 (Chinese with English abstract). doi:10.3321/j.issn:1000-0933.2009.05.025Google Scholar
Mao, J, Tong, Q, Xiao, X, Zhan, P, Xu, S and Wang, C (2017) Differences of fatness and nutrient content in artificially and naturally ripened Mytilus coruscus. Journal of Biology 34(5), 5356 (Chinese with English abstract). doi:10.3969/j.issn.2095-1736.2017.05.053Google Scholar
Martínez-Pita, I, Sánchez-Lazo, C, Ruíz-Jarabo, I, Herrera, M and Mancera, JM (2012) Biochemical composition, lipid classes, fatty acids and sexual hormones in the mussel Mytilus galloprovincialis from cultivated populations in south Spain. Aquaculture 358, 274283. doi:10.1016/j.aquaculture.2012.06.003CrossRefGoogle Scholar
Michigami, T (2021) Extracellular phosphate as a signaling molecule. Calcified Tissue International 180, 1424. doi:10.1007/s00223-019-00636-8Google Scholar
Michigami, T, Kawai, M, Yamazaki, M and Ozono, K (2018) Phosphate as a signaling molecule and its sensing mechanism. Physiological Reviews. 98(4), 23172348. doi:10.1152/physrev.00022.2017CrossRefGoogle ScholarPubMed
Murata, Y, Touhata, K and Miwa, R (2020) Correlation of extractive components and body index with taste in oyster Crassostrea gigas brands. Fisheries Science 86(3), 561572. doi:10.1007/s12562-020-01417-1CrossRefGoogle Scholar
Napolitano, GE, Macdonald, BA, Thompson, RJ and Ackman, RG (1992) Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus) from different habitats. Marine Biology 113(1), 7176. doi:10.1007/BF00367640CrossRefGoogle Scholar
Neinast, M, Murashige, D and Arany, Z (2019) Branched chain amino acids.Annual Review of Physiology 81 139164. https://doi.org/10.1146/annurev-physiol-020518-114455CrossRefGoogle ScholarPubMed
Nicholls, J, Chin, JP, Williams, TA, Lenton, TM, Flaherty, VO and McGrath, JW (2023) On the potential roles of phosphorus in the early evolution of energy metabolism. Frontiers in Microbiology 14, 1239189. doi:10.3389/fmicb.2023.1239189CrossRefGoogle ScholarPubMed
Ojea, J, Pazos, AJ, Martínez, D, Novoa, S, Sánchez, JL and Abad, M (2004) Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aquaculture 238(1-4), 451468. doi:10.1016/j.aquaculture.2004.05.022CrossRefGoogle Scholar
Panayotova, V, Merdzhanova, A, Stancheva, R, Dobreva, DA, Peycheva, K and Makedonski, L (2021) Farmed mussels (Mytilus galloprovincialis) from the Black Sea reveal seasonal differences in their neutral and polar lipid fatty acids profile. Regional Studies in Marine Science 44, 101782. doi:10.1016/j.rsma.2021.101782CrossRefGoogle Scholar
Pazos, AJ, Román, G, Acosta, CP, Abad, M and SaíNchez, JL (1997) Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. Journal of Experimental Marine Biology and Ecology 211(2), 169193. https://doi.org/10.1016/S0022-0981(96)02724-4CrossRefGoogle Scholar
Posey, EA and Davis, TA (2023) Review: Nutritional regulation of muscle growth in neonatal swine. Animal 17, 100831. doi:10.1016/j.animal.2023.100831CrossRefGoogle ScholarPubMed
Qin, Y, Li, X, Li, J, Zhou, Y, Xiang, Z, Ma, H, Noor, Z, Mo, R, Zhang, Y and Yu, Z (2021) Seasonal variations in biochemical composition and nutritional quality of Crassostrea hongkongensis, in relation to the gametogenic cycle. Food Chemistry 356(15), 129736.CrossRefGoogle Scholar
R Core Team (2023). R Foundation for Statistical Computing https://www.r-project.org/.Google Scholar
Sabbagh, Y (2013) Phosphate as a sensor and signaling molecule. Clinical Nephrology. 79(1), 5765. doi:10.5414/CN107322CrossRefGoogle ScholarPubMed
Scanes, CG (2022) Carbohydrate metabolism. In Scanes, CG, and Dridi, S (eds), Sturkie’s Avian Physiology. 7th San Diego: Academic Press, 613645.CrossRefGoogle Scholar
Schenck, CA and Maeda, HA (2018) Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 149, 82102. doi:10.1016/j.phytochem.2018.02.003CrossRefGoogle ScholarPubMed
Soudant, P, Moal, J, Marty, Y and Samain, JF (1996) Impact of the quality of dietary fatty acids on metabolism and the composition of polar lipid classes in female gonads of Pecten maximus (L.). Journal of Experimental Marine Biology and Ecology 205(1), 149163. doi:10.1016/S0022-0981(96)02608-1CrossRefGoogle Scholar
Soudant, P, Moal, J, Marty, Y and Samain, JF (1997) Composition of polar lipid classes in male gonads of Pecten maximus (L.): Effect of nutrition. Journal of Experimental Marine Biology and Ecology 215(1), 103114. doi:10.1016/S0022-0981(97)00028-2CrossRefGoogle Scholar
Soudant, P, Van Ryckeghem, K, Marty, Y, Moal, J and Sorgeloos, P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 123(2), 209222. doi:10.1016/S0305-0491(99)00063-2CrossRefGoogle Scholar
Sterner, RW and Elser, JJ (2002) Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press.Google Scholar
Tabakaeva, OV and Tabakaev, AV (2016) Amino-acid composition of soft tissues of the Far-East bivalve mollusk Anadara broughtonii. Chemistry of Natural Compounds 52(3), 468471. doi:10.1007/s10600-016-1674-8CrossRefGoogle Scholar
Tian, X, Diao, L and Zhang, X (2024) Seasonal variations of allocation strategy in carbon, nitrogen and phosphorus among tissues of male Mytilus coruscus are regulated by the gametogenic cycle: A case study in a mariculture system. Aquaculture Reports 39, 102482.CrossRefGoogle Scholar
van Houcke, J, Medina, I, Linssen, J and Luten, J (2016) Biochemical and volatile organic compound profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas) cultivated in the Eastern Scheldt and Lake Grevelingen, the Netherlands. Food Control 68, 200207. doi:10.1016/j.foodcont.2016.03.044CrossRefGoogle Scholar
Wu, G (2013) Amino Acids: biochemistry and Nutrition. Boca Raton: CRC Press.CrossRefGoogle Scholar
Supplementary material: File

Tian et al. supplementary material

Tian et al. supplementary material
Download Tian et al. supplementary material(File)
File 40.5 KB