Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-12-08T20:35:36.816Z Has data issue: false hasContentIssue false

COHOMOLOGICAL INTEGRALITY FOR WEAKLY SYMMETRIC REPRESENTATIONS OF REDUCTIVE GROUPS

Published online by Cambridge University Press:  03 December 2025

Lucien Hennecart*
Affiliation:
LAMFA, CNRS UMR 7352, CNRS Université de Picardie Jules Verne , Amiens, France

Abstract

In this paper, we prove the integrality conjecture for quotient stacks arising from weakly symmetric representations of reductive groups. Our main result is a decomposition of the cohomology of the stack into finite-dimensional components indexed by some equivalence classes of cocharacters of a maximal torus. This decomposition enables the definition of new enumerative invariants associated with the stack, which we begin to explore.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alper, J, Hall, J and Rydh, D (2020) A Luna étale slice theorem for algebraic stacks. Ann Math 191(3), 675738.10.4007/annals.2020.191.3.1CrossRefGoogle Scholar
Alper, J (2013) Good moduli spaces for Artin stacks. Annales de l’Institut Fourier 63(6) 23492402.10.5802/aif.2833CrossRefGoogle Scholar
Bourbaki, N (2007) Groupes de Coxeter et systèmes de Tits. Springer.Google Scholar
Białynicki-Birula, A (1973) Some theorems on actions of algebraic groups. Ann Math 98(3), 480497.10.2307/1970915CrossRefGoogle Scholar
Bussi, V, Joyce, D and Meinhardt, S (2019) On motivic vanishing cycles of critical loci. J Algebr Geom 28, pp. 405438.10.1090/jag/737CrossRefGoogle Scholar
Bu, C, Davison, B, Ibáñez Núñez, A, Kinjo, T and Pădurariu, T (2025) Cohomology of symmetric stacks. arXiv preprint 2502.04253.Google Scholar
Bu, C (2024) A motivic integral identity for $\left(-1\right)$ -shifted symplectic stacks. arXiv preprint 2405.10092.Google Scholar
Davison, B (2023) A boson-fermion correspondence in cohomological Donaldson–Thomas theory. Glasg Math J 65(S1), S28S52.10.1017/S001708952200009XCrossRefGoogle Scholar
Dieudonné, JA and Carrell, JB (1970) Invariant theory, old and new. Adv Math 4(1), 180.10.1016/0001-8708(70)90015-0CrossRefGoogle Scholar
Davison, B, Hennecart, L and Schlegel Mejia, S (2022) BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks. arXiv preprint 2212.07668.Google Scholar
Davison, B, Hennecart, L and Schlegel Mejia, S (2023) BPS algebras and generalised Kac-Moody algebras from 2-Calabi-Yau categories. arXiv preprint 2303.12592.Google Scholar
Davison, B and Meinhardt, S (2020) Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. Invent Math 221(3), 777871.10.1007/s00222-020-00961-yCrossRefGoogle Scholar
Digne, F and Michel, J (2020) Representations of Finite Groups of Lie Type, vol. 95. Cambridge University Press.10.1017/9781108673655CrossRefGoogle Scholar
Efimov, AI (2012) Cohomological Hall algebra of a symmetric quiver. Compos Math 148(4), 11331146.10.1112/S0010437X12000152CrossRefGoogle Scholar
Halpern-Leistner, D (2015) The derived category of a GIT quotient. J Am Math Soc 28(3), 871912.10.1090/S0894-0347-2014-00815-8CrossRefGoogle Scholar
Hennecart, L (2024) Cohomological integrality for symmetric quotient stacks. arXiv preprint 2408.15786.Google Scholar
Humphreys, JE (2012) Linear Algebraic Groups. 4th edition, vol. 21. Springer Science & Business Media.Google Scholar
Humphreys, JE (1990) Reflection groups and Coxeter groups, vol. 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press.10.1017/CBO9780511623646CrossRefGoogle Scholar
Kuznetsov, A and Lunts, VA (2015) Categorical resolutions of irrational singularities. Int Math Res Notices 2015(13), 45364625.10.1093/imrn/rnu072CrossRefGoogle Scholar
Knop, F (2007) Invariant functions on symplectic representations. J Algebra 313(1), 223251.CrossRefGoogle Scholar
Kontsevich, M and Soibelman, Y (2008) Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv preprint 0811.2435.Google Scholar
Kontsevich, M and Soibelman, Y (2010) Motivic Donaldson-Thomas invariants: summary of results. Contemporary Mathematics, 527, American Mathematical Society, 5589.Google Scholar
Kontsevich, M and Soibelman, Y (2011) Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun Number Theory Phys 5(2), 231252.10.4310/CNTP.2011.v5.n2.a1CrossRefGoogle Scholar
Kapranov, M and Vasserot, E (2022) The cohomological Hall algebra of a surface and factorization cohomology. J Eur Math Soc 25(11), 42214289.10.4171/jems/1264CrossRefGoogle Scholar
Lunts, VA (2010) Categorical resolution of singularities. J Algebra 323(10), 29773003.10.1016/j.jalgebra.2009.12.023CrossRefGoogle Scholar
Lusztig, G (1984) Intersection cohomology complexes on a reductive group. Invent Math 75(2), 205272.10.1007/BF01388564CrossRefGoogle Scholar
Meinhardt, S (2015) Donaldson-Thomas invariants vs. intersection cohomology for categories of homological dimension one. arXiv preprint 1512.03343.Google Scholar
Meinhardt, S (2017) An introduction to (Motivic) Donaldson-Thomas theory. Conflu Math 9(2), 101158.10.5802/cml.43CrossRefGoogle Scholar
Mumford, D, Fogarty, J and Kirwan, F (1994) Geometric Invariant Theory, vol. 34. Springer Science & Business Media.10.1007/978-3-642-57916-5CrossRefGoogle Scholar
Maulik, D and Okounkov, A (2019) Quantum groups and quantum cohomology. Astérisque 408, ix+209.Google Scholar
Meinhardt, S and Reineke, M (2019) Donaldson–Thomas invariants versus intersection cohomology of quiver moduli. J Reine Angew Math 2019(754), 143178.10.1515/crelle-2017-0010CrossRefGoogle Scholar
Nakajima, H (1994) Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math J 76(1), 365416.10.1215/S0012-7094-94-07613-8CrossRefGoogle Scholar
Popov, VL and Vinberg, EB (1994) Invariant theory. In: Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory. Springer, 123278.CrossRefGoogle Scholar
Reineke, M (2008) Moduli of representations of quivers. arXiv preprint 0802.2147.Google Scholar
Schur, I (2013) Vorlesungen über Invariantentheorie. Vol. 143. Springer-Verlag.Google Scholar
Serre, J-P (1971) Représentation linéaire des groupes finis. In: Hermann, Paris.Google Scholar
The Stacks Project authors. (2024) The Stacks Project. https://stacks.math.columbia.edu.Google Scholar
Špenko, Š and den Bergh, MV (2017) Non-commutative resolutions of quotient singularities for reductive groups. Invent Math 210, 367.10.1007/s00222-017-0723-7CrossRefGoogle Scholar
Špenko, Š and den Bergh, MV (2021) Semi-orthogonal decompositions of GIT quotient stacks. Selecta Math 27, 143.10.1007/s00029-021-00628-3CrossRefGoogle Scholar
Szendroi, B (2014) Cohomological Donaldson–Thomas theory. Proc String Math 2015, pp. 363396.Google Scholar
Van den Bergh, M (2004) Non-commutative crepant resolutions. In: The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo, 2002. Springer, pp. 749770.10.1007/978-3-642-18908-1_26CrossRefGoogle Scholar