No CrossRef data available.
Published online by Cambridge University Press: 19 March 2025
We show that Calabi–Yau fibrations over curves are uniformly K-stable in an adiabatic sense if and only if the base curves are K-stable in the log-twisted sense. Moreover, we prove that there are cscK metrics for such fibrations when the total spaces are smooth.
 $b$
-divisors, and canonical bundle formula. Algebra Number Theory (4) 6, 797–823.CrossRefGoogle Scholar
$b$
-divisors, and canonical bundle formula. Algebra Number Theory (4) 6, 797–823.CrossRefGoogle Scholar $\mathbb{Q}$
-Fano varieties. J. Reine Angew. Math. 751, 309–338.CrossRefGoogle Scholar
$\mathbb{Q}$
-Fano varieties. J. Reine Angew. Math. 751, 309–338.CrossRefGoogle Scholar ${\mathbb{P}}^1$
. Math. Ann. (3) 255, 379–394.CrossRefGoogle Scholar
${\mathbb{P}}^1$
. Math. Ann. (3) 255, 379–394.CrossRefGoogle Scholar $\mathbb{Q}$
-Fano varieties. Adv. Math. 229, 2818–2834.CrossRefGoogle Scholar
$\mathbb{Q}$
-Fano varieties. Adv. Math. 229, 2818–2834.CrossRefGoogle Scholar ${C}_1(M)>0$
. Invent. Math. 89, 225–246.CrossRef0$+.+Invent.+Math.+89,+225–246.>Google Scholar
${C}_1(M)>0$
. Invent. Math. 89, 225–246.CrossRef0$+.+Invent.+Math.+89,+225–246.>Google Scholar