 $r$-PRIMITIVE ELEMENTS
$r$-PRIMITIVE ELEMENTSPublished online by Cambridge University Press: 02 March 2020
Let  $r,n>1$ be integers and
$r,n>1$ be integers and  $q$ be any prime power
$q$ be any prime power  $q$ such that
$q$ such that  $r\mid q^{n}-1$. We say that the extension
$r\mid q^{n}-1$. We say that the extension  $\mathbb{F}_{q^{n}}/\mathbb{F}_{q}$ possesses the line property for
$\mathbb{F}_{q^{n}}/\mathbb{F}_{q}$ possesses the line property for  $r$-primitive elements property if, for every
$r$-primitive elements property if, for every  $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}\in \mathbb{F}_{q^{n}}^{\ast }$ such that
$\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}\in \mathbb{F}_{q^{n}}^{\ast }$ such that  $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\unicode[STIX]{x1D703})$, there exists some
$\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\unicode[STIX]{x1D703})$, there exists some  $x\in \mathbb{F}_{q}$ such that
$x\in \mathbb{F}_{q}$ such that  $\unicode[STIX]{x1D6FC}(\unicode[STIX]{x1D703}+x)$ has multiplicative order
$\unicode[STIX]{x1D6FC}(\unicode[STIX]{x1D703}+x)$ has multiplicative order  $(q^{n}-1)/r$. We prove that, for sufficiently large prime powers
$(q^{n}-1)/r$. We prove that, for sufficiently large prime powers  $q$,
$q$,  $\mathbb{F}_{q^{n}}/\mathbb{F}_{q}$ possesses the line property for
$\mathbb{F}_{q^{n}}/\mathbb{F}_{q}$ possesses the line property for  $r$-primitive elements. We also discuss the (weaker) translate property for extensions.
$r$-primitive elements. We also discuss the (weaker) translate property for extensions.
Communicated by I. Shparlinski
The first author is Emeritus Professor of Number Theory, University of Glasgow.