1 Introduction
 To any generalized Cartan matrix A and any field 
$\mathbb {F}$
 corresponds an associated Kac–Moody group 
$\mathbf {G}_A(\mathbb {F})$
 (see [Reference TitsTit87]). This group comes equipped with a distinguished family of subgroups 
$(U_{\alpha })_{\alpha \in \Phi }$
 called root subgroups indexed by the set 
$\Phi $
 of real roots of A. The generalized Cartan matrix A provides also a Weyl group and hence a Coxeter system 
$(W(A), S(A))$
. The real roots of A correspond to the roots of 
$(W(A), S(A))$
 (viewed as half-spaces). The pair 
$(\mathbf {G}_A(\mathbb {F}), ( U_{\alpha } )_{\alpha \in \Phi } )$
 satisfies certain properties, for instance, a commutation relation between root groups corresponding to prenilpotent pairs of roots. The combinatorics of such pairs has been formalized by Tits in the general framework of RGD systems (see [Reference Tits, Liebeck and SaxlTit92]).
 Let 
$(W, S)$
 be a Coxeter system and let 
$\Phi $
 be its associated set of roots. An RGD system of type 
$(W, S)$
 is a pair 
$\mathcal {D} = ( G, ( U_{\alpha } )_{\alpha \in \Phi } )$
 consisting of a group G and a family of subgroups 
$( U_{\alpha } )_{\alpha \in \Phi }$
 satisfying some axioms that are motivated by the theory of Kac–Moody groups. It is natural to ask whether any RGD system is of Kac–Moody origin. In the 
$2$
-spherical case, it follows from the main result of [Reference MühlherrMüh99] that any RGD system of irreducible and crystallographic type (that is, 
$o(st) \in \{2, 3, 4, 6\}$
 for 
${s\neq t\in S}$
) having finite root groups of order 
$>3$
 that generate the group G must be a split or almost split Kac–Moody group in the sense of [Reference RémyRém02]. In the right-angled case, we have more flexibility. In [Reference Rémy and RonanRR06], Rémy and Ronan have constructed exotic RGD systems with prescribed isomorphism types of root groups. For mixed ground fields, these groups are not of Kac–Moody origin. One main aspect in their construction is that all root groups corresponding to prenilpotent pairs of roots commute. The main goal of this paper is to establish the existence of new examples of exotic RGD systems both of 
$2$
-spherical and right-angled type having nontrivial commutation relations. In all examples, the root groups have cardinality 
$2$
.
 In [Reference BischofBis25b], we have introduced the notion of a commutator blueprint; we refer to Section 3 for more details. These purely combinatorial objects can be seen as a blueprint for constructing RGD systems over 
$\mathbb {F}_2$
 (that is, each root subgroup has cardinality 
$2$
) with prescribed commutation relations. To each RGD system over 
$\mathbb {F}_2$
, one can associate a commutator blueprint. Such blueprints are called integrable. A necessary condition for integrability is for the commutator blueprint to be Weyl-invariant (roughly speaking: the commutation relations are Weyl-invariant). For this reason, we focus on constructing Weyl-invariant commutator blueprints. Using the main result of [Reference BischofBis25b], one can show that Weyl-invariant commutator blueprints of universal type (that is, 
$o(st) = \infty $
 for 
$s\neq t\in S$
) are integrable (see [Reference BischofBis25b, Introduction] for more details).
1.1 Generalizing Tits’ construction of uncountably many trivalent Moufang twin trees
 In [Reference TitsTit13, Section 
$5.4$
 in 
$95/96$
], Tits constructed uncountably many examples of trivalent Moufang twin trees, which are essentially the same as (centre-free) RGD systems of type 
$\tilde {A}_1$
. In the case 
$\tilde {A}_1$
, we have 
$\Phi = \{+, -\} \times \mathbb {Z}$
 and all the examples constructed by Tits satisfy the following commutation relations, where 
$\varepsilon \in \{+, -\}$
: 
The following theorem is a consequence of Theorem 4.6 and [Reference BischofBis25b, Theorem A].
Theorem A. Suppose 
$(W, S)$
 is universal and of rank at least 
$2$
. Then, there exists an integrable commutator blueprint 
$\mathcal {M}$
 and 
$s\neq t\in S$
 such that the restriction of 
$\mathcal {M}$
 to the 
$\{s, t\}$
-residue coincides with the commutator blueprint coming from Tits’ construction of trivalent Moufang twin trees.
Remark 1. Suppose that 
$(W, S)$
 has rank 
$2$
. Then, Theorem A is just the commutator blueprint obtained from Tits’ construction in [Reference TitsTit13, Section 
$5.4$
 in 
$95/96$
]. Unfortunately, there is no proof available in the literature on the existence of these Moufang twin trees. Theorem A provides a different approach to the results about the trivalent Moufang twin trees constructed by Tits.
Remark 2. Again, we suppose that 
$(W, S)$
 has rank 
$2$
. The RGD systems corresponding to the commutator blueprints in Theorem A yield Moufang twin trees of order 
$2$
 and the precise commutation relations can be found in Theorem 4.6. The group G from the RGD systems, which coincides with the automorphism of the corresponding trivalent Moufang twin tree, is virtually simple in many cases. To see this, we choose in Theorem 4.6 K to be finite and 
$J_k \neq \emptyset $
 for some 
$k\in K$
. Then, the automorphism group of these Moufang twin trees is virtually simple by [Reference Caprace and RémyCR16, Theorem 1]. If we assume additionally 
$1\in K$
 and 
$J_1 := \{1\}$
, then we can apply [Reference Caprace and RémyCR16, Lemma 6(i′)]. This guarantees that the commutator subgroup of the automorphism group of the Moufang twin tree associated with the RGD system of type 
$\tilde {A}_1$
 is simple and has finite index in the automorphism group. We note that there are elaborated results available that show that the automorphism group of almost all Moufang twin trees of order 
$2$
 is virtually simple (see [Reference Grüninger, Horn and MühlherrGHM]). The proof is based on the idea given in [Reference Caprace and RémyCR16].
Remark 3. Grüninger, Horn and Mühlherr have shown in [Reference Grüninger, Horn and MühlherrGHM16] that in the case 
$\tilde {A}_1$
 over 
$\mathbb {F}_2$
, the commutation relations are generally very restrictive and they cannot be significantly more complicated than those in (1-1). Thus, it is natural to ask whether the commutation relations of any trivalent Moufang twin tree are as in (1-1). In [Reference Grüninger, Horn and MühlherrGHM16, Introduction], Grüninger, Horn and Mühlherr announced that they constructed new examples of Moufang twin trees of order 
$2$
 having different commutation relations than those in (1-1). In the present paper, we provide independently such an example (see Theorem 4.8 for the precise commutation relations).
1.2 The nilpotency class of the groups 
$U_w$
 We now turn our attention to the nilpotency class of the groups 
$U_w$
. These groups appear naturally as subgroups of RGD systems and are generated by suitable root subgroups. It is a consequence of [Reference Grüninger, Horn and MühlherrGHM16, Theorem A] that in the case 
$\tilde {A}_1$
, the group 
$U_w$
 is nilpotent of class at most 
$2$
 for all 
$w\in W$
, provided that all root groups are isomorphic to 
$(\mathbb {F}_p, +)$
 for a fixed prime p. This result was generalized in [Reference ParrPar21] and includes the cases where 
$U_{\alpha _s} \cong (\mathbb {K}_s, +)$
 with 
$\mathbb {K}_s$
 a field of characteristic different from 
$2$
 (see also [Reference Segev and WeissSW08, Reference SegevSeg09]).
 In [Reference CapraceCap07, Theorem 
$1.2$
], Caprace has shown that the nilpotency class of the groups 
$U_w$
 in Kac–Moody groups is bounded above by a constant only depending on the generalized Cartan matrix A and not on w. We see that the general situation is very different and the results about Kac–Moody groups do not generalize to arbitrary RGD systems. Even more, we construct examples of any rank greater than or equal to 
$3$
 such that the nilpotency class of the groups 
$U_w$
 can be arbitrarily large (see Theorem 4.13(i) and [Reference BischofBis25b, Theorem A]). To make the statement precise, for an RGD system 
$\mathcal {D}$
, we define 
$\mathrm {ndeg}(\mathcal {D})$
 to be the supremum of the nilpotency classes of the subgroups 
$U_w$
 for all 
$w\in W$
.
Theorem B. For each 
$(m, n) \in \mathbb {N}_{\geq 3} \times \mathbb {N}_{\geq 3}$
, there exists an RGD system 
$\mathcal {D}_{(m, n)}$
 of rank m with 
$\mathrm {ndeg}(\mathcal {D}_n) = n-1$
.
 Theorem B implies that a generalization of [Reference Grüninger, Horn and MühlherrGHM16, Theorem A] to higher rank is not possible. At present, it is unclear whether for a fixed RGD system 
$\mathcal {D}$
, the nilpotency class of the groups 
$U_w$
 is bounded above by a constant depending only on 
$\mathcal {D}$
 and not on w. The next theorem, which is a consequence of Theorem 4.13(ii) together with [Reference BischofBis25b, Theorem A], shows that such a constant does not exist in general.
Theorem C. For each 
$m \in \mathbb {N}_{\geq 3}$
, there exists an RGD system 
$\mathcal {D}_m$
 of rank m with 
$\mathrm {ndeg}(\mathcal {D}) = \infty $
.
 The commutator blueprints that are used to prove Theorems B and C are of universal type. Opposite to Coxeter systems of universal type are the Coxeter systems of 
$2$
-spherical type. We have also constructed commutator blueprints of the 
$2$
-spherical type 
$(4, 4, 4)$
, that is, the Coxeter system 
$(W, S)$
 is of rank 
$3$
 and 
$o(st) = 4$
 for all 
$s\neq t\in S$
.
1.3 Commutator blueprints of type 
$\mathbf {(4, 4, 4)}$
 One of the most celebrated results in the theory of abstract buildings is Tits’ classification of (irreducible) spherical buildings of rank at least 
$3$
 in [Reference TitsTit74]. It relies on a local-to-global result for isometries of spherical buildings. Inspired by [Reference TitsTit87], Ronan and Tits introduced twin buildings. It turns out that twin buildings are natural generalizations of spherical buildings. Tits conjectured right from the beginning that the methods proving the local-to-global result for isometries of spherical buildings can be carried over to 
$2$
-spherical twin buildings (see [Reference Tits, Liebeck and SaxlTit92, Remark 
$5.9$
(f) and Conjectures 
$1$
 and 
${1}^{\prime }$
]). This conjecture was confirmed by Mühlherr and Ronan in [Reference Mühlherr and RonanMR95] under a mild condition excluding only a very short list of small residues of rank 
$2$
. In [Reference Bischof and MühlherrBM23], Mühlherr and the author confirmed the conjecture for twin buildings of affine type. It is still an open question whether Tits’ conjecture holds for twin buildings of type 
$(4, 4, 4)$
 where each panel contains exactly 
$3$
 chambers.
 We aim to construct a counterexample to Tits’ conjecture. Our strategy is to construct two integrable commutator blueprints of type 
$(4, 4, 4)$
 with different commutation relations. By [Reference BischofBis25b, Theorem A] together with the main result of [Reference BischofBis23], we know that Weyl-invariant commutator blueprints of type 
$(4, 4, 4)$
 are integrable. This motivates the following result (see Lemma 4.24).
Theorem D. There exist uncountably many Weyl-invariant commutator blueprints of type 
$(4, 4, 4)$
.
1.4 Overview
 In this paper, we construct several families of Weyl-invariant commutator blueprints. In Section 2, we fix notation and prove some elementary results about Coxeter systems. In Section 3, we recall the definition of commutator blueprints and we introduce the notion of a pre-commutator blueprint. These objects are weaker versions of commutator blueprints that only depend on combinatorial properties. In Lemma 3.5, we have worked out precise conditions on the commutation relations that guarantee 
$\vert U_w \vert = 2^{\ell (w)}$
 and, in particular, that a pre-commutator blueprint is already a commutator blueprint. These conditions can be weakened and it turns out that these weaker conditions imply that the groups 
$U_w$
 are nilpotent of class at most 
$2$
 (see Theorem 3.8). Our construction of commutator blueprints (which is done in Section 4) is always by constructing pre-commutator blueprints, which satisfy the conditions of either Lemma 3.5 or of Theorem 3.8.
2 Preliminaries
2.1 Coxeter systems
 Let 
$(W, S)$
 be a Coxeter system and let 
$\ell $
 denote the corresponding length function. For 
$s, t \in S$
, we denote the order of 
$st$
 in W by 
$m_{st}$
. The Coxeter diagram corresponding to 
$(W, S)$
 is the labelled graph 
$(S, E(S))$
, where 
$E(S) = \{ \{s, t \} \mid m_{st}>2 \}$
 and where each edge 
$\{s,t\}$
 is labelled by 
$m_{st}$
 for all 
$s, t \in S$
. The rank of the Coxeter system is the cardinality of the set S. Let 
$(W, S)$
 be of rank 
$3$
 and let 
$S = \{ r, s, t \}$
. Sometimes, we also call 
$(m_{rs}, m_{rt}, m_{st})$
 the type of 
$(W, S)$
. If 
$3 \leq m_{rs}, m_{rt}, m_{st}$
 and 
$(m_{rs}, m_{rt}, m_{st}) \neq (3, 3, 3)$
, we call 
$(W, S)$
 cyclic hyperbolic.
 It is well known that for each 
$J \subseteq S$
, the pair 
$(\langle J \rangle , J)$
 is a Coxeter system (see [Reference BourbakiBou02, Ch. IV, Section 
$1,$
 Theorem 
$2$
]). A subset 
$J \subseteq S$
 is called spherical if 
$\langle J \rangle $
 is finite. The Coxeter system is called 
$2$
-spherical if 
$\langle J \rangle $
 is finite for each 
$J \subseteq S$
 with 
$\vert J \vert \leq 2$
 (that is, 
$m_{st} < \infty $
); it is called spherical if S is spherical. Given a spherical subset J of S, there exists a unique element of maximal length in 
$\langle J \rangle $
, which we denote by 
$r_J$
 (see [Reference Abramenko and BrownAB08, Corollary 
$2.19$
]).
2.2 The chamber system 
$\boldsymbol {\Sigma }\mathbf {(W, S)}$
 Let 
$(W, S)$
 be a Coxeter system. Defining 
$w \sim _s w'$
 if and only if 
$w^{-1}w' \in \langle s \rangle $
, we obtain a chamber system with chamber set W and equivalence relations 
$\sim _s$
 for 
$s\in S$
, which we denote by 
$\Sigma (W, S)$
. We call two chambers 
$w, w' s$
-adjacent if 
$w \sim _s w'$
 and adjacent if they are s-adjacent for some 
$s\in S$
. A gallery of length n from 
$w_0$
 to 
$w_n$
 is a sequence 
$(w_0, \ldots , w_n)$
 of chambers where 
$w_i$
 and 
$w_{i+1}$
 are adjacent for each 
$0 \leq i < n$
. A gallery 
$(w_0, \ldots , w_n)$
 is called minimal if there exists no gallery from 
$w_0$
 to 
$w_n$
 of length 
$k<n$
 and we denote the length of a minimal gallery from 
$w_0$
 to 
$w_n$
 by 
$\ell (w_0, w_n)$
. Let 
$G = (w_0, \ldots , w_n)$
 be a minimal gallery. Then, we call 
$(s_1, \ldots , s_n)$
 the type of G, where 
$ s_i := w_{i-1}^{-1} w_i \in S$
.
 For 
$J \subseteq S$
, we define the J-residue of a chamber 
$c\in W$
 to be the set 
$R_J(c) := c \langle J \rangle $
. A residue R is a J-residue for some 
$J \subseteq S$
; we call J the type of R and the cardinality of J is called the rank of R. A residue is called spherical if its type is a spherical subset of S. Let R be a spherical J-residue. Two chambers 
$x, y \in R$
 are called opposite in R if 
$\delta (x, y) = r_J$
. Two residues 
$P, Q \subseteq R$
 are called opposite in R if for each 
$p\in P$
, there exists 
$q\in Q$
 such that 
$p, q$
 are opposite in R and if for each 
$q' \in Q$
, there exists 
$p' \in P$
 such that 
$q', p'$
 are opposite in R. A panel is a residue of rank 
$1$
. It is a fact that for every chamber 
$x\in W$
 and every residue R, there exists a unique chamber 
$z\in R$
 such that 
$\ell (x, y) = \ell (x, z) + \ell (z, y)$
 holds for every chamber 
$y\in R$
. The chamber z is called the projection of x onto R and is denoted by 
$z = {\mathrm {proj}}_R x$
.
Example 2.1. The group W acts on 
$\Sigma (W, S)$
 by multiplication from the left (see [Reference WeissWei09, 
$29.2$
]).
 A subset 
$\Sigma \subseteq W$
 is called convex if for any two chambers 
$c, d \in \Sigma $
 and any minimal gallery 
$(c_0 = c, \ldots , c_k = d)$
, we have 
$c_i \in \Sigma $
 for all 
$0 \leq i \leq k$
. Note that residues are convex by [Reference Abramenko and BrownAB08, Example 5.44(b)].
 For two residues R and T, we define 
$ {\mathrm {proj}}_T R := \{ {\mathrm {proj}}_T r \mid r\in R \}$
. By [Reference Abramenko and BrownAB08, Lemma 
$5.36(2)$
], 
$ {\mathrm {proj}}_T R$
 is a residue contained in T. The residues R and T are called parallel if 
$ {\mathrm {proj}}_T R = T$
 and 
$ {\mathrm {proj}}_R T = R$
.
Lemma 2.2. Let R be a spherical residue of rank 
$2$
 and let 
$P \neq Q$
 be two parallel panels contained in R. Then, P and Q are opposite in R.
Proof. This is a consequence of [Reference Devillers, Mühlherr and Van MaldeghemDMV12, Lemma 
$18$
] and [Reference Abramenko and BrownAB08, Lemma 
$5.107$
].
2.3 Roots and walls
 Let 
$(W, S)$
 be a Coxeter system. A reflection is an element of W that is conjugate to an element of S. For 
$s\in S$
, we let 
$\alpha _s := \{ w\in W \mid \ell (sw)> \ell (w) \}$
 be the simple root corresponding to s. A root is a subset 
$\alpha \subseteq W$
 such that 
$\alpha = v\alpha _s$
 for some 
$v\in W$
 and 
$s\in S$
. We denote the set of all roots by 
$\Phi (W, S)$
. We note that roots are convex (see [Reference Abramenko and BrownAB08, Proposition 
$5.81$
]). The set 
$\Phi (W, S)_+ := \{ \alpha \in \Phi (W, S) \mid 1_W \in \alpha \}$
 is the set of all positive roots and 
$\Phi (W, S)_- := \{ \alpha \in \Phi (W, S) \mid 1_W \notin \alpha \}$
 is the set of all negative roots. For each root 
$\alpha \in \Phi (W, S)$
, we denote its opposite root by 
$-\alpha $
 and we denote the unique reflection that interchanges these two roots by 
$r_{\alpha }$
. For 
$\alpha \in \Phi (W, S)$
, we denote by 
$\partial \alpha $
 (respectively 
$\partial ^2 \alpha $
) the set of all panels (respectively spherical residues of rank 
$2$
) stabilized by 
$r_{\alpha }$
. Furthermore, we define 
$\mathcal {C}(\partial \alpha ) := \bigcup _{P \in \partial \alpha } P$
 and 
$\mathcal {C}(\partial ^2 \alpha ) := \bigcup _{R \in \partial ^2 \alpha } R$
. The set 
$\partial \alpha $
 is called the wall associated with 
$\alpha $
. Let 
$G = (c_0, \ldots , c_k)$
 be a gallery. We say that G crosses the wall 
$\partial \alpha $
 if there exists 
$1 \leq i \leq k$
 such that 
${\{ c_{i-1}, c_i \} \in \partial \alpha }$
. It is a basic fact that a minimal gallery crosses a wall at most once (see [Reference Abramenko and BrownAB08, Lemma 
$3.69$
]).
Convention 2.3. For the rest of this paper, we let 
$(W, S)$
 be a Coxeter system of finite rank and we define 
$\Phi := \Phi (W, S)$
 (respectively 
$\Phi _+ := \Phi (W, S)_+$
 and 
$\Phi _- := \Phi (W, S)_-$
). Moreover, we assume that 
$m_{st} \in \{2, 3, 4, 6, 8, \infty \}$
 for all 
$s\neq t \in S$
.
 A pair 
$\{ \alpha , \beta \} \subseteq \Phi $
 of roots is called prenilpotent if 
$\alpha \cap \beta \neq \emptyset \neq (-\alpha ) \cap (-\beta )$
. For a prenilpotent pair 
$\{ \alpha , \beta \}$
 of roots, we write 
and 
$(\alpha , \beta ) := [ \alpha , \beta ] \backslash \{ \alpha , \beta \}$
. A pair 
$\{ \alpha , \beta \}$
 of roots is called nested if 
$\alpha \subseteq \beta $
 or 
$\beta \subseteq \alpha $
.
 Let 
$(c_0, \ldots , c_k)$
 and 
$(d_0 = c_0, \ldots , d_k = c_k)$
 be two minimal galleries from 
$c_0$
 to 
$c_k$
 and let 
$\alpha \in \Phi $
. Then, 
$\partial \alpha $
 is crossed by the minimal gallery 
$(c_0, \ldots , c_k)$
 if and only if it is crossed by the minimal gallery 
$(d_0, \ldots , d_k)$
. For a minimal gallery 
$G = (c_0, \ldots , c_k)$
, the sequence of roots crossed by G is the unique sequence of roots 
$(\alpha _1, \ldots , \alpha _k)$
 such that 
$c_{i-1} \in \alpha _i$
 and 
$c_i \notin \alpha _i$
 for all 
$1\leq i \leq k$
. In this case, we say that G is a minimal gallery between 
$\alpha _1$
 and 
$\alpha _k$
.
 We denote the set of all minimal galleries 
$(c_0 = 1_W, \ldots , c_k)$
 starting at 
$1_W$
 by 
$\mathrm {Min}$
. For 
$w\in W$
, we denote the set of all 
$G \in \mathrm {Min}$
 of type 
$(s_1, \ldots , s_k)$
 with 
$w = s_1 \cdots s_k$
 by 
$\mathrm {Min}(w)$
. For 
$w\in W$
 with 
$\ell (sw) = \ell (w) -1$
, we let 
$\mathrm {Min}_s(w)$
 be the set of all 
${G \in \mathrm {Min}(w)}$
 of type 
$(s, s_2, \ldots , s_k)$
. We extend this notion to the case 
$\ell (sw) = \ell (w) +1$
 by defining 
$\mathrm {Min}_s(w) := \mathrm {Min}(w)$
. Let 
$w\in W, s\in S$
 and 
$G = (c_0, \ldots , c_k) \in \mathrm {Min}_s(w)$
. If 
$\ell (sw) = \ell (w) -1$
, then 
$c_1 = s$
 and we define 
$sG := (sc_1 = 1_W, \ldots , sc_k) \in \mathrm {Min}(sw)$
. If 
$\ell (sw) = \ell (w) +1$
, we define 
$sG := (1_W, sc_0 = s, \ldots , sc_k) \in \mathrm {Min}(sw)$
.
Lemma 2.4 [Reference BischofBis25a, Lemma 
$2.1$
].
 Let R be a spherical residue of 
$\Sigma (W, S)$
 of rank 
$2$
 and let 
$\alpha \in \Phi $
. Then, exactly one of the following hold: 
- 
(a)
$R \subseteq \alpha $
; - 
(b)
$R \subseteq (-\alpha )$
; - 
(c)
$R \in \partial ^2 \alpha $
. 
Lemma 2.5 [Reference Caprace and MühlherrCM06, Proposition 
$2.7$
].
 Let R and T be two spherical residues of 
$\Sigma (W, S)$
. Then, the following are equivalent: 
- 
(i) R and T are parallel;
 - 
(ii) a reflection of
$\Sigma (W, S)$
 stabilizes R if and only if it stabilizes T; - 
(iii) there exist two sequences
$R_0 = R, \ldots , R_n = T$
 and 
$T_1, \ldots , T_n$
 of residues of spherical type such that for each 
$1 \leq i \leq n$
, the rank of 
$T_i$
 is equal to 
$1+\mathrm {rank}(R)$
, the residues 
$R_{i-1}, R_i$
 are contained and opposite in 
$T_i$
, and, moreover, we have 
$ {\mathrm {proj}}_{T_i} R = R_{i-1}$
 and 
$ {\mathrm {proj}}_{T_i} T = R_i$
. 
Lemma 2.6. Let 
$\alpha \in \Phi $
 be a root and let 
$x, y \in \alpha \cap \mathcal {C}(\partial \alpha )$
. Then, there exists a minimal gallery 
$(c_0 = x, \ldots , c_k = y)$
 such that 
$c_i \in \mathcal {C}(\partial ^2 \alpha )$
 for each 
$0 \leq i \leq k$
. Moreover, for every 
$1 \leq i \leq k$
, there exists 
$L_i \in \partial ^2 \alpha $
 with 
$\{ c_{i-1}, c_i \} \subseteq L_i$
.
Proof. This is a consequence of [Reference Caprace and MühlherrCM05, Lemma 
$2.3$
] and its proof.
Lemma 2.7 [Reference BischofBis25a, Lemma 
$2.4$
].
 Let 
$\alpha , \beta \in \Phi , \alpha \neq \pm \beta $
 be two roots and let 
$R, T \in \partial ^2 \alpha \cap \partial ^2 \beta $
. 
- 
(a) The residues R and T are parallel.
 - 
(b) If
$\vert \langle J \rangle \vert = \infty $
 holds for all 
$J \subseteq S$
 containing three elements, then 
$R=T$
. 
Lemma 2.8. Let 
$\alpha , \beta \in \Phi , \alpha \neq \pm \beta $
, be two roots. 
- 
(a) The following are equivalent:
- 
(i) either
$\{ \alpha , \beta \}$
 is nested or 
$\{ -\alpha , \beta \}$
 is nested; - 
(ii) we have
$o(r_{\alpha } r_{\beta }) = \infty $
; - 
(iii) we have
$\partial ^2 \alpha \cap \partial ^2 \beta = \emptyset $
. 
Moreover, if
$o(r_{\alpha } r_{\beta }) = \infty $
 and 
$\{ \alpha , \beta \}$
 is a prenilpotent pair, then 
$\{ \alpha , \beta \}$
 is nested. - 
 - 
(b) If
$o(r_{\alpha } r_{\beta }) < \infty $
 and 
$\gamma \in (\alpha , \beta )$
, then 
$\partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \gamma \neq \emptyset $
 and 
$o(r_{\alpha } r_{\gamma }), o(r_{\beta } r_{\gamma }) < \infty $
. 
Proof. The implication (i) 
$\Rightarrow $
 (ii) follows exactly as in [Reference Abramenko and BrownAB08, Proposition 
$3.165$
]. Now, suppose item (ii) and assume that there exists 
$R \in \partial ^2 \alpha \cap \partial ^2 \beta $
. As R is finite, there exists 
$k \in \mathbb {N}$
 such that 
$(r_{\alpha } r_{\beta })^k$
 fixes a chamber in R, that is, 
${(r_{\alpha } r_{\beta })^k w = (r_{\alpha } r_{\beta })^k(w) = w}$
 for some 
$w\in R$
. However, this implies 
$(r_{\alpha } r_{\beta })^k = 1$
. As 
$o(r_{\alpha } r_{\beta }) = \infty $
, we obtain a contradiction. Now, suppose that none of 
$\{ \alpha , \beta \}, \{ -\alpha , \beta \}$
 is nested. Then, we have 
$\alpha \not \subseteq \beta , \beta \not \subseteq \alpha $
 and 
$(-\alpha ) \not \subseteq \beta , \beta \not \subseteq (-\alpha )$
. This implies that none of 
$\alpha \cap (-\beta ), \beta \cap (-\alpha ), (-\alpha ) \cap (-\beta ), \beta \cap \alpha $
 is the empty set. Arguing as in the proof of [Reference WeissWei09, Proposition 
$29.24$
] and using Lemma 2.5, there exists 
$R \in \partial ^2 \alpha \cap \partial ^2 \beta $
 and we are done. The second part of (a) follows from the first part of (a) and [Reference Abramenko and BrownAB08, Lemma 
$8.42(c)$
].
 To show assertion (b), we note that by assertion (a), there exists 
$R \in \partial ^2 \alpha \cap \partial ^2 \beta $
. We deduce 
$\emptyset \neq R \cap \alpha \cap \beta \subseteq \gamma $
 and 
$\emptyset \neq R \cap (-\alpha ) \cap (-\beta ) \subseteq (-\gamma )$
. If follows from Lemma 2.4 that 
$R \in \partial ^2 \gamma $
. In particular, 
$R \in \partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \gamma $
. We deduce 
$o(r_{\alpha } r_{\gamma }) < \infty $
 and 
$o(r_{\beta } r_{\gamma }) < \infty $
 from assertion (a).
Lemma 2.9. Let 
$\alpha , \beta , \gamma \in \Phi $
 be three pairwise distinct and pairwise nonopposite roots such that 
$\partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \gamma \neq \emptyset $
 (for example, 
$\alpha \neq \pm \beta , o(r_{\alpha } r_{\beta }) < \infty ,\gamma \in (\alpha , \beta )$
). Then, the following hold: 
- 
(a)
$\partial ^2 \alpha \cap \partial ^2 \beta = \partial ^2 \alpha \cap \partial ^2 \gamma $
; - 
(b)
$( (\alpha , \beta ) \cup (-\alpha , \beta ) ) \cap \{ \gamma , -\gamma \} \neq \emptyset $
. 
Proof. Let 
$R \in \partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \gamma $
 be a residue, let 
$\delta \in \{ \beta , \gamma \}$
 and let 
$T \in \partial ^2 \alpha \cap \partial ^2 \delta $
. It suffices to show that 
$T \in \partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \gamma $
. Using Lemma 2.7, we deduce that R and T are parallel. Then, Lemma 2.5 implies that a reflection of 
$\Sigma (W, S)$
 stabilizes R if and only if it stabilizes T. As 
$r_{\alpha }, r_{\beta }, r_{\gamma }$
 stabilize R, they also stabilize T and assertion (a) follows. Before we show assertion (b), we prove the following claim:
 
Claim: 
$\gamma \notin (\alpha , \beta ) \Rightarrow \alpha \cap \beta \cap (-\gamma ) \cap R \neq \emptyset $
.
 We have 
$\alpha \cap \beta \not \subseteq \gamma $
 or 
$(-\alpha ) \cap (-\beta ) \not \subseteq (-\gamma )$
. In the first case, we have 
$\alpha \cap \beta \cap (-\gamma ) \neq ~\emptyset $
 and, as roots are convex, the claim follows from [Reference Abramenko and BrownAB08, Lemma 
$5.45$
]. Thus, we can assume 
$(-\alpha ) \cap (-\beta ) \not \subseteq (-\gamma )$
. As roots are convex, [Reference Abramenko and BrownAB08, Lemma 
$5.45$
] implies 
$(-\alpha ) \cap (-\beta ) \cap \gamma \cap R \neq \emptyset $
. Let x be contained in this set and let 
$y \in R$
 be opposite to x in R. Then, 
$y \in \alpha \cap \beta \cap (-\gamma ) \cap R$
 and the claim follows.
 We are now in the position to prove assertion (b). We assume 
$(\alpha , \beta ) \cap \{ \gamma , -\gamma \} = \emptyset = (-\alpha , \beta ) \cap \{ \gamma , -\gamma \}$
. By the above, we deduce the following: 
$$ \begin{align*} &x \in \alpha \cap \beta \cap (-\gamma) \cap R \quad\text{and}\quad x' \in \alpha \cap \beta \cap \gamma \cap R, \\ &y \in (-\alpha) \cap \beta \cap (-\gamma) \cap R \quad\text{and}\quad y' \in (-\alpha) \cap \beta \cap \gamma \cap R. \end{align*} $$
As residues and roots are convex, there exist 
$P, Q \in \partial \gamma $
 such that 
$P \subseteq \alpha \cap \beta \cap R$
 and 
$Q \subseteq (-\alpha ) \cap \beta \cap R$
. As 
$P \subseteq \alpha $
 and 
$Q \subseteq (-\alpha )$
, we have 
$P \neq Q$
 and Lemma 2.2 implies that there exist 
$p\in P, q\in Q$
 that are opposite in R. Using [Reference WeissWei03, Proposition 
$5.4$
], every chamber in R lies on a minimal gallery from p to q. As roots are convex and 
$p, q \in \beta $
, we infer 
$R \subseteq \beta $
, which is a contradiction to 
$R \in \partial ^2 \beta $
.
Lemma 2.10. Suppose 
$\alpha \neq \pm \beta \in \Phi $
 with 
$o(r_{\alpha } r_{\beta }) < \infty $
 and let 
$\gamma \in (\alpha , \beta )$
. Then, 
$\{ -\alpha , \gamma \}$
 is a prenilpotent pair and we have 
$\beta \in (-\alpha , \gamma )$
.
Proof. Note that by Lemma 2.8 and [Reference Abramenko and BrownAB08, Lemma 
$8.42(3)$
], the pair 
$\{ -\alpha , \gamma \}$
 is prenilpotent. Thus, we have to show that 
$(-\alpha ) \cap \gamma \subseteq \beta $
 and 
$\alpha \cap (-\gamma ) \subseteq (-\beta )$
. As 
$\gamma \in (\alpha , \beta )$
, we have 
$\alpha \cap \beta \subseteq \gamma $
 and 
$(-\alpha ) \cap (-\beta ) \subseteq (-\gamma )$
. In particular, we have 
$(-\gamma ) \subseteq (-\alpha ) \cup (-\beta )$
 and 
$\gamma \subseteq \alpha \cup \beta $
. We compute 
$$ \begin{align*} (-\alpha) \cap \gamma &\subseteq (-\alpha) \cap (\alpha \cup \beta) \subseteq (-\alpha) \cap \beta \subseteq \beta, \\ \alpha \cap (-\gamma) &\subseteq \alpha \cap ((-\alpha) \cup (-\beta)) \subseteq \alpha \cap (-\beta) \subseteq (-\beta).\\[-3pc] \end{align*} $$
2.4 Reflection and combinatorial triangles in 
$\boldsymbol {\Sigma }\mathbf {(W, S)}$
 A reflection triangle is a set R of three reflections such that the order of 
$tt'$
 is finite for all 
$t, t' \in R$
 and such that 
$\bigcap _{t\in R} \partial ^2 \beta _t = \emptyset $
, where 
$\beta _t$
 is one of the two roots associated with the reflection t. Note that 
$\partial ^2 \beta _t = \partial ^2 (-\beta _t)$
. A set T of three roots is called a combinatorial triangle (or simply a triangle) if the following hold. 
- 
(CT1) The set
$\{ r_{\alpha } \mid \alpha \in T \}$
 is a reflection triangle. - 
(CT2) For each
$\alpha \in T$
, there exists 
$\sigma \in \partial ^2 \beta \cap \partial ^2 \gamma $
 with 
$\sigma \subseteq \alpha $
, where 
$\{ \beta , \gamma \} = T \backslash \{ \alpha \}$
. 
Remark 2.11. Let R be a reflection triangle. Then, there exist three roots 
$\beta _1, \beta _2, \beta _3 \in \Phi $
 such that 
$R = \{ r_{\beta _1}, r_{\beta _2}, r_{\beta _3} \}$
. Let 
$\{i, j, k\} = \{1, 2, 3\}$
. As 
$o(r_{\beta _i} r_{\beta _j}) < \infty $
, there exists 
$\sigma _k \in \partial ^2 \beta _i \cap \partial ^2 \beta _j$
 by Lemma 2.8. Since R is a reflection triangle, we have 
$\sigma _k \notin \partial ^2 \beta _k$
 and Lemma 2.4 yields 
$\sigma _k \subseteq \beta _k$
 or 
$\sigma _k \subseteq -\beta _k$
. Let 
$\varepsilon _k \in \{+, -\}$
 with 
$\sigma _k \subseteq \varepsilon _k \beta _k$
 and define 
$\alpha _k := \varepsilon _k \beta _k$
. Then, 
$\{ \alpha _1, \alpha _2, \alpha _3 \}$
 is a triangle, which induces the reflection triangle R.
Lemma 2.12. Suppose that 
$(W, S)$
 is 
$2$
-spherical and let T be a triangle. 
- 
(a) If the Coxeter diagram is the complete graph, then
$(-\alpha , \beta ) = \emptyset $
 for all 
$\alpha \neq \beta \in T$
. - 
(b) If
$(W, S)$
 is cyclic hyperbolic, then T contains a unique chamber, that is, 
${|\kern -1pt\bigcap _{\alpha \in T} \alpha | = 1}$
. 
Proof. Assertion (a) is [Reference BischofBis22, Proposition 
$2.3$
] and assertion (b) is a consequence of the classification in [Reference FeliksonFel98] (see Figure 
$8$
 in § 5.1 in loc. cit.).
Lemma 2.13. Suppose that 
$(W, S)$
 is 
$2$
-spherical and that the Coxeter diagram is the complete graph. Let 
$\{ \alpha _1, \alpha _2, \alpha _3 \}$
 be a triangle and let 
$\beta \in (\alpha _1, \alpha _2)$
. 
- 
(a) We have
$o(r_{\beta } r_{\alpha _3}) = \infty $
 and 
$-\alpha _3 \subseteq \beta $
. - 
(b) If
$(W, S)$
 is cyclic hyperbolic, then 
$(-\alpha _3, \beta ) = \emptyset $
. 
Proof. Let 
$i \in \{1, 2\}$
 and assume that 
$o(r_{\alpha _3} r_{\beta }) < \infty $
. Then, 
$\{ r_{\alpha _i}, r_{\beta }, r_{\alpha _3} \}$
 is a reflection triangle by Lemmas 2.8(b) and 2.9(a). We apply Remark 2.11 to determine the triangle that induces 
$\{ r_{\alpha _1}, r_{\beta }, r_{\alpha _3} \}$
. We note that 
$\alpha _2 \in (-\alpha _1, \beta )$
 and 
$\alpha _1 \in (-\alpha _2, \beta )$
 hold by Lemma 2.10.
 There exist 
$R \in \partial ^2 \alpha _1 \cap \partial ^2 \alpha _2 = \partial ^2 \alpha _1 \cap \partial ^2 \beta $
 with 
$R \subseteq \alpha _3$
, and 
$R' \in \partial ^2 \alpha _1 \cap \partial ^2 \alpha _3$
 with 
$R' \subseteq \alpha _2$
. Thus, 
$\emptyset \neq R' \cap \alpha _1 \subseteq \alpha _1 \cap \alpha _2 \subseteq \beta $
 and Lemma 2.4 yields 
$R \subseteq \beta $
. This implies that there exists 
$\varepsilon \in \{+, -\}$
 such that 
$\{ \varepsilon \alpha _1, \beta , \alpha _3 \}$
 is a triangle. If 
$\varepsilon = +$
, then 
$(-\alpha _1, \beta ) = \emptyset $
 by Lemma 2.12. However, this is a contradiction to the fact that 
$\alpha _2 \in (-\alpha _1, \beta )$
. Thus, we have 
$\varepsilon = -$
. We show that 
$\{ \beta , \alpha _2, \alpha _3 \}$
 is a triangle.
 There exists 
$R_3 \in \partial ^2 \alpha _1 \cap \partial ^2 \alpha _2 = \partial ^2 \beta \cap \partial ^2 \alpha _2$
 with 
$R_3 \subseteq \alpha _3$
. There exists 
$R_1 \in \partial ^2 \alpha _2 \cap \partial ^2 \alpha _3$
 with 
$R_1 \subseteq \alpha _1$
. In particular, 
$\emptyset \neq R_1 \cap \alpha _2 \subseteq \alpha _1 \cap \alpha _2 \subseteq \beta $
. Now, as 
$\{ -\alpha _1, \beta , \alpha _3 \}$
 is a triangle, there exists 
$T \in \partial ^2 \beta \cap \partial ^2 \alpha _3$
 with 
$T \subseteq (-\alpha _1)$
. Thus, 
${\emptyset \neq \beta \cap T \subseteq \beta \cap (-\alpha _1) \subseteq \alpha _2}$
. We infer that 
$\{ \beta , \alpha _2, \alpha _3 \}$
 is a triangle and hence 
$(-\alpha _2, \beta ) = \emptyset $
 by Lemma 2.12. However, this is again a contradiction. We conclude 
$o(r_{\alpha _3} r_{\beta }) = \infty $
.
 Note that 
$\emptyset \neq R_3 \cap (-\beta ) \subseteq \alpha _3$
 and 
$\emptyset \neq R_1 \cap \alpha _2 \cap (-\alpha _3) \subseteq \alpha _1 \cap \alpha _2 \subseteq \beta $
. In particular, 
$\{-\alpha _3, \beta \}$
 is a prenilpotent pair and by Lemma 2.8, it is nested. We have 
${\emptyset \neq R_3 \cap \beta \subseteq \alpha _3}$
. However, this implies 
$\beta \not \subseteq (-\alpha _3)$
. We deduce 
$(-\alpha _3) \subseteq \beta $
. This finishes the proof of assertion (a).
 Let 
$\{x, y\} \in \partial \alpha _3$
 such that 
$\bigcap _{i=1}^3 \alpha _i = \{y\}$
 (see Lemma 2.12) and let 
$R \in \partial ^2 \alpha _1 \cap \partial ^2 \alpha _2$
. By Lemma 2.7(b), R is unique and hence 
$y\in R$
. Let 
$d\in R$
 be opposite to y in R and let 
$(c_0 = x, c_1 = y, \ldots , c_n = d)$
 be a minimal gallery. Then, 
$c_i \in R$
 for each 
$1 \leq i \leq n$
. Let 
$(\beta _1, \ldots , \beta _n)$
 be the sequence of roots crossed by 
$(c_0, \ldots , c_n)$
. Then, 
$\beta _1 = -\alpha _3$
 and 
$o(r_{\beta _i} r_{\beta }) < \infty $
 for each 
$2 \leq i \leq n$
 by Lemma 2.8. Assume 
$(-\alpha _3, \beta ) \neq \emptyset $
. Then, [Reference Abramenko and BrownAB08, Lemma 
$3.69$
] implies that for each 
$\gamma \in (-\alpha _3, \beta )$
, there exists 
$2 \leq i \leq n-1$
 with 
$\gamma = \beta _i$
. As 
$\gamma \subsetneq \beta $
, this is a contradiction and hence, 
$(-\alpha _3, \beta ) = \emptyset $
.
Lemma 2.14. Assume that 
$(W, S)$
 is 
$2$
-spherical and that the Coxeter diagram is the complete graph. Suppose 
$w\in W$
 and 
$s\neq t \in S$
 with 
$\ell (ws) = \ell (w) +1 = \ell (wt)$
 and suppose 
$w' \in \langle s, t\rangle $
 with 
$\ell (w') \geq 2$
. Then, we have 
$\ell (ww'r) = \ell (w) + \ell (w') +1$
 for each 
$r\in S\backslash \{s, t\}$
.
 If, moreover, 
$m_{pq} \neq 3$
 for all 
$p, q \in S$
, then we have 
$\ell (ww'rf) = \ell (w) + \ell (w') +2$
 for each 
$r\in S \backslash \{s, t\}$
 and 
$f\in S \backslash \{ r \}$
.
Proof. The first part is [Reference BischofBis25a, Corollary 
$3.3$
] and the second part is a consequence of the first.
Lemma 2.15. Assume that 
$(W, S)$
 is 
$2$
-spherical and that the Coxeter diagram is the complete graph. Let 
$\alpha \in \Phi _+$
 be a root and let 
$P, Q \in \partial \alpha $
. Let 
$P_0 = P, \ldots , P_n = Q$
 and 
$R_1, \ldots , R_n$
 be as in Lemma 2.5. If 
$ {\mathrm {proj}}_{R_i} 1_W = {\mathrm {proj}}_{P_{i-1}} 1_W$
 for some 
$1 \leq i \leq n$
, then 
$ {\mathrm {proj}}_{R_n} 1_W = {\mathrm {proj}}_{P_{n-1}}1_W$
.
Proof. We show the hypothesis by induction on 
$n-i$
. If 
$n-i = 0$
, then there is nothing to show. Thus, we suppose 
$n-i>0$
. Let 
$J_i$
 be the type of 
$R_i$
 and let 
$w := {\mathrm {proj}}_{R_i} 1_W = {\mathrm {proj}}_{P_{i-1}} 1_W \in P_{i-1}$
. As 
$P_{i-1} \neq P_i$
 are contained and opposite in 
$R_i$
 by Lemma 2.5, there exists 
$w' \in P_i$
 such that w and 
$w'$
 are opposite in 
$R_i$
, that is, 
${w' = wr_{J_i}}$
. For 
$t\in S$
 with 
$J_i \cap J_{i+1} = \{t\}$
, we have 
$R_i \cap R_{i+1} = P_i = \mathcal {P}_t(w') = \mathcal {P}_t(wr_{J_i})$
. As 
${w = {\mathrm {proj}}_{R_i} 1_W}$
, we deduce 
$\ell ( {\mathrm {proj}}_{P_i} 1_W ) = \ell (w (r_{J_i} t)) \geq \ell (w) +2$
. Using Lemma 2.14, we infer 
$\ell (( {\mathrm {proj}}_{P_i} 1_W)s) = \ell ( {\mathrm {proj}}_{P_i} 1_W) +1$
 for 
$s \in J_{i+1} \backslash J_i$
 and hence 
$ {\mathrm {proj}}_{R_{i+1}} 1_W = {\mathrm {proj}}_{P_i} 1_W$
. Using induction, the claim follows.
Lemma 2.16. Assume that 
$(W, S)$
 is 
$2$
-spherical and that the Coxeter diagram is the complete graph. Let 
$w\in W$
 and 
$r, s, t\in S$
 be pairwise distinct such that 
$\ell (ws) = \ell (w) +1 = \ell (wt)$
. If 
$\ell (wsr) = \ell (w)$
, then 
$\ell (wsrt) = \ell (w) +1$
.
Proof. This is a consequence of Lemma 2.14.
Lemma 2.17 [Reference BischofBis25a, Lemma 
$3.4$
].
 Assume that 
$(W, S)$
 is 
$2$
-spherical and that 
$m_{st} \geq 4$
 for all 
$s\neq t \in S$
. Suppose 
$w \in W$
 and 
$s\neq t \in S$
 with 
$\ell (ws) = \ell (w) +1 = \ell (wt)$
. Then, we have 
$\ell (w) +2 \in \{ \ell (wsr), \ell (wtr) \}$
 for all 
$r\in S \backslash \{s, t\}$
.
Lemma 2.18. Suppose that 
$m_{st} = 4$
 for all 
$s\neq t\in S$
. Let 
$r, s, t \in S$
 be pairwise distinct and let 
$p \in S \backslash \{s, t\}$
. Let 
$H = (d_0, \ldots , d_4)$
 be a minimal gallery of type 
$(r, s, t, p)$
 and let 
$\alpha \in \Phi $
 with 
$\{ d_0, d_1 \} \in \partial \alpha $
 and 
$d_0 \in \alpha $
. Let 
$\beta $
 be a root containing 
$d_0$
 and 
$\{ \{d_2, d_3\}, \{d_3, d_4\} \} \cap \partial \beta \neq \emptyset $
. Then, we have 
$\alpha \subsetneq \beta $
.
Proof. We use the canonical linear representation of 
$(W, S)$
 (see [Reference Abramenko and BrownAB08, Ch. 
$2.5$
]). Let 
$V := \mathbb {R}^S$
 be the vector space over 
$\mathbb {R}$
 with standard basis 
$(e_s)_{s\in S}$
 and let 
$(\cdot , \cdot )$
 be the symmetric bilinear form on V given by
$$ \begin{align*} (e_s, e_t) := -\cos\bigg( \frac{\pi}{m_{st}} \bigg) = \begin{cases} 1 & \text{if } s=t, \\ -\dfrac{\sqrt{2}}{2} & \text{otherwise}. \end{cases} \end{align*} $$
Then, W acts on V via 
$\sigma : W \to \mathrm {GL}(V), s \mapsto ( \sigma _s: V \to V, x \mapsto x - 2(x, e_s) e_s )$
 and 
$(\cdot , \cdot )$
 is invariant under this action. Let 
$\alpha $
 and 
$\beta $
 be as in the statement. Without loss of generality, we can assume 
$\alpha = \alpha _r$
 and 
$\beta \in \{ rs\alpha _t, rst\alpha _p \}$
. At first, we consider the case 
$\beta = rs\alpha _t$
. We compute 
$$ \begin{align*} (e_r, \sigma(rs)(e_t)) &= ( e_r, \sigma_r( \sigma_s(e_t) ) ) = ( \sigma_r(e_r), \sigma_s(e_t) ) = (-e_r, e_t + \sqrt{2} e_s) = \dfrac{\sqrt{2}}{2} +1>1. \end{align*} $$
Now, we assume 
$\beta = rst\alpha _p$
 and we compute 
$$ \begin{align*} (e_r, \sigma(rst)(e_p)) &= (e_r, \sigma_r(\sigma_s(\sigma_t(e_p)))) \\ &= ( \sigma_s(-e_r), \sigma_t(e_p) ) \\ &= (-e_r -2(-e_r, e_s)e_s, e_p -2(e_p, e_t)e_t) \\ &= -(e_r, e_p) + 2(e_p, e_t)(e_r, e_t) + 2(e_r, e_s)(e_s, e_p) -4(e_r, e_s)(e_p, e_t)(e_s, e_t) \\ &= -(e_r, e_p) +1 +1 +\sqrt{2}>1. \end{align*} $$
Using [Reference Abramenko and BrownAB08, Lemma 
$2.77$
], we obtain that 
$o(r_{\alpha } r_{\beta }) = \infty $
. As 
$\{ \alpha , \beta \}$
 is a prenilpotent pair, Lemma 2.8 yields that 
$\{ \alpha , \beta \}$
 is a pair of nested roots and hence 
$\alpha \subsetneq \beta $
.
2.5 Roots in Coxeter systems
Convention 2.19. For the rest of this section, we assume that 
$(W, S)$
 is 
$2$
-spherical and 
$m_{st} \geq 4$
 for all 
$s\neq t \in S$
.
Let R be a residue and let 
$\alpha \in \Phi _+$
. Then, we call 
$\alpha $
 a simple root of R if there exists 
$P \in \partial \alpha $
 such that 
$P \subseteq R$
 and 
$ {\mathrm {proj}}_R 1_W = {\mathrm {proj}}_P 1_W$
. In this case, R is also stabilized by 
$r_{\alpha }$
 and hence 
$R \in \partial ^2 \alpha $
. For a positive root 
$\alpha \in \Phi _+$
, we define 
We remark that 
$k_{\alpha } = 1$
 if and only if 
$\alpha $
 is a simple root.
Remark 2.20. Let 
$\alpha \in \Phi _+$
 be a positive root with 
$k_{\alpha }>1$
. Let 
$(c_0, \ldots , c_k) \in \mathrm {Min}$
 be a minimal gallery with 
$k = k_{\alpha }$
 and 
$c_k \notin \alpha $
. Then, 
$\{ c_{k-1}, c_k \} \in \partial \alpha $
 and 
$\alpha $
 is not a simple root of the rank-2 residue containing 
$c_{k-2}, c_{k-1}, c_k$
. In particular, there exists 
$R \in \partial ^2 \alpha $
 such that 
$\alpha $
 is not a simple root of R.
 Let 
$\alpha \in \Phi _+$
 be a root with 
$k_{\alpha }>1$
 and let 
$R \in \partial ^2 \alpha $
 be a residue such that 
$\alpha $
 is not a simple root of R. Let 
$P \neq P' \in \partial \alpha $
 be the two parallel panels contained in R. Then, 
$\ell (1_W, {\mathrm {proj}}_P 1_W) \neq \ell (1_W, {\mathrm {proj}}_{P'} 1_W)$
 and we can assume that 
$\ell (1_W, {\mathrm {proj}}_P 1_W) < \ell (1_W, {\mathrm {proj}}_{P'} 1_W)$
. Let 
$G = (c_0, \ldots , c_k) \in \mathrm {Min}$
 be of type 
$(s_1, \ldots , s_k)$
 such that 
${c_i = {\mathrm {proj}}_R 1_W}$
 for some 
$0 \leq i \leq k$
, 
$c_i, \ldots , c_k \in R$
, 
$c_{k-1} = {\mathrm {proj}}_P 1_W$
 and 
$c_k \in P \backslash \{c_{k-1}\}$
. For 
$P \neq Q := \{ x, y \} \in \partial \alpha $
 with 
$x\in \alpha $
 and 
$y \notin \alpha $
, we let 
$P_0 = P, \ldots , P_n = Q$
 and 
$R_1, \ldots , R_n$
 be as in Lemma 2.5.
Lemma 2.21. We have 
$ {\mathrm {proj}}_{R_n} 1_W = {\mathrm {proj}}_{P_{n-1}} 1_W$
 if at least one of the following holds: 
- 
(a)
$R_1 \neq R$
 and 
$\ell (s_1 \cdots s_{k-1}r) = k$
, where 
$\{r, s_k\}$
 is the type of 
$R_1$
; - 
(b)
$n>1$
. 
Proof. Suppose 
$R_1 \neq R$
 and 
$\ell (s_1 \cdots s_{k-1}r) = k$
. Then, 
$ {\mathrm {proj}}_{R_1} c_0 = {\mathrm {proj}}_{P_0} c_0$
 and the claim follows from Lemma 2.15. Now, we suppose 
$n>1$
. Assume that 
$R_1 = R$
. Then, Lemma 2.14 implies 
$ {\mathrm {proj}}_{R_2} 1_W = {\mathrm {proj}}_{P_1} 1_W$
 and the claim follows from Lemma 2.15. Now, we suppose 
$R_1 \neq R$
. If 
$\ell (s_1 \cdots s_{k-1}r) = k$
, the claim follows from assertion (a). Thus, we can assume that 
$\ell (s_1 \cdots s_{k-1}r) = k-2$
. Then, Lemma 2.14 yields 
$k-1 = i+1$
, where 
$c_i = {\mathrm {proj}}_R c_0$
. Define 
$d := {\mathrm {proj}}_{R_1} c_0$
 and replace G by a minimal gallery 
$(d_0 = c_0, \ldots , d, c_{k-1}, c_k)$
. Now, we are in the case 
$R_1 = R$
 and the claim follows.
Lemma 2.22. We have 
$k = k_{\alpha }$
 and the panel 
$P_{\alpha } := P$
 is the unique panel in 
$\partial \alpha $
 with the property 
$\ell (1_W, {\mathrm {proj}}_{P_{\alpha }} 1_W) = k_{\alpha } -1$
.
Proof. We have 
$\ell (1_W, {\mathrm {proj}}_P 1_W) = k-1$
. Thus, it suffices to show 
$\ell (1_W, {\mathrm {proj}}_Q 1_W)>k-1$
. For 
$n=1$
, we obtain 
$\ell (1_W, {\mathrm {proj}}_Q 1_W) \geq k$
. Now, we assume 
$n>1$
. Then, we have 
$ {\mathrm {proj}}_{R_n} 1_W = {\mathrm {proj}}_{P_{n-1}} 1_W$
 by Lemma 2.21. Since 
$Q \subseteq R_n$
, we deduce 
$\ell (1_W, {\mathrm {proj}}_Q 1_W) \geq \ell (1_W, {\mathrm {proj}}_{R_n} 1_W) = \ell (1_W, {\mathrm {proj}}_{P_{n-1}} 1_W)$
 and the claim follows by induction.
Lemma 2.23. We define 
$R_{\alpha , Q}$
 to be the residue 
$R_1$
 if 
$R \neq R_1$
 and 
$\ell (s_1 \cdots s_{k-1} r) = k-2$
. In all other cases, we define 
$R_{\alpha , Q} := R$
. Then, there exists a minimal gallery 
$H = (d_0 = c_0, \ldots , d_m = {\mathrm {proj}}_Q c_0, y)$
 with the following properties. 
- 
• There exists
$0 \leq i \leq m$
 such that 
$d_i = {\mathrm {proj}}_{R_{\alpha , Q}} 1_W$
. - 
• For each
$i+1 \leq j \leq m$
, there exists 
$L_j \in \partial ^2 \alpha $
 with 
$\{ d_{j-1}, d_j \} \subseteq L_j$
. In particular, we have 
$d_j \in \mathcal {C}(\partial ^2\alpha )$
. 
Proof. We define
$$ \begin{align*} d := \begin{cases} {\mathrm{proj}}_{P_0} c_0 & \text{if } R \neq R_1 \text{ and } \ell(s_1 \cdots s_{k-1}r) = k, \\ {\mathrm{proj}}_{P_1} c_0 & \text{otherwise}. \end{cases} \end{align*} $$
We first show that 
$\ell (c_0, {\mathrm {proj}}_Q c_0) = \ell (c_0, {\mathrm {proj}}_{R_{\alpha , Q}} c_0) + \ell ( {\mathrm {proj}}_{R_{\alpha , Q}} c_0, d) + \ell ( d, {\mathrm {proj}}_Q c_0 )$
. By definition, we have 
$R_{\alpha , Q} = R_{\alpha , P_i}$
 for all 
$1 \leq i \leq n$
. We prove the hypothesis by induction on n. Suppose first 
$n=1$
 and that one of the following holds: 
- 
•
$R = R_1$
; - 
•
$R\neq R_1$
 and 
$\ell (s_1 \cdots s_{k-1}r) = k-2$
. 
Then, 
$Q = P_1 \subseteq R_{\alpha , Q}, d = {\mathrm {proj}}_Q c_0$
 and the claim follows. We prove the case 
$R \neq R_1$
 and 
$\ell (s_1 \cdots s_{k-1}r) = k$
 together with the case 
$n>1$
 simultaneously. Lemma 2.21 provides in both cases 
$ {\mathrm {proj}}_{R_n} c_0 = {\mathrm {proj}}_{P_{n-1}} c_0$
. If 
$n>1$
, we have 
$R_{\alpha , Q} = R_{\alpha , P_{n-1}}$
; if 
$n=1$
, we have 
$P_{n-1} = P_0 \subseteq R_{\alpha , Q}$
 and 
$d = {\mathrm {proj}}_{P_{n-1}} c_0$
. This is used in the third equation below. We compute the following: 
$$ \begin{align*} \ell(c_0, {\mathrm{proj}}_Q c_0) &= \ell(c_0, {\mathrm{proj}}_{R_n} c_0) + \ell({\mathrm{proj}}_{R_n}c_0, {\mathrm{proj}}_Q c_0) \\ &= \ell(c_0, {\mathrm{proj}}_{P_{n-1}} c_0) + \ell({\mathrm{proj}}_{P_{n-1}} c_0, {\mathrm{proj}}_Q c_0) \\ &= \ell(c_0, {\mathrm{proj}}_{R_{\alpha, Q}} c_0) + \ell({\mathrm{proj}}_{R_{\alpha, Q}} c_0, d) + \ell(d, {\mathrm{proj}}_{P_{n-1}} c_0) \\ & \qquad + \ell({\mathrm{proj}}_{P_{n-1}} c_0, {\mathrm{proj}}_Q c_0) \\ &\geq \ell(c_0, {\mathrm{proj}}_{R_{\alpha, Q}} c_0) + \ell({\mathrm{proj}}_{R_{\alpha, Q}} c_0, d) + \ell(d, {\mathrm{proj}}_Q c_0) \\ &\geq \ell(c_0, {\mathrm{proj}}_Q c_0). \end{align*} $$
Thus, concatenating a minimal gallery from 
$c_0$
 to 
$ {\mathrm {proj}}_{R_{\alpha , Q}} c_0$
, a minimal gallery from 
$ {\mathrm {proj}}_{R_{\alpha , Q}} c_0$
 to d and a minimal gallery from d to 
$ {\mathrm {proj}}_Q c_0$
 yields a minimal gallery from 
$c_0$
 to 
$ {\mathrm {proj}}_Q c_0$
. Using Lemma 2.6, there exists a minimal gallery from d to 
$ {\mathrm {proj}}_Q c_0$
 such that every chamber of this gallery is contained in 
$\mathcal {C}(\partial ^2 \alpha )$
 and for two adjacent chambers, there exists a residue in 
$\partial ^2 \alpha $
 containing both. Since 
$R_{\alpha , Q} \in \{R, R_1\} \subseteq \partial ^2 \alpha $
 and, as 
$R_{\alpha , Q}$
 is convex, each chamber of a minimal gallery from 
$ {\mathrm {proj}}_{R_{\alpha , Q}} c_0$
 to d is contained in 
$R_{\alpha , Q}$
; the claim follows.
Remark 2.24. In the lemma, we use the following notation. For a minimal gallery 
$G = (c_0, \ldots , c_k)$
, 
$k \geq 1,$
 we denote the unique root containing 
$c_{k-1}$
 but not 
$c_k$
 by 
$\alpha _G$
.
Lemma 2.25. Suppose that 
$(W, S)$
 is of type 
$(4, 4, 4)$
 and suppose 
$S = \{ s_{k-1}, s_k, r \}$
. Let 
$\beta \in \Phi _+ \backslash \{ \alpha _s \mid s\in S \}$
 be a root with 
$k_{\beta } \leq k$
, 
$o(r_{\alpha } r_{\beta }) < \infty $
 and 
$R \notin \partial ^2 \beta $
. Moreover, we assume that 
$\ell (s_1 \cdots s_{k-1}r) = k$
. Then, one of the following holds: 
- 
(a)
$\beta = \alpha _F$
, where 
$F \in \mathrm {Min}$
 is the minimal gallery of type 
$(s_1, \ldots , s_{k-1}, r)$
; - 
(b)
$\beta = \alpha _F$
, where 
$F \in \mathrm {Min}$
 is the minimal gallery of type 
$(s_1, \ldots , s_{k-2}, s_k, s_{k-1}, r)$
, and we have 
$\ell (s_1 \cdots s_{k-2} s_k r) = k-2$
. 
Proof. Recall that 
$\alpha = \alpha _G$
. As 
$R \in \partial ^2 \alpha $
, we have 
$\alpha \neq \pm \beta $
. By Lemma 2.8(a), there exists 
$C \in \partial ^2 \alpha \cap \partial ^2 \beta $
. Then, there exists a panel 
$Q' \in \partial \alpha $
 that is contained in C. We let 
$ {\mathrm {proj}}_{Q'} c_0 \neq y \in Q'$
. Let 
$P_i, R_i$
 be as before (with 
$P_n = Q'$
), let 
$G' := (c_0, \ldots , c_{k-1})$
 and let 
$G" := (c_0, \ldots , c_k, c_{k+1})$
 be the minimal gallery of type 
$(s_1, \ldots , s_k, s_{k-1})$
. Let E be a minimal gallery from 
$c_0$
 to y as in Lemma 2.23. We can extend this minimal gallery (if necessary) to a minimal gallery from 
$c_0$
 to 
$e \in C$
, where 
$\ell (e) = {\ell ( {\mathrm {proj}}_C c_0) +4}$
. Let 
$Q" \in \partial \beta $
 be a panel contained in C and let 
$ {\mathrm {proj}}_{Q"} c_0 \neq y' \in Q"$
. Take a minimal gallery 
$H = (d_0 = c_0, \ldots , d_{m-2} = {\mathrm {proj}}_{R_{\beta , Q"}} c_0, \ldots , d_q := {\mathrm {proj}}_{Q"} d_0, d_{q+1} := y')$
 as in Lemma 2.23. Then, 
$m = k_{\beta } \leq k$
. As before, we can extend H (if necessary) to a minimal gallery from 
$d_0$
 to e. Note that 
$R \neq C$
 by assumption, and since 
$R \in \partial ^2 \alpha _{G'} \cap \partial ^2 \alpha _{G"}, R \notin \partial ^2 \beta $
, we have 
$\alpha _{G'} \neq \pm \beta \neq \alpha _{G"}$
.
 (i) Assume that 
$R = R_1$
. Since 
$R \in \partial ^2 \alpha _{G"} \cap \partial ^2 \alpha , C \in \partial ^2 \alpha $
 and 
$\alpha _{G"} \neq \pm \beta $
, Lemma 2.7(b) implies 
$C \notin \partial ^2 \alpha _{G"}$
 and hence the gallery H has to cross the wall 
$\partial \alpha _{G"}$
. Assume that 
$(d_0, \ldots , d_{m-2})$
 crosses the wall 
$\partial \alpha _{G"}$
. Let 
$1 \leq j \leq m-2$
 be such that 
$\{ d_{j-1}, d_j \} \in \partial \alpha _{G"}$
. Then, 
$k = k_{\alpha _{G"}} \leq j \leq m-2 \leq k-2$
, which is a contradiction. Thus, the gallery 
$(d_0, \ldots , d_{m-2})$
 does not cross the wall 
$\partial \alpha _{G"}$
 and hence 
$(d_{m-1}, \ldots , d_{q+1})$
 has to cross the wall 
$\partial \alpha _{G"}$
. Let 
$m \leq j \leq q+1$
 be such that 
$\{ d_{j-1}, d_j \} \in \partial \alpha _{G"}$
. By Lemma 2.23, there exists 
$L \in \partial ^2 \beta $
 such that 
$\{ d_{j-1}, d_j \} \subseteq L$
. Then, 
$L \in \partial ^2 \beta \cap \partial ^2 \alpha _{G"}$
 and hence 
$o(r_{\alpha _{G"}} r_{\beta }) < \infty $
. As 
$\partial ^2 \alpha \cap \partial ^2 \alpha _{G"} = \{R\} \neq \{C\} = \partial ^2 \alpha \cap \partial ^2 \beta $
 (see Lemma 2.7(b)), we have 
$\partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \alpha _{G"} = \emptyset $
 and hence 
$\{ r_{\alpha }, r_{\alpha _{G"}}, r_{\beta } \}$
 is a reflection triangle. As 
$ {\mathrm {proj}}_R c_0 \in R \cap \beta \neq \emptyset $
 and 
$R \notin \partial ^2 \beta $
, we deduce 
$R \subseteq \beta $
. As 
$e \in C \cap (-\alpha _{G"}) \neq \emptyset $
 and 
${C \notin \partial ^2 \alpha _{G"}}$
, we deduce 
$C \subseteq (-\alpha _{G"})$
. As 
$L \in \partial ^2 \alpha _{G"} \cap \partial ^2 \beta , \{ d_{j-1}, d_j \} \subseteq L \cap \alpha $
 and 
$L \notin \partial ^2 \alpha $
, we deduce 
$L \subseteq \alpha $
. Thus, 
$T := \{ \alpha , -\alpha _{G"}, \beta \}$
 is a triangle. For 
$d \in W$
 with 
$\delta (c_{k-2}, d) = s_k s_{k-1}$
, we have 
$d\in \bigcap _{\gamma \in T} \gamma $
 and Lemma 2.12(b) implies 
$\bigcap _{\gamma \in T} \gamma = \{ d \}$
. If 
$\ell (s_1 \cdots s_{k-2}s_kr) = k$
, then 
$k_{\beta } = k+1$
. Thus, 
$\ell (s_1 \cdots s_{k-2}s_kr) = k-2$
 and part (b) follows.
 (ii) Assume that 
$R \neq R_1$
. Since 
$R \in \partial ^2 \alpha _{G'} \cap \partial ^2 \alpha $
 and 
$R \neq C \in \partial ^2 \alpha $
, Lemma 2.7(b) implies 
$C \notin \partial ^2 \alpha _{G'}$
 and hence H has to cross the wall 
$\partial \alpha _{G'}$
. Suppose that 
$(d_0, \ldots , d_{m-2})$
 does not cross the wall 
$\partial ^2 \alpha _{G'}$
. Replacing 
$\alpha _{G"}$
 by 
$\alpha _{G'}$
 in part (i), we obtain that 
$T := \{ \alpha , -\alpha _{G'}, \beta \}$
 is a triangle. Using Lemma 2.12(b), we have 
$\bigcap _{\gamma \in T} \gamma = \{ c_{k-1} \}$
 and hence assertion (a) follows. Now, we suppose that 
$(d_0, \ldots , d_{m-2})$
 crosses the wall 
$\partial \alpha _{G'}$
 and let 
$1 \leq j \leq m-2$
 be such that 
$P' := \{ d_{j-1}, d_j \} \in \partial \alpha _{G'}$
. Note that 
$1 \leq m-2 \leq k-2$
 and hence 
$k \geq 3$
. Let Z be the 
$\{ s_{k-1}, r \}$
-residue containing 
$c_{k-2}$
. Then, 
$\alpha _{G'}$
 is not a simple root of Z and hence 
$k_{\alpha _{G'}} \in \{ k-2, k-1 \}$
. This implies 
$k-2 \leq k_{\alpha _{G'}} \leq j \leq m-2 \leq k-2$
. Lemma 2.22 implies 
$P' = P_{\alpha _{G'}}$
 and hence 
$P'$
 is contained in Z. Moreover, we have 
$j = m-2$
 and 
$R_{\beta , Q"} = R_{\{r, s_k\}}(d_j)$
. Both nonsimple roots of 
$R_{\beta , Q"}$
 contain 
$-\alpha $
 by Lemma 2.18. As one of them is equal to 
$\beta $
, we have a contradiction.
3 Commutator blueprints
Convention 3.1. From now on, we assume 
$m_{st} \in \{2, 3, 4, \infty \}$
 for all 
$s\neq t\in S$
.
We let 
$\mathcal {P}$
 be the set of prenilpotent pairs of positive roots. For 
$w\in W$
, we define 
$\Phi (w) := \{ \alpha \in \Phi _+ \mid w \notin \alpha \}$
. Let 
$G = (c_0, \ldots , c_k) \in \mathrm {Min}$
 and let 
$(\alpha _1, \ldots , \alpha _k)$
 be the sequence of roots crossed by G. We define 
$\Phi (G) := \{ \alpha _i \mid 1 \leq i \leq k \}$
. Using the indices, we obtain an ordering 
$\leq _G$
 on 
$\Phi (G)$
 and, in particular, on 
$[\alpha , \beta ] = [\beta , \alpha ] \subseteq \Phi (G)$
 for all 
$\alpha , \beta \in \Phi (G)$
. Note that 
$\Phi (G) = \Phi (w)$
 holds for every 
$G \in \mathrm {Min}(w)$
. We abbreviate 
$\mathcal {I} := \{ (G, \alpha , \beta ) \in \mathrm {Min} \times \Phi _+ \times \Phi _+ \mid \alpha , \beta \in \Phi (G), \alpha \leq _G \beta \}$
.
 Given a family 
$(M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
, where 
$M_{\alpha , \beta }^G \subseteq (\alpha , \beta )$
 is ordered via 
$\leq _G$
, for 
$w\in W$
, we define the group 
$U_w$
 via the following presentation: 
$$ \begin{align*} U_w := \left\langle \{ u_{\alpha} \mid \alpha \in \Phi(w) \} \;\middle|\; \begin{cases} \text{for all } \alpha \in \Phi(w): u_{\alpha}^2 = 1, \\ \text{for all } (G, \alpha, \beta) \in \mathcal{I}, G \in \mathrm{Min}(w): [u_{\alpha}, u_{\beta}] = \prod\nolimits_{\gamma \in M_{\alpha, \beta}^G} u_{\gamma} \end{cases}\kern-1pc \right\rangle. \end{align*} $$
Here, the product 
$\prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma }$
 is understood to be ordered via the ordering 
$\leq _G$
, that is, if 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$G \in \mathrm {Min}(w)$
 and 
$M_{\alpha , \beta }^G = \{ \gamma _1 \leq _G \ldots \leq _G \gamma _k \} \subseteq (\alpha , \beta ) \subseteq \Phi (G)$
, then 
$\prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma } = u_{\gamma _1} \cdots u_{\gamma _k}$
. Note that there could be 
$G, H \in \mathrm {Min}(w), \alpha , \beta \in \Phi (w)$
 with 
$\alpha \leq _G \beta $
 and 
$\beta \leq _H \alpha $
. In this case, we have two commutation relations, namely 
$$ \begin{align*} &[u_{\alpha}, u_{\beta}] = \prod\limits_{\gamma \in M_{\alpha, \beta}^G} u_{\gamma} \quad\text{and} \quad[u_{\beta}, u_{\alpha}] = \prod\limits_{\gamma \in M_{\beta, \alpha}^H} u_{\gamma}. \end{align*} $$
From now on, we implicitly assume that each product 
$\prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma }$
 is ordered via the ordering 
$\leq _G$
.
Definition 3.2. A commutator blueprint of type 
$(W, S)$
 is a family 
$\mathcal {M} = (M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 of subsets 
$M_{\alpha , \beta }^G \subseteq (\alpha , \beta )$
 ordered via 
$\leq _G$
 satisfying the following axioms. 
- 
(CB1) Let
$G = (c_0, \ldots , c_k) \in \mathrm {Min}$
 and let 
$H = (c_0, \ldots , c_m)$
 for some 
$1 \leq m \leq k$
. Then, 
$M_{\alpha , \beta }^H = M_{\alpha , \beta }^G$
 holds for all 
$\alpha , \beta \in \Phi (H)$
 with 
$\alpha \leq _H \beta $
. - 
(CB2) Suppose
$s\neq t \in S$
 with 
$m_{st} < \infty $
. For 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$G \in \mathrm {Min}(r_{\{s, t\}})$
, we have 
$$ \begin{align*} M_{\alpha, \beta}^G = \begin{cases} (\alpha, \beta) & \text{if }\{ \alpha, \beta \} = \{ \alpha_s, \alpha_t \}, \\ \emptyset &\text{if } \{ \alpha, \beta \} \neq \{ \alpha_s, \alpha_t \}. \end{cases} \end{align*} $$
 - 
(CB3) For each
$w\in W$
, we have 
$\vert U_w \vert = 2^{\ell (w)}$
, where 
$U_w$
 is defined as above. 
 A commutator blueprint 
$\mathcal {M} = (M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 is called Weyl-invariant if for all 
$w\in W$
, 
$s\in S$
, 
$G \in \mathrm {Min}_s(w)$
 and 
$\alpha , \beta \in \Phi (G) \backslash \{ \alpha _s \}$
 with 
$\alpha \leq _G \beta $
, we have 
$M_{s\alpha , s\beta }^{sG} = sM_{\alpha , \beta }^G := \{ s\gamma \mid \gamma \in M_{\alpha , \beta }^G \}$
.
Lemma 3.3 [Reference BischofBis25b, Lemma 
$3.6$
].
 Let 
$\mathcal {M} = ( M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 be a commutator blueprint of type 
$(W, S)$
. Let 
$w\in W, G = (c_0, \ldots , c_k) \in \mathrm {Min}(w)$
 and let 
$(\alpha _1, \ldots , \alpha _k)$
 be the sequence of roots crossed by G. Then, 
$\Phi (w) = \{ \alpha _1, \ldots , \alpha _k \}$
 and the group 
$U_w$
 has the following presentation: 
$$ \begin{align*} U_G := \bigg\langle u_{\alpha_1}, \ldots, u_{\alpha_k} \bigg| \text{ for all } 1 \leq i \leq j \leq k: u_{\alpha_i}^2 = 1, [u_{\alpha_i}, u_{\alpha_j}] = \prod\limits_{\gamma \in M_{\alpha_i, \alpha_j}^G} u_{\gamma} \bigg\rangle. \end{align*} $$
3.1 Pre-commutator blueprints
Definition 3.4. A pre-commutator blueprint of type 
$(W, S)$
 is a family 
$\mathcal {M} = (M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 of subsets 
$M_{\alpha , \beta }^G \subseteq (\alpha , \beta )$
 ordered via 
$\leq _G$
 satisfying Axioms (CB
$1$
) and (CB
$2$
) from Definition 3.2, and additionally the following axiom. 
- 
(PCB) For all
$w\in W$
 and 
$G\in \mathrm {Min}(w)$
, the canonical homomorphism 
$U_G \to U_w$
 is an isomorphism, where 
$U_G$
 is defined as in Lemma 3.3. 
Lemma 3.5. Let 
$\mathcal {M} = (M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 be a pre-commutator blueprint of type 
$(W, S)$
. Then, the following are equivalent. 
- 
(i)
$\mathcal {M}$
 is a commutator blueprint. - 
(ii) Let
$G = (c_0, \ldots , c_{k+1}) \in \mathrm {Min}$
 and let 
$(\alpha _1, \ldots , \alpha _{k+1})$
 be the sequence of roots crossed by G. For 
$H := (c_0, \ldots , c_k)$
 and for all 
$1 \leq i \leq j \leq k$
, the following hold in the group 
$U_H$
:- 
(C1)
$( \prod _{\gamma \in M_{\alpha _i, \alpha _{k+1}}^G} u_{\gamma } ) \cdot ( \prod _{\gamma \in M_{\alpha _i, \alpha _{k+1}}^G} ( u_{\gamma } \prod _{\omega \in M_{\gamma , \alpha _{k+1}}^G} u_{\omega } ) ) = 1$
; - 
(C2)
$( u_{\alpha _i} \prod _{\gamma \in M_{\alpha _i, \alpha _{k+1}}^G} u_{\gamma } )^2 = 1$
; - 
(C3)
$[ u_{\alpha _i} \prod _{\gamma \in M_{\alpha _i, \alpha _{k+1}}^G} u_{\gamma }, u_{\alpha _j} \prod _{\gamma \in M_{\alpha _j, \alpha _{k+1}}^G} u_{\gamma } ] = \prod _{\gamma \in M_{\alpha _i, \alpha _j}^G} ( u_{\gamma } \prod _{\omega \in M_{\gamma , \alpha _{k+1}}^G} u_{\omega } )$
. 
 - 
 
Proof. One can easily check that the conditions in part (ii) must be satisfied if 
$\mathcal {M}$
 is a commutator blueprint. Thus, we can assume part (ii). It suffices to show 
$\vert U_w \vert = 2^{\ell (w)}$
. We show this by induction. For 
$\ell (w) \leq 1$
, there is nothing to show. Thus, we can assume 
$\ell (w)>1$
. Let 
$G = (c_0, \ldots , c_{k+1}) \in \mathrm {Min}(w)$
 and let 
$(\alpha _1, \ldots , \alpha _{k+1})$
 be the sequence of roots crossed by G. We define 
$H := (c_0, \ldots , c_k)$
. Using induction, we have 
$\vert U_H \vert = 2^k$
. We show that 
$U_G \cong U_H \rtimes _{\varphi } \mathbb {Z}_2$
, where 
$\varphi \in {\mathrm {Aut}}(U_H)$
 acts on 
$U_H$
 as 
$u_{\alpha _{k+1}}$
. We consider the mapping 
$$ \begin{align*} u_{\alpha_{k+1}}: \{ u_{\alpha} \mid c_k \notin \alpha \} \to U_H, u_{\alpha} \mapsto u_{\alpha} \prod\limits_{\gamma \in M_{\alpha, \alpha_{k+1}}^G} u_{\gamma}. \end{align*} $$
By Axioms (C2) and (C3), 
$u_{\alpha _{k+1}}$
 extends to an endomorphism on 
$U_H$
. Condition (C1) guarantees 
$u_{\alpha _{k+1}}^2 = {\mathrm {id}}$
 and hence 
$u_{\alpha _{k+1}} \in {\mathrm {Aut}}(U_H)$
. Thus, we can define the semi-direct product 
$U_H \rtimes _{u_{\alpha _{k+1}}} \mathbb {Z}_2$
. As 
$U_w \cong U_G \cong U_H \rtimes _{u_{\alpha _{k+1}}} \mathbb {Z}_2$
, the claim follows.
We see in Theorem 3.8 that there are weaker conditions than those in Lemma 3.5(ii), which imply that a pre-commutator blueprint is a commutator blueprint. In this case, the groups 
$U_w$
 are nilpotent of class at most 
$2$
. For that, we need the following two preparatory lemmas.
Lemma 3.6. Let G be a group and let 
$X\subseteq G$
 be a symmetric generating set (that is, 
$X = X^{-1}$
) such that 
$[x, [y, z]] = 1$
 holds for all 
$x, y, z \in X$
. Then, G is nilpotent of class at most 
$2$
.
Proof. Suppose 
$x, y, z \in G$
 and let 
$x_1, \ldots , x_k, y_1, \ldots , y_l, z_1, \ldots , z_m \in X$
 be such that 
$x = x_1 \cdots x_k, y = y_1 \cdots y_l, z = z_1 \cdots z_m$
. We show 
$[x, [y, z]] = 1$
. We first assume 
$l = 1 = m$
. Induction on k yields 
$[x, [y, z]] = [xx_k^{-1}, [y, z]]^{x_k} [x_k, [y, z]] = 1$
. Now, assume 
$l=1$
. Induction on m implies 
$[x, [y, z]] = [x, [y, z_m] [y, zz_m^{-1}]^{z_m}] = [x^{(z_m^{-1})}, [y, zz_m^{-1}]]^{z_m} [x, [y, z_m]]^{[y, zz_m^{-1}]^{z_m}} = 1$
. Now, induction on l yields 
Lemma 3.7. Let G be a nilpotent group of class at most 
$2$
 that is generated by a set X of involutions (that is, by elements 
$g\in G$
 with 
$g^2 = 1$
). Then, 
$[g, h]^2 = 1$
 holds for all 
$g, h \in G$
.
Proof. Let 
$f_1, \ldots , f_r, h_1, \ldots , h_m \in X$
 such that 
$g = f_1 \cdots f_r, h = h_1 \cdots h_m$
. We show the claim by induction on 
$r+m$
. If 
$r+m \in \{0, 1\}$
, the claim follows directly. Thus, we assume 
$r+m \geq 2$
. Again, if 
$0 \in \{r, m\}$
, the claim follows directly. Thus, we can assume 
$r, m \geq 1$
. Using the nilpotency class, we obtain 
$$ \begin{align*} [g, h]^2 &= ( [g, h_m] [g, hh_m^{-1}]^{h_m} )^2 \\ &= ( [gf_r^{-1}, h_m]^{f_r} [f_r, h_m] [g, hh_m^{-1}] )^2 \\ &= [gf_r^{-1}, h_m]^2 [f_r, h_m]^2 [g, hh_m^{-1}]^2. \end{align*} $$
Using the nilpotency class and the fact that 
$[f_r, h_m]^2 = [f_r, [f_r, h_m]]$
 holds, the claim follows by induction.
Theorem 3.8. Let 
$\mathcal {M} = ( M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 be a pre-commutator blueprint of type 
$(W, S)$
. Then, the following are equivalent. 
- 
(i)
$\mathcal {M}$
 is a commutator blueprint of type 
$(W, S)$
 and the groups 
$U_w$
 are nilpotent of class at most 
$2$
. - 
(ii) Let
$G = (c_0, \ldots , c_{k+1}) \in \mathrm {Min}$
 and let 
$(\alpha _1, \ldots , \alpha _{k+1})$
 be the sequence of roots crossed by G. For 
$H := (c_0, \ldots , c_k)$
 and for all 
$1 \leq i < j \leq k +1$
, we have the following:- 
(2-n1)
$\prod _{\gamma \in M_{\alpha _i, \alpha _{k+1}}^G} u_{\gamma } \in Z(U_H)$
; - 
(2-n2)
$( \prod _{\gamma \in M_{\alpha _i, \alpha _{k+1}}^G} u_{\gamma } )^2 = 1$
 holds in 
$U_H$
; - 
(2-n3)
$\prod _{\gamma \in M_{\alpha _i, \alpha _j}^G} ( u_{\gamma } \prod _{\delta \in M_{\gamma , \alpha _{k+1}}^G} u_{\delta } ) =\prod _{\gamma \in M_{\alpha _i, \alpha _j}^G} u_{\gamma }$
 holds in 
$U_H$
. 
 - 
 
Proof. Suppose that 
$\mathcal {M}$
 is a commutator blueprint of type 
$(W, S)$
 and that the groups 
$U_w$
 are nilpotent of class at most 
$2$
. Then, 
$\mathcal {M}$
 is a pre-commutator blueprint of type 
$(W, S)$
 by Lemma 3.3 and it is not hard to see that 
$\mathcal {M}$
 satisfies items (
$2$
-n
$1$
), (
$2$
-n
$2$
) and (
$2$
-n
$3$
) (see Lemma 3.7).
 Now, we suppose that 
$\mathcal {M}$
 satisfies the conditions in part (ii). We apply Lemma 3.5. Let 
$G = (c_0, \ldots , c_{k+1}) \in \mathrm {Min}(w)$
 be a minimal gallery, let 
$(\alpha _1, \ldots , \alpha _{k+1})$
 be the sequence of roots crossed by G and let 
$H := (c_0, \ldots , c_k)$
. Note that condition (C1) holds by items (
$2$
-n
$3$
) (applied with 
$j=k+1$
) and (
$2$
-n
$2$
). Moreover, condition (C2) follows from items (
$2$
-n
$1$
) and (
$2$
-n
$2$
). Using items (
$2$
-n
$3$
) and (
$2$
-n
$1$
), one can show that condition (C3) also holds. Now, Lemma 3.5 implies that 
$\mathcal {M}$
 is a commutator blueprint. It is left to show that the group 
$U_w \cong U_G$
 is nilpotent of class at most 
$2$
. We prove this by induction on 
$\ell (w)$
. The claim is obvious for 
$\ell (w) \leq 1$
. Thus, we can assume 
$\ell (w)>1$
. Using item (
$2$
-n
$3$
), we compute for all 
$1 \leq i < j \leq k+1$
: 
$$ \begin{align*} [ [ u_{\alpha_i}, u_{\alpha_j} ], u_{\alpha_{k+1}} ] &= [ u_{\alpha_i}, u_{\alpha_j} ]^{-1} \prod\limits_{\gamma \in M_{\alpha_i, \alpha_j}^G} u_{\alpha_{k+1}}^{-1} u_{\gamma} u_{\alpha_{k+1}} \\ &= \bigg( \prod\limits_{\gamma \in M_{\alpha_i, \alpha_j}^G} u_{\gamma} \bigg)^{-1} \cdot \prod\limits_{\gamma \in M_{\alpha_i, \alpha_j}^G} \bigg( u_{\gamma} \prod\limits_{\delta \in M_{\gamma, \alpha_{k+1}}^G} u_{\delta} \bigg) = 1. \end{align*} $$
Now, the claim follows from Lemma 3.6.
4 Examples of commutator blueprints
4.1 Examples of universal type
Convention 4.1. In this subsection, we assume that 
$(W, S)$
 is of universal type (that is, 
$m_{st} = \infty $
 for all 
$s\neq t \in S$
) and has rank at least 
$2$
.
Remark 4.2. Note that for 
$w\in W$
, we have 
$\vert \mathrm {Min}(w) \vert = 1$
. This implies that each family 
$\mathcal {M} = ( M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 of subsets 
$M_{\alpha , \beta }^G \subseteq (\alpha , \beta )$
 ordered via 
$\leq _G$
 satisfies Axiom (PCB). Moreover, we note that 
$(G, \alpha , \beta ) \in \mathcal {I}$
 implies 
$\alpha \subseteq \beta $
.
Definition 4.3. Let 
$\alpha \in \Phi $
 be a root. As 
$\vert \partial ^2 \alpha \vert = 0$
, we deduce 
$\vert \partial \alpha \vert = 1$
 (see Lemma 2.5) and we call 
$c^{-1}d \in S$
 the type of 
$\alpha $
, where 
$\{ c, d \} \in \partial \alpha $
.
Definition 4.4.
- 
(a) Let
$s\neq t \in S$
, 
$k \in \mathbb {N}$
, 
$J \subseteq \{ 1, \ldots , k \}$
 and let 
$(G, \alpha , \beta ) \in \mathcal {I}$
. Assume that there exists a minimal gallery 
$H = (c_0, \ldots , c_{2k+1})$
 of type 
$(s, t, \ldots , s, t, s)$
 between 
$\alpha $
 and 
$\beta $
 (that is 
$\alpha $
 is the first and 
$\beta $
 is the last root crossed by H) such that s appears 
$k+1$
 times and t appears k times in the type of H. Let 
$(\alpha _1 = \alpha , \ldots , \alpha _{2k+1} = \beta )$
 be the sequence of roots crossed by H. Then, we define If there does not exist such a gallery between
$$ \begin{align*} M(k, J, s, t)_{\alpha, \beta}^G := \{ \alpha_{2j} \mid j\in J \}. \end{align*} $$
$\alpha $
 and 
$\beta $
, we define 
${M(k, J, s, t)_{\alpha , \beta }^G := \emptyset }$
.
 - 
(b) Let
$s\neq t \in S$
, let 
$K \subseteq \mathbb {N}$
 be nonempty and let 
$\mathcal {J} = (J_k)_{k\in K}$
 be a family of subsets 
$J_k \subseteq \{ 1, \ldots , k \}$
. For 
$(G, \alpha , \beta ) \in \mathcal {I}$
, we define Moreover, we define
$$ \begin{align*} M(K, \mathcal{J}, s, t)_{\alpha, \beta}^G := \bigcup\limits_{k\in K} M(k, J_k, s, t)_{\alpha, \beta}^G. \end{align*} $$
$\mathcal {M}(K, \mathcal {J}, s, t) := ( M(K, \mathcal {J}, s, t)_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
.
 
Remark 4.5. We note that for given 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$M(K, \mathcal {J}, s, t)_{\alpha , \beta }^G \neq \emptyset $
, there exists a unique 
$k \in K$
 such that 
$M(K, \mathcal {J}, s, t)_{\alpha , \beta }^G = M(k, J_k, s, t)_{\alpha , \beta }^G$
.
Theorem 4.6. Let 
$s\neq t \in S$
, let 
$K \subseteq \mathbb {N}$
 be nonempty and let 
$\mathcal {J} = (J_k)_{k\in K}$
 be a family of subsets 
$J_k \subseteq \{ 1, \ldots , k \}$
. Then, 
$\mathcal {M}(K, \mathcal {J}, s, t)$
 is a Weyl-invariant commutator blueprint and the groups 
$U_w$
 are nilpotent of class at most 
$2$
.
Proof. We abbreviate 
$\mathcal {M} := \mathcal {M}(K, \mathcal {J}, s, t)$
 and 
$M_{\alpha , \beta }^G := M(K, \mathcal {J}, s, t)_{\alpha , \beta }^G$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
. By definition, 
$\mathcal {M}$
 satisfies Axioms (CB
$1$
) and (CB
$2$
), and by Remark 4.2, it also satisfies Axiom (PCB). Hence, 
$\mathcal {M}$
 is a pre-commutator blueprint. We apply Theorem 3.8. Thus, we suppose 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$M_{\alpha , \beta }^G \neq \emptyset $
. Then, 
$\alpha , \beta $
 are roots of type s and every 
$\gamma \in M_{\alpha , \beta }^G$
 is a root of type t. Now, it is straight forward to verify that 
$\mathcal {M}$
 satisfies the conditions in Theorem 3.8(ii). We infer that 
$\mathcal {M}$
 is a commutator blueprint and the groups 
$U_w$
 are nilpotent of class at most 
$2$
. Moreover, 
$\mathcal {M}$
 is Weyl-invariant, as 
$M_{\alpha , \beta }^G$
 does only depend on the existence of a suitable gallery H and not on G.
Definition 4.7. Let 
$s_0, s_1 \in S$
 be distinct. Let 
$(G, \alpha , \beta ) \in \mathcal {I}$
 and assume that there exists a minimal gallery 
$H = (c_0, \ldots , c_k)$
 of type 
$(s, t, s, t, \ldots )$
 between 
$\alpha $
 and 
$\beta $
. Let 
$(\alpha _1 = \alpha , \ldots , \alpha _k = \beta )$
 be the sequence of roots crossed by H. Then, we define 
$$ \begin{align*} k=4, s=s_0, t=s_1: &\quad M(s_0, s_1)_{\alpha_1, \alpha_4}^G := \{ \alpha_2, \alpha_3 \}, \\ k=5, s=s_0, t=s_1: &\quad M(s_0, s_1)_{\alpha_1, \alpha_5}^G := \{ \alpha_2, \alpha_3 \}, \\ k=5, s=s_1, t=s_0: &\quad M(s_0, s_1)_{\alpha_1, \alpha_5}^G := \{ \alpha_3, \alpha_4 \}, \\ k=6, s=s_1, t=s_0: &\quad M(s_0, s_1)_{\alpha_1, \alpha_6}^G := \{ \alpha_3, \alpha_4 \}. \end{align*} $$
Otherwise, we define 
$M(s_0, s_1)_{\alpha , \beta }^G := \emptyset $
. We define 
$\mathcal {M}( s_0, s_1) := ( M( s_0, s_1 )_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
.
Theorem 4.8. Let 
$s_0, s_1 \in S$
 be distinct. Then, 
$\mathcal {M}( s_0, s_1 )$
 is a Weyl-invariant commutator blueprint of type 
$(W, S)$
. Moreover, the groups 
$U_w$
 are nilpotent of class at most 
$2$
.
Proof. We abbreviate 
$M_{\alpha , \beta }^G := M( s_0, s_1 )_{\alpha , \beta }^G$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
. Similarly as in Theorem 4.6, 
$\mathcal {M}( s_0, s_1 )$
 is a pre-commutator blueprint and we apply Theorem 3.8. Let 
$G = (c_0, \ldots , c_{k+1}) \in \mathrm {Min}$
 be a minimal gallery and let 
$(\alpha _1, \ldots , \alpha _{k+1})$
 be the sequence of roots crossed by G. We first show the following.
 
Claim. If 
$\alpha _i$
 has type 
$s_1$
 and 
$\alpha _{i+1}$
 has type 
$s_0$
 for some 
$1 \leq i \leq k$
, then 
$u_{\alpha _i} u_{\alpha _{i+1}} \in Z( U_G )$
.
 Let 
$1 \leq j \leq k+1$
. We have to show that 
$u_j$
 commutes with 
$u_{\alpha _i} u_{\alpha _{i+1}}$
. If 
$j \in \{i, i+1\}$
, the claim follows. We next suppose 
$j<i$
. However, then it follows by construction that 
$M_{\alpha _j, \alpha _i}^G = M_{\alpha _j, \alpha _{i+1}}^G$
. This follows for 
$j>i+1$
 similarly.
 Now, the conditions in Theorem 3.8(ii) follow essentially from the claim. Hence, 
$\mathcal {M}( s_0, s_1 )$
 is a commutator blueprint and the groups 
$U_w$
 are nilpotent of class at most 
$2$
. As 
$M_{\alpha , \beta }^G$
 only depends on the existence of a suitable minimal gallery between 
$\alpha $
 and 
$\beta $
, it is also Weyl-invariant.
In the rest of this subsection, we introduce a commutator blueprint, where the nilpotency class of the groups 
$U_w$
 becomes arbitrarily large and even infinite. To do that, we mimic the commutation relations from the upper triangular matrices. We first define 
$(i, j, k, l)$
-galleries between two roots 
$\alpha $
 and 
$\beta $
 for 
$i, j, k, l \in \mathbb {N}$
 with 
$1 \leq i < j$
, 
$1\leq k <l$
 and 
$j<k$
. Any 
$(i, j, k, l)$
-gallery has a certain type 
$(c_j, c_{j+1}, \ldots , c_{k-1}, c_k)$
 and the 
$c_p$
 indicates in which column we are. Roughly speaking, the first root crossed by such a gallery (which is 
$\alpha $
) corresponds to the 
$(i, j)$
-entry of a matrix and the last root crossed by such a gallery (which is 
$\beta $
) corresponds to the 
$(k+1, l)$
-entry or, if 
$k=l-1$
, to the 
$(1, k+1)$
-entry. Every 
$(i, j, k, l)$
-gallery crosses roots corresponding to the the following entries of a matrix: 
As we mimic the commutation relations from the upper triangular matrices, the sets 
$M_{\mathrm {nil}}(n)_{\alpha , \beta }^G$
 correspond to the 
$(i, k)$
-entry, if 
$j=k$
.
Definition 4.9. Let 
$(W, S)$
 be of rank at least 
$3$
 and let 
$r, s, t \in S$
 be pairwise distinct. 
- 
(a) For
$i \in \mathbb {N}$
, we let 
$k_i := tsts\cdots $
 with 
$\ell (k_i) = i$
, for example, 
$k_3 = tst$
. - 
(b) Suppose
$i_1, j_1, i_2, j_2 \in \mathbb {N}$
 with 
$1 \leq i_1 < j_1$
, 
$1 \leq i_2 < j_2$
 and 
$j_1 < j_2$
. A gallery is called a 
$(i_1, j_1, i_2, j_2)$
-gallery if it has type where
$$ \begin{align*} ( c_{j_1}, \ldots, c_{j_2} ), \end{align*} $$
$c_i$
 is defined as follows: 
$$ \begin{align*} r_{i,j} &= ( r, k_i, r, k_j, r ), \\ c_{j_1} &= ( s, r_{i_1,j_1}, s, r_{i_1+1, j_1}, \ldots, s, r_{j_1-1, j_1} ), \\ c_i &= ( s, r_{1, i}, s, r_{2, i}, \ldots, s, r_{i-1, i} ) \quad \text{for } j_1 < i < j_2, \\ c_{j_2} &= ( s, r_{1, j_2}, s, r_{2, j_2}, \ldots, s, r_{i_2-1, j_2}, s ). \end{align*} $$
 - 
(c) Let
$n \in \mathbb {N} \cup \{ \infty \}$
 and we define 
$z\leq \infty $
 for all 
$z\in \mathbb {N}$
. Let 
$(G, \alpha , \beta ) \in \mathcal {I}$
 and assume that there exists an 
$(i_1, j_1, i_2, j_2)$
-gallery between 
$\alpha $
 and 
$\beta $
. We let 
$(\alpha _{i_1, j_1}, \alpha _{i_1+1, j_1}, \ldots , \alpha _{j_1-1, j_1}, \alpha _{1, j_1+1}, \ldots , \alpha _{i_2, j_2})$
 be the sequence of roots crossed by this gallery omitting the 
$r_{i, j}$
 parts from above. Then, 
$\alpha = \alpha _{i_1, j_1}$
 and 
$\beta = \alpha _{i_2, j_2}$
. We define If there is no
$$ \begin{align*} M_{\mathrm{nil}}(n)_{\alpha, \beta}^G := \begin{cases} \{ \alpha_{i_1, j_2} \} & \text{if } j_1 = i_2 \text{ and } j_2 \leq n, \\ \emptyset & \text{otherwise}. \end{cases} \end{align*} $$
$(i_1, j_1, i_2, j_2)$
-gallery between 
$\alpha $
 and 
$\beta $
 for all 
$i_1, j_1, i_2, j_2 \in \mathbb {N}$
, then we define 
$M_{\mathrm {nil}}(n)_{\alpha , \beta }^G := \emptyset $
. Moreover, we define 
$\mathcal {M}_{\mathrm {nil}}(n) := ( M_{\mathrm {nil}}(n)_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
.
 
Example 4.10. A 
$(2, 3, 3, 5)$
-gallery G has type 
$(c_3, c_4, c_5)$
, where 
$$ \begin{align*} c_3 = (s, r_{2, 3}), \quad r_{2, 3} &= (r, t, s, r, t, s, t, r), \\ c_4 = (s, r_{1, 4}, s, r_{2, 4}, s, r_{3, 4}), \quad r_{1, 4} &= (r, t, r, t, s, t, s, r), \\ r_{2, 4} &= (r, t, s, r, t, s, t, s, r), \\ r_{3, 4} &= (r, t, s, t, r, t, s, t, s, r), \\ c_5 = (s, r_{1, 5}, s, r_{2, 5}, s), \quad r_{1, 5} &= (r, t, r, t, s, t, s, t, r), \\ r_{2, 5} &= (r, t, s, r, t, s, t, s, t, r). \end{align*} $$
If 
$(\alpha _1, \ldots , \alpha _{61})$
 is the sequence of roots crossed by G, then we have the following: 
If 
$\alpha _1, \alpha _{61} \in \Phi _+$
, then we have 
$$ \begin{align*} M_{\mathrm {nil}}(n)_{\alpha _1, \alpha _{61}}^G = M_{\mathrm {nil}}(n)_{\alpha _{2, 3}, \alpha _{3, 5}}^G = \begin {cases} \{ \alpha _{2, 5} = \alpha _{50} \} & \text {if } 5\leq n, \\ \emptyset & \text {otherwise}. \end {cases} \end{align*} $$
Remark 4.11.
- 
(a) Let
$\alpha , \beta , \gamma \in \Phi $
 be three roots. Assume that 
$G = (d_0, \ldots , d_k)$
 is an 
$(i_1, j_1, i_2, j_2)$
- gallery between 
$\alpha $
 and 
$\beta $
, and that 
$(e_0, \ldots , e_l)$
 is an 
$(i_2, j_2, i_3, j_3)$
-gallery between 
$\beta $
 and 
$\gamma $
. Then, 
$(d_0, \ldots , d_{k-1} = e_0, \ldots , e_l)$
 is an 
$(i_1, j_1, i_3, j_3)$
-gallery between 
$\alpha $
 and 
$\gamma $
. - 
(b) Let
$\alpha , \beta \in \Phi $
 be two roots with 
$M_{\mathrm {nil}}(n)_{\alpha , \beta }^G = \{ \gamma \}$
. Then, there exists an 
$(i, j, j, k)$
-gallery between 
$\alpha $
 and 
$\beta $
 for some 
$i, j, k \in \mathbb {N}$
 with 
$i<j<k \leq n$
. Note that by definition, we have 
$M_{\mathrm {nil}}(n)_{\alpha , \gamma }^G = \emptyset = M_{\mathrm {nil}}(n)_{\gamma , \beta }^G$
. 
Lemma 4.12. Let 
$n \in \mathbb {N} \cup \{ \infty \}$
. Let 
$(G, \alpha , \beta ) \in \mathcal {I}$
 and suppose that there does not exist an 
$(i, j, i', j')$
-gallery between 
$\alpha $
 and 
$\beta $
 for all 
$i, j, i', j' \in \mathbb {N}$
. Let 
$\delta \in \Phi (G)$
 with 
${\alpha \leq _G \delta \leq _G \beta }$
. Then, the following hold. 
- 
(a) If
$\gamma \in M_{\mathrm {nil}}(n)_{\alpha , \delta }^G$
, then 
$M_{\mathrm {nil}}(n)_{\gamma , \beta }^G = \emptyset $
. - 
(b) If
$\gamma \in M_{\mathrm {nil}}(n)_{\delta , \beta }^G$
, then 
$M_{\mathrm {nil}}(n)_{\alpha , \gamma }^G = \emptyset $
. 
Proof. We abbreviate 
$M_{\sigma , \rho }^H := M_{\mathrm {nil}}(n)_{\sigma , \rho }^H$
 for all 
$(H, \sigma , \rho ) \in \mathcal {I}$
. We first show assertion (a). We can assume that 
$M_{\alpha , \delta }^G = \{ \gamma \}$
. By definition, there exists an 
$(i, j, j, k)$
-gallery between 
$\alpha $
 and 
$\delta $
 for some 
$i, j, k \in \mathbb {N}$
 with 
$i < j < k \leq n$
, and this gallery has type 
$(c_j, c_{j+1}, \ldots , c_{k-1}, c_k)$
. Note that 
and 
$\gamma $
 is the root of type 
$\textbf {s}$
 crossed by 
$c_k$
 directly before 
$r_{i, k}$
.
 Assume that 
$M_{\gamma , \beta }^G \neq \emptyset $
. Then, there would exist an 
$(i', j', j', k')$
-gallery between 
$\gamma $
 and 
$\beta $
 for some 
$i', j', k' \in \mathbb {N}$
 with 
$i' < j' < k' \leq n$
. Because the type of G after crossing 
$\gamma $
 is 
$r_{i, k}$
, we know that 
$i' = i$
 and 
$j' = k$
. However, then we have an 
$(i, j, j', k')$
-gallery between 
$\alpha $
 and 
$\beta $
 by Remark 4.11, which is a contradiction. This finishes the proof of the claim.
 We now show assertion (b). Again, we can assume 
${M_{\delta , \beta }^G = \{ \gamma \}}$
. By definition, there exists an 
$(i, j, j, k)$
-gallery between 
$\delta $
 and 
$\beta $
 for some 
$i, j, k \in \mathbb {N}$
 with 
$i<j<k \leq n$
, and this gallery has type 
$(c_j, \ldots , c_k)$
. Note that 
Assume that 
$M_{\alpha , \gamma }^G \neq \emptyset $
. Then, there would exist an 
$(i', j', j', k')$
-gallery between 
$\alpha $
 and 
$\gamma $
 for some 
$i', j', k' \in \mathbb {N}$
 with 
$i' < j' < k' \leq n$
. We distinguish the following cases. 
- 
(i)
$i=1$
. Then, 
$\gamma $
 is the first root crossed by 
$c_k$
 and the type of G just before crossing 
$\gamma $
 is 
$r_{k-2, k-1}$
. This implies that 
$j' = 1$
 and 
$k' = k$
, which is a contradiction. - 
(ii)
$i>1$
. In this case, the type of G just before crossing 
$\gamma $
 is 
$r_{i-1, k}$
. This implies 
$j' = i$
 and 
$k' = k$
. However, then we have an 
$(i', j', j, k)$
-gallery between 
$\alpha $
 and 
$\beta $
, which is a contradiction. 
Theorem 4.13. For each 
$n \in \mathbb {N} \cup \{ \infty \}$
, 
$\mathcal {M}_{\mathrm {nil}}(n)$
 is a Weyl-invariant commutator blueprint. Moreover, the following hold. 
- 
(i) If
$n \in \mathbb {N}_{\geq 3}$
, then every group 
$U_w$
 is nilpotent of class at most 
$n-1$
, but not all are nilpotent of class at most 
$n-2$
. - 
(ii) If
$n = \infty $
, then for every 
$m \in \mathbb {N}$
, there exists 
$w_m \in W$
 such that 
$U_{w_m}$
 is not nilpotent of class at most m. 
Proof. We abbreviate 
$\mathcal {M} := \mathcal {M}_{\mathrm {nil}}(n)$
 and 
$M_{\alpha , \beta }^G := M_{\mathrm {nil}}(n)_{\alpha , \beta }^G$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
. By definition, 
$\mathcal {M}$
 satisfies Axioms (CB
$1$
) and (CB
$2$
), and by Remark 4.2 it also satisfies Axiom (PCB). Hence, 
$\mathcal {M}$
 is a pre-commutator blueprint. We apply Lemma 3.5. Suppose 
$G = (d_1, \ldots , d_p) \in \mathrm {Min}$
, let 
$\beta \in \Phi (G)$
 be the last root that is crossed by G and let 
$\alpha \in \Phi (G) \backslash \{ \beta \}$
. If 
$M_{\alpha , \beta }^G = \emptyset $
, then Axioms (C1) and (C2) are satisfied. Otherwise, there exists an 
$(i, j, j, k)$
-gallery between 
$\alpha $
 and 
$\beta $
 for some 
$i, j, k \in \mathbb {N}$
 with 
${1 \leq i < j < k \leq n}$
 and we have 
$M_{\alpha , \beta }^G = \{ \gamma \}$
. Then, 
$M_{\alpha , \gamma }^G = \emptyset = M_{\gamma , \beta }^G$
 holds by definition (see Remark 4.11). Thus, Axioms (C1) and (C2) are satisfied and it remains to check Axiom (C3).
 Let 
$\alpha , \delta \in \Phi (G) \backslash \{ \beta \}$
 with 
$\alpha \leq _G \beta $
. If there is an 
$(i_1, j_1, i_2, j_2)$
-gallery between 
$\alpha $
 and 
$\beta $
 for some 
$i_1, j_1, i_2, j_2 \in \mathbb {N}$
, then Axiom (C3) follows essentially from the fact that Axiom (C3) holds for upper triangular matrices. Thus, we can assume that there does not exist any 
$(i_1, j_1, i_2, j_2)$
-gallery between 
$\alpha $
 and 
$\beta $
 for all 
$i_1, j_1, i_2, j_2 \in \mathbb {N}$
. In particular, 
$M_{\alpha , \beta }^G = \emptyset $
 and we have to check that the following is a relation in 
$U_{(d_0, \ldots , d_{p-1})}$
: 
$$ \begin{align*} \bigg[ u_{\alpha}, u_{\delta} \prod\limits_{\gamma \in M_{\delta, \beta}^G} u_{\gamma} \bigg] = \prod\limits_{\gamma \in M_{\alpha, \delta}^G} \bigg( u_{\gamma} \prod\limits_{\omega \in M_{\gamma, \beta}^G} u_{\omega} \bigg). \end{align*} $$
 Suppose 
$M_{\alpha , \delta }^G \neq \emptyset $
 and let 
$\gamma \in M_{\alpha , \delta }^G$
. Then, Lemma 4.12 implies 
$M_{\gamma , \beta }^G = \emptyset $
 and the right-hand side of the previous equation is equal to 
$\prod \nolimits _{\gamma \in M_{\alpha , \delta }^G} u_{\gamma }$
 in both cases 
$M_{\alpha , \delta }^G = \emptyset $
 and 
$M_{\alpha , \delta }^G \neq \emptyset $
.
 If 
$M_{\delta , \beta }^G \kern1.5pt{=}\kern1.5pt \emptyset $
, then Axiom (C3) holds and we are done. Thus, we can assume 
${M_{\delta , \beta }^G \kern1.3pt{=}\kern1.3pt \{ \gamma \}}$
. Using Remark 4.11, we deduce 
$M_{\delta , \gamma }^G = \emptyset $
. Moreover, Lemma 4.12 yields 
$M_{\alpha , \gamma }^G = \emptyset $
. This implies that the following is a relation in 
$U_{(d_0, \ldots , d_{p-1})}$
 and hence Axiom (C3) holds: 
$$ \begin{align*} \bigg[ u_{\alpha}, u_{\delta} \prod\limits_{\omega \in M_{\delta, \beta}^G} u_{\omega} \bigg] = [ u_{\alpha}, u_{\delta} u_{\gamma} ] = [ u_{\alpha}, u_{\gamma} ] [ u_{\alpha}, u_{\delta} ]^{u_{\gamma}} = [u_{\alpha}, u_{\delta}] = \prod\limits_{\omega \in M_{\alpha, \delta}^G} u_{\omega}. \end{align*} $$
 Now, Lemma 3.5 yields that 
$\mathcal {M}$
 is a commutator blueprint. The Weyl-invariance follows from the fact that 
$M_{\alpha , \beta }^G$
 does not depend on G, but only on the existence of a suitable minimal gallery between 
$\alpha $
 and 
$\beta $
.
 We show parts (i) and (ii). Let 
$n \in \mathbb {N}_{\geq 3}$
 and 
$G \in \mathrm {Min}(w)$
 be a 
$(1, 2, n-1, n)$
-gallery. Then, 
$U_w \cong U_G$
 is not nilpotent of class at most 
$n-2$
. This proves part (ii) and the second part of part (i). Thus, it is left to show that for every 
$w\in W$
, the group 
$U_w$
 is nilpotent of class at most 
$n-1$
.
 Let 
$w\in W$
. We prove the claim by induction on 
$\ell (w)$
. If 
$\ell (w) \leq 1$
, the claim holds. Thus, we can assume 
$\ell (w)>1$
. Let 
$G = (c_0, \ldots , c_p) \in \mathrm {Min}(w)$
, let 
$(\alpha _1, \ldots , \alpha _p)$
 be the sequence of roots crossed by G and let 
$H := (c_0, \ldots , c_{p-1})$
. Using induction, the group 
$U_H$
 is nilpotent of class at most 
$n-1$
. If 
$M_{\alpha _i, \alpha _p}^G = \emptyset $
 for all 
$1 \leq i \leq p-1$
, then 
${U_w \cong U_H \times \mathbb {Z}_2}$
 and 
$U_w$
 is again nilpotent of class at most 
$n-1$
. Thus, we can assume 
$M_{\alpha _i, \alpha _p}^G \neq \emptyset $
 for some 
$1 \leq i \leq p-1$
 and hence, there exists a 
$(j, k, k, l)$
-gallery between 
$\alpha _i$
 and 
$\alpha _p$
 for some 
$j, k, l \in \mathbb {N}$
 with 
$1 \leq j<k<l\leq n$
. Then, the type of G ends with 
Let 
$1 \leq i' \leq i$
 be minimal with the property that there exists an 
$(i_1, j_1, i_2, j_2)$
-gallery between 
$\alpha _{i'}$
 and 
$\alpha _p$
 for some 
$i_1, j_1, i_2, j_2 \in \mathbb {N}$
 with 
$1\leq i_1 < j_1, 1 \leq i_2 < j_2$
 and 
$j_1 < j_2$
. Note that 
$M_{\alpha _{i'}, \alpha _p}^G = \emptyset $
 is possible. Comparing the type of G and the type of the 
$(i_1, j_1, i_2, j_2)$
-gallery, we deduce 
$i_2 = k$
 and 
$j_2 = l \leq n$
.
 Let 
$\alpha \in \{ \alpha _1, \ldots , \alpha _{i' -1} \}$
 and 
$\beta \in \{ \alpha _{i' +1}, \ldots , \alpha _p \}$
, and assume 
$M_{\alpha , \beta }^G \neq \emptyset $
. Then, there would exist a 
$(j', k', k', l')$
-gallery between 
$\alpha $
 and 
$\beta $
 for some 
$j', k', l' \in \mathbb {N}$
 with 
$j' < k' < l' \leq n$
. By definition, 
$\beta $
 must be of type s and the root crossed directly before 
$\beta $
 by G must be of type r. Note that 
$\beta $
 is a root on the 
$(i_1, j_1, i_2, j_2)$
-gallery between 
$\alpha _{i'}$
 and 
$\alpha _p$
. By considering the type of this gallery, it follows that 
$\beta $
 is a root of the form 
$\alpha _{x, y}$
 (see Definition 4.9). However, then, we would also have an 
$(i_1', j_1', i_2', j_2')$
-gallery between 
$\alpha $
 and 
$\alpha _p$
 by Remark 4.11, which is a contradiction of the minimality of 
$i'$
. Thus, we deduce 
$M_{\alpha , \beta }^G = \emptyset $
. However, we note that it is possible that 
$M_{\alpha , \alpha _{i'}}^G \neq \emptyset \neq M_{\alpha _{i'}, \beta }^G$
.
 If 
$i' = 1$
, then the claim holds. Thus, we can assume 
$1 < i'$
. Using induction, the group 
$U_{(c_0, \ldots , c_{i'})}$
 is nilpotent of class at most 
$n-1$
 and the subgroup of 
$U_G$
 generated by 
$\{ u_{\alpha _{i'}}, \ldots , u_{\alpha _p} \}$
 is also nilpotent of class at most 
$n-1$
. Moreover, we have 
${u_{\alpha _{i'}} \notin [U_G, U_G]}$
 because of the type of G and the fact that 
$i'$
 is minimal (see also Remark 4.11). This implies 
It follows that the nilpotency class of 
$U_G$
 is equal to the maximum of the nilpotency classes of the groups 
$U_{(c_0, \ldots , c_{i'})}$
 and the subgroup of 
$U_w$
 generated by 
$\{ u_{\alpha _{i'}}, \ldots , \alpha _p \}$
, which is at most 
$n-1$
. This finishes the proof of the claim.
4.2 Examples of type 
$(4, 4, 4)$
Convention 4.14. For the rest of this paper, we assume that 
$(W, S)$
 is of rank 
$3$
 and that 
$m_{st} = 4$
 for all 
$s\neq t \in S$
.
Proposition 4.15. Let 
$\mathcal {M} = ( M_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
 be a pre-commutator blueprint of type 
$(4, 4, 4)$
 such that for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$o(r_{\alpha } r_{\beta }) < \infty $
, we have 
$$ \begin{align*} M_{\alpha, \beta}^G = \begin{cases} (\alpha, \beta) &\text{if } \vert (\alpha, \beta) \vert = 2, \\ \emptyset & \text{if } \vert (\alpha, \beta) \vert < 2. \end{cases} \end{align*} $$
Let 
$G = (c_0, \ldots , c_k) \in \mathrm {Min}$
 and let 
$(\alpha _1, \ldots , \alpha _k)$
 be the sequence of roots crossed by G. We let 
$\beta := \alpha _k$
 and assume that the following hold for all 
$\alpha \in \Phi (G) \backslash \{ \beta \}$
. 
- 
(a) Suppose that
$o(r_{\alpha } r_{\beta }) < \infty $
, 
$M_{\alpha , \beta }^G = \{ \gamma , \delta \}$
 and let 
$\varepsilon \in \Phi (G)$
.- 
(i) If
$\varepsilon \subsetneq \gamma $
 and 
$\varepsilon \subsetneq \delta $
, then 
$M_{\varepsilon , \gamma }^G = M_{\varepsilon , \delta }^G$
 holds. - 
(ii) If
$\gamma \subsetneq \varepsilon $
 and 
$\delta \subsetneq \varepsilon $
, then 
$M_{\gamma , \varepsilon }^G = M_{\delta , \varepsilon }^G$
 holds. 
 - 
 - 
(b) Suppose that
$o(r_{\alpha } r_{\beta }) = \infty $
. Then, the following hold:- 
(i)
$\prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma } \in Z(U_{(c_0, \ldots , c_{k-1})})$
. - 
(ii)
$( \prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma } )^2 = 1$
 holds in 
$U_{(c_0, \ldots , c_{k-1})}$
. 
 - 
 
 If item (
$2$
-n
$3$
) of Theorem 3.8(ii) holds, then 
$\mathcal {M}$
 is a commutator blueprint and the groups 
$U_w$
 are nilpotent of class at most 
$2$
.
Proof. Note that by assumption and Theorem 3.8, it suffices to show that 
$\mathcal {M}$
 satisfies items (
$2$
-n
$1$
) and (
$2$
-n
$2$
). We abbreviate 
$u_i := u_{\alpha _i}$
 for all 
$1 \leq i \leq k$
.
 Let 
$1 \leq i \leq k-1$
. We first see that item (
$2$
-n
$2$
) holds in the case 
$o(r_{\alpha _i} r_{\beta }) < \infty $
 by assumption and in the case 
$o(r_{\alpha _i} r_{\beta }) = \infty $
 by condition (b)(ii). Thus, it suffices to show that item (
$2$
-n
$1$
) holds.
 Let 
$1 \leq i \leq k-1$
. We have to show 
$[u_i, [u_{\alpha }, u_{\beta }]] = 1$
. If 
$o(r_{\alpha } r_{\beta }) = \infty $
, then 
$[u_{\alpha }, u_{\beta }]$
 commutes with 
$u_i$
 by condition (b)(i) and the claim follows. Thus, we assume 
${o(r_{\alpha } r_{\beta }) < \infty }$
. Moreover, we can assume that 
$M_{\alpha , \beta }^G \neq \emptyset $
 and hence 
$\vert (\alpha , \beta ) \vert = 2$
. We suppose 
$M_{\alpha , \beta }^G = \{\gamma , \delta \}$
 with 
$\gamma \leq _G \delta $
.
 If 
$R \in \partial ^2 \alpha _i \cap \partial ^2 \alpha \cap \partial ^2 \beta $
, then the claim follows from the assumptions. Thus, we can assume that 
$\partial ^2 \alpha _i \cap \partial ^2 \alpha \cap \partial ^2 \beta = \emptyset $
. Suppose that 
$o(r_{\alpha _i} r_{\gamma }) = \infty = o(r_{\alpha _i} r_{\delta })$
. As 
$\{ \alpha _i, \gamma \}, \{\alpha _i, \delta \} \in \mathcal {P}$
, we deduce from Lemma 2.8(a) that both are nested. As 
$o(r_{\gamma } r_{\delta }) < \infty $
, we deduce 
$\alpha _i \subseteq \gamma , \delta $
 or 
$\gamma , \delta \subseteq \alpha _i$
. If 
$\alpha _i \subseteq \gamma , \delta $
, we have 
$M_{\alpha _i, \gamma }^G = M_{\alpha _i, \delta }^G$
 by condition (a)(i) and we infer 
$$ \begin{align*} u_i^{-1} \bigg( \prod\limits_{\varepsilon \in M_{\alpha, \beta}^G} u_{\varepsilon} \bigg) u_i &= \prod\limits_{\varepsilon \in M_{\alpha, \beta}^G} \bigg( \prod\limits_{\omega \in M_{\alpha_i, \varepsilon}^G} u_{\omega} \bigg) u_{\varepsilon} \\ &= \bigg( \prod\limits_{\omega \in M_{\alpha_i, \gamma}^G} u_{\omega} \bigg) u_{\gamma} \bigg( \prod\limits_{\omega \in M_{\alpha_i, \delta}^G} u_{\omega} \bigg) u_{\delta} \\ &\overset{(b)(i)}{=} u_{\gamma} \bigg( \prod\limits_{\omega \in M_{\alpha_i, \gamma}^G} u_{\omega} \bigg)^2 u_{\delta} \\ &\overset{(b)(ii)}{=} u_{\gamma} u_{\delta} = \prod\limits_{\varepsilon \in M_{\alpha, \beta}^G} u_{\varepsilon}. \end{align*} $$
The case 
$\gamma , \delta \subseteq \alpha _i$
 follows similarly. Now, we suppose that there exists 
$\rho \in (\alpha , \beta )$
 with 
$o(r_{\alpha _i} r_{\rho }) < \infty $
. Assume that 
$o(r_{\alpha } r_{\alpha _i}) = \infty = o(r_{\beta } r_{\alpha _i})$
. Then, we would have 
$\alpha _i \subseteq \beta $
 (as 
$\beta = \alpha _k$
) and, moreover, either 
$\alpha \subseteq \alpha _i$
 or 
$\alpha _i \subseteq \alpha $
. As 
$o(r_{\alpha } r_{\beta }) < \infty $
, we deduce 
${\alpha _i \subseteq \alpha }$
, but then we would have 
$\alpha _i \subseteq \alpha \cap \beta \subseteq \rho $
, which is a contradiction. We conclude 
${o(r_{\alpha } r_{\alpha _i}) < \infty }$
 or 
$o(r_{\beta } r_{\alpha _i}) < \infty $
. Let 
$\varepsilon \in \{ \alpha , \beta \}$
 be a root such that 
$o(r_{\varepsilon } r_{\alpha _i}) < \infty $
. Then, Lemma 2.8(b) yields 
Let 
$\varepsilon ' \in \{ \alpha , \beta \} \backslash \{ \varepsilon \}$
. We deduce from Lemma 2.9 that 
$\partial ^2 \rho \cap \partial ^2 \varepsilon = \partial ^2 \alpha \cap \partial ^2 \beta = \partial ^2 \rho \cap \partial ^2 \varepsilon '$
. As 
$\partial ^2 \alpha _i \cap \partial ^2 \alpha \cap \partial ^2 \beta = \emptyset $
, we infer that 
$\{ r_{\alpha _i}, r_{\varepsilon }, r_{\rho } \}$
 is a reflection triangle. Using Remark 2.11, there exist 
$\beta _i \in \{ \alpha _i, -\alpha _i \}, \beta _{\varepsilon } \in \{ \varepsilon , -\varepsilon \}$
 and 
$\beta _{\rho } \in \{ \rho , -\rho \}$
 such that 
$\{ \beta _i, \beta _{\varepsilon }, \beta _{\rho } \}$
 is a triangle. Note that 
$(-\beta _{\varepsilon }, \beta _{\rho }) = \emptyset $
 by Lemma 2.12. Let 
$\sigma \in (\alpha , \beta ) \backslash \{ \rho \}$
. Using Lemma 2.9, there exists 
$\beta _{\varepsilon '} \in \{ \varepsilon ', -\varepsilon ' \}$
 and 
$\beta _{\sigma } \in \{ \sigma , -\sigma \}$
 with 
$\beta _{\varepsilon '}, \beta _{\sigma } \in (\beta _{\varepsilon }, \beta _{\rho })$
. By Lemma 2.13, we have 
$o(r_{\alpha _i} r_{\varepsilon '}) = \infty $
. Note that 
$\{ \alpha _i, \varepsilon ' \} \in \mathcal {P}$
 and hence 
$\{ \alpha _i, \varepsilon ' \}$
 is nested by Lemma 2.8. Recall that 
$\partial ^2 \varepsilon \cap \partial ^2 \varepsilon ' \cap \partial ^2 \rho = \partial ^2 \alpha \cap \partial ^2 \beta \cap \partial ^2 \rho \neq \emptyset $
. We distinguish the following two cases.
 (a) 
$\alpha _i \subseteq \varepsilon '$
. For 
$R \in \partial ^2 \varepsilon \cap \partial ^2 \rho = \partial ^2 \varepsilon ' \cap \partial ^2 \rho = \partial ^2 \alpha \cap \partial ^2 \beta $
 (see Lemma 2.9), we deduce 
$\emptyset \neq R\cap (-\varepsilon ') \subseteq (-\alpha _i)$
 and, as 
$R \notin \partial ^2 \alpha _i$
, we have 
$R \subseteq (-\alpha _i)$
. This yields 
${\beta _i = -\alpha _i}$
. For 
$R \in \partial ^2 \alpha _i \cap \partial ^2 \varepsilon $
, we have 
$\emptyset \neq \alpha _i \cap R \subseteq \varepsilon '$
. As 
$\partial ^2 \alpha _i \cap \partial ^2 \varepsilon \cap \partial ^2 \varepsilon ' = \partial ^2 \alpha _i \cap \partial ^2 \alpha \cap \partial ^2 \beta = \emptyset $
, we deduce 
$R \notin \partial ^2 \varepsilon '$
 and hence 
$R \subseteq \varepsilon '$
. In particular, we have 
$\emptyset \neq \varepsilon \cap R \subseteq \varepsilon \cap \varepsilon ' = \alpha \cap \beta \subseteq \rho $
. As 
$R \notin \partial ^2 \rho $
 (
$\{ r_{\alpha _i}, r_{\varepsilon }, r_{\rho } \}$
 is a reflection triangle), we infer 
$R \subseteq \rho $
 and hence 
$\beta _{\rho } = \rho $
. Lemma 2.12 implies 
$(\alpha _i, \rho ) = (-\beta _i, \beta _{\rho }) = \emptyset $
. Recall that 
${\beta _{\sigma } \in (\beta _{\varepsilon }, \beta _{\rho })}$
. Using Lemma 2.13, we deduce 
$o(r_{\alpha _i} r_{\sigma }) = \infty , \alpha _i = -\beta _i \subseteq \beta _{\sigma }$
 and 
$(\alpha _i, \beta _{\sigma }) = \emptyset $
. As 
$\alpha _i \ni 1_W \notin (-\sigma )$
, we deduce 
$\beta _{\sigma } = \sigma $
. Since 
$\{ \gamma , \delta \} = (\alpha , \beta ) = \{ \rho , \sigma \}$
, we have 
$(\alpha _i, \gamma ) = (\alpha _i, \delta ) = \emptyset $
.
 (b) 
$\varepsilon ' \subseteq \alpha _i$
. For 
$R {\kern-1pt}\in{\kern-1pt} \partial ^2 \varepsilon \cap \partial ^2 \rho {\kern-1pt}= {\kern-1pt}\partial ^2 \varepsilon ' \cap \partial ^2 \rho {\kern-1pt}={\kern-1pt} \partial ^2 \alpha \cap \partial ^2 \beta $
, we deduce 
${\emptyset \neq R\cap \varepsilon ' \subseteq \alpha _i}$
 and, as 
$R \notin \partial ^2 \alpha _i$
, we have 
$R \subseteq \alpha _i$
. This yields 
$\beta _i = \alpha _i$
. For 
$R \in \partial ^2 \alpha _i \cap \partial ^2 \varepsilon $
, we have 
${\emptyset \neq R \cap (-\alpha _i) \subseteq (-\varepsilon ')}$
. As 
$\partial ^2 \alpha _i \cap \partial ^2 \varepsilon \cap \partial ^2 \varepsilon ' = \partial ^2 \alpha _i \cap \partial ^2 \alpha \cap \partial ^2 \beta = \emptyset $
, we deduce 
${R \notin \partial ^2 \varepsilon '}$
 and hence, 
$R \subseteq (-\varepsilon ')$
. In particular, we have 
$\emptyset \neq (-\varepsilon ) \cap R \subseteq (-\varepsilon ) \cap (-\varepsilon ') = (-\alpha ) \cap (-\beta ) \subseteq (-\rho )$
. As 
$R \notin \partial ^2 \rho $
 (
$\{ r_{\alpha _i}, r_{\varepsilon }, r_{\rho } \}$
 is a reflection triangle), we infer 
${R \subseteq (-\rho )}$
 and hence, 
$\beta _{\rho } = -\rho $
. Lemma 2.12 implies 
$(\alpha _i, \rho ) = \emptyset $
. Recall that 
$\beta _{\sigma } \in (\beta _{\varepsilon }, \beta _{\rho })$
. Using Lemma 2.13, we deduce 
$o(r_{\alpha _i} r_{\sigma }) = \infty , -\alpha _i = -\beta _i \subseteq \beta _{\sigma }$
 and 
$(-\alpha _i, \beta _{\sigma }) = \emptyset $
. As 
${\{\alpha _i, \sigma \} \in \mathcal {P}}$
, Lemma 2.8 implies that 
$\{ \alpha _i, \sigma \}$
 is nested and hence, 
$\{ -\alpha _i, -\sigma \}$
 is nested as well. As 
$-\alpha _i \subseteq \beta _{\sigma }$
, we deduce 
$\beta _{\sigma } = -\sigma $
 and hence, 
$(\alpha _i, \sigma ) = -(-\alpha _i, -\sigma ) = \emptyset $
. Since 
$\{ \gamma , \delta \} = (\alpha , \beta ) = \{ \rho , \sigma \}$
, we have 
$(\alpha _i, \gamma ) = (\alpha _i, \delta ) = \emptyset $
.
 In both cases, we compute the following, where 
$N_{\alpha _i, \varepsilon }^G \in \{ M_{\alpha _i, \varepsilon }^G, M_{\varepsilon , \alpha _i}^G \}$
 depends on which expression is defined: 
$$ \begin{align*} \prod\limits_{\varepsilon \in M_{\alpha, \beta}^G} \bigg( \prod\limits_{\omega \in N_{\alpha_i, \varepsilon}^G} u_{\omega} \bigg) u_{\varepsilon} = \prod\limits_{\varepsilon \in M_{\alpha, \beta}^G} u_{\varepsilon}.\\[-47pt] \end{align*} $$
Definition 4.16. Let 
$H = (c_0, \ldots , c_k)$
 be a gallery in 
$\Sigma (W, S)$
. Then, H is called of type 
$(n, r) \in \mathbb {N}_{\geq 1} \times S$
 if 
$S = \{r, s, t\}$
 and the gallery H is of type 
$(u, r, r_{\{s, t\}}, \ldots , r, r_{\{s, t\}}, r, v)$
 for some 
$u, v \in \{ 1_W, s, t \}$
, where 
$r_{\{s, t\}}$
 appears n times in the type of H. We note that 
$(1_W, c_0^{-1} c_1, \ldots , c_0^{-1} c_k)$
 is a minimal gallery by Lemma 2.14 and [Reference Abramenko and BrownAB08, Lemma 
$2.15$
], and so is H.
Lemma 4.17. Let 
$\alpha , \beta \in \Phi _+$
 be two roots and let 
$(n, r) \in \mathbb {N}_{\geq 2} \times S$
. Suppose that there exists a minimal gallery 
$H = (c_0, \ldots , c_k)$
 of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
. Then, the following hold. 
- 
(a) We can extend
$(c_6, \ldots , c_k)$
 to a minimal gallery contained in 
$\mathrm {Min}$
. - 
(b) Let
$R \in \partial ^2 \alpha $
 be a residue such that 
$\alpha $
 is a nonsimple root of R. If 
$\{ c_0, c_1 \} \not \subseteq R$
, then there exists a simple root of R, say 
$\gamma \in \Phi _+$
, such that 
$-\gamma \subseteq \beta $
. 
Proof. In the proof, we use the following notation. For a minimal gallery 
$G = (c_0, \ldots , c_k)$
, 
$k \geq 1,$
 we denote the unique root containing 
$c_{k-1}$
 but not 
$c_k$
 by 
$\alpha _G$
.
 Let 
$S = \{r, s, t\}$
 and recall that H is of type 
$(u, r, r_{\{s, t\}}, \ldots , r, r_{\{s, t\}}, r, v)$
, where 
${u, v \in \{1_W, s, t\}}$
 and 
$r_{\{s, t\}}$
 appears n times. We first show assertion (a). Suppose 
$u=1_W$
. Then, 
$\ell (c_0r) = \ell (c_0) +1$
. If 
$\ell (c_0rs) = \ell (c_0r) +1 = \ell (c_0rt)$
, we can extend H to a gallery contained in 
$\mathrm {Min}$
 by Lemma 2.14 and induction. If 
$\ell (c_0rs) = \ell (c_0)$
, it follows from Lemma 2.16 that 
$\ell (c_0rst) = \ell (c_0) +1$
. Hence, we can extend 
$(c_5, \ldots , c_k)$
 to a gallery contained in 
$\mathrm {Min}$
. The same holds if 
$\ell (c_0rt) = \ell (c_0)$
. Now, we suppose 
$u = s$
 (the case 
$u=t$
 is analogous). Again, we note that 
$\ell (c_0s) = \ell (c_0)+1$
. If 
$\ell (c_0sr) = \ell (c_0)$
, Lemma 2.16 yields 
$\ell (c_0srt) = \ell (c_0) +1$
. Thus, we can extend 
$(c_6, \ldots , c_k)$
 to a gallery contained in 
$\mathrm {Min}$
. Suppose that 
$\ell (c_0sr) = \ell (c_0)+2$
. Note that Lemma 2.14 implies that 
$\ell (c_0srt) = \ell (c_0) +3$
. If 
$\ell (c_0 srs)> \ell (c_0 sr)$
, then we can extend H to a gallery contained in 
$\mathrm {Min}$
. Otherwise, Lemma 2.16 again implies 
$\ell (c_0srst) = \ell (c_0) +2$
 and we can extend 
$(c_6, \ldots , c_k)$
 to a gallery contained in 
$\mathrm {Min}$
. In any case, we can extend 
$(c_6, \ldots , c_k)$
 to a gallery 
$\Gamma \in \mathrm {Min}$
. This proves assertion (a).
 To prove assertion (b), we suppose 
$\{ c_0, c_1 \} \not \subseteq R$
. As 
$P_{\alpha } \subseteq R$
 by Lemma 2.22, we have 
$P_{\alpha } \neq \{c_0, c_1\}$
. Let 
$P_0 = P_{\alpha }, \ldots , P_n = \{c_0, c_1\}$
 and 
$R_1, \ldots , R_n$
 be as in Lemma 2.5. For every 
$1 \leq i \leq n$
, we define 
$w_i := {\mathrm {proj}}_{R_i} 1_W$
, we let 
$\{x, y\}$
 be the type of 
$R_n$
, we let 
$\{x\}$
 be the type of 
$\{c_0, c_1\}$
 and we let 
$S = \{x, y, z\}$
. We distinguish the following two cases. 
- 
(i)
$ {\mathrm {proj}}_{R_n} 1_W = {\mathrm {proj}}_{P_{n-1}} 1_W$
. Depending on H, we have 
$\alpha _K \subseteq \beta $
 by Lemma 2.18 for 
${K = (w_n, \ldots , n)}$
, where the type of K is one of 
$ (x, y, z, x), (x, y, x, z, y)\ \mathrm{and} (x, y, x, y, z)$
. - 
(ii)
$ {\mathrm {proj}}_{R_n} 1_W \neq {\mathrm {proj}}_{P_{n-1}} 1_W$
. Depending on H, we have 
$\alpha _K \subseteq \beta $
 by Lemma 2.18 for 
${K = (w_n, \ldots , w)}$
, where the type of K is one of 
$(x, y, x, y, z), (x, y, x, z)\ \mathrm{and} (y, x, y, z, x) $
. 
 We note that for 
$L = (w_n, w_n x, w_n xy)$
, we have 
$\alpha _L \subseteq \alpha _K$
 by Lemma 2.18, where K is as in part (i) or (ii). We distinguish the following cases.
 (a) 
$R = R_1$
. Then, we have 
$n\geq 2$
 (as 
$P_n \not \subseteq R$
) and 
$ {\mathrm {proj}}_{R_n} 1_W = {\mathrm {proj}}_{P_{n-1}} 1_W$
 by Lemma 2.21. Let 
$\gamma \in \Phi _+$
 be the simple root of R that does not contain 
$P_{\alpha }$
. We first suppose 
${n=2}$
. Using Lemma 2.18, we deduce that 
$-\gamma $
 is contained in all three roots 
$\alpha _K$
 mentioned in case (i). Note also that 
$-\gamma $
 is contained in one nonsimple root of 
$R_2$
. Now, we assume 
$n\geq 3$
. Using induction, 
$-\gamma $
 is contained in a nonsimple root of 
$R_{n-1}$
. As such a root is contained in both nonsimple roots of 
$R_n$
 by Lemma 2.18, it follows that 
$(-\gamma ) \subseteq \alpha _L$
, where 
$L = (w_n, w_nx, w_n xy)$
 is as before.
 (b) 
$R \neq R_1$
. Let 
$\gamma \in \Phi _+$
 be the simple root of R containing 
$P_{\alpha }$
. We prove by induction on n that 
$(-\gamma ) \subseteq \alpha _L$
 holds, where L is as before. We first suppose 
$n=1$
. If 
$ {\mathrm {proj}}_{R_1} 1_W \neq {\mathrm {proj}}_{P_0} 1_W$
, then the claim follows from Lemma 2.18. Thus, we can assume that 
$ {\mathrm {proj}}_{R_1} 1_W = {\mathrm {proj}}_{P_0} 1_W$
. As before, the claim follows from Lemma 2.18. Now, we suppose 
$n>1$
. Using induction, 
$-\gamma $
 is contained in a nonsimple root of 
$R_{n-1}$
. As such a root is contained in both nonsimple roots of 
$R_n$
 by Lemma 2.18, the claim follows.
Lemma 4.18. Let 
$\alpha , \beta \in \Phi $
 be two roots. Let 
$G = (c_0, \ldots , c_k)$
 be a gallery of type 
$(n, r)$
, let 
$H = (d_0, \ldots , d_l)$
 be a gallery of type 
$(n', r')$
, and suppose that G and H are minimal galleries between the same roots 
$\alpha $
 and 
$\beta $
. Then, we have 
$n = n'$
 and 
$r=r'$
.
Proof. Let 
$S = \{r, s, t\} = \{r', s', t'\}$
. Recall that G is of type 
$(u, r, r_{\{s, t\}}, \ldots , r, v)$
 with 
$u, v \in \{1_W, s, t\}$
 and H is of type 
$(u', r', r_{\{s', t'\}}, \ldots , r', v')$
 with 
$u', v' \in \{1_W, s', t'\}$
. We first show that the last two chambers of the galleries G and H coincide, and that 
$r=r'$
 and 
$v = v'$
 hold. Using Lemma 4.17(a), we can extend 
$(c_6, \ldots , c_k)$
 and 
$(d_6, \ldots , d_l)$
 to minimal galleries contained in 
$\mathrm {Min}$
. We distinguish the following cases.
 (a) 
$v=1_W$
. Then, there are exactly two different residues 
$R_1, R_2 \in \partial ^2 \beta $
 such that 
$\beta $
 is not a simple root of 
$R_1$
 and of 
$R_2$
, and we have 
$\{ c_{k-1}, c_k\} = R_1 \cap R_2$
. This implies 
$v' = 1_W$
, as otherwise, there would only be one such residue. However, then 
$\{ c_{k-1}, c_k \} = P_{\beta } = \{ d_{l-1}, d_l \}$
 and hence 
$r = r'$
.
 (b) 
$v = s$
 (the case 
$v=t$
 is analogous). Then, by Lemmas 2.14 and 2.17, there is only one residue 
$R \in \partial ^2 \beta $
 such that 
$\beta $
 is not a simple root of R. Note that 
$c_{k-1}, c_k$
 are contained in R and we have 
$P_{\beta } \neq \{ c_{k-1}, c_k \}$
. By the above, we have 
$v' \neq 1_W$
 and we deduce 
$P_{\beta } \neq \{ d_{l-1}, d_l \} \subseteq R$
 similarly. This implies 
$v' = s$
 and, in particular, 
$d_{l-1} = c_{k-1}$
 and 
$d_l = c_k$
. Note that there is only one element in S that decreases the length of 
$d_{l-1} = c_{k-1}$
. As 
$r, r'$
 both decrease the length, we conclude 
$r=r'$
.
 Assume 
$n \neq n'$
. Without loss of generality, we can assume 
$n < n'$
. We consider the minimal galleries 
$H^{-1} = (d_l, d_{l-1}, \ldots , d_1, d_0)$
 and 
$G^{-1} = (c_k, c_{k-1}, \ldots , c_1, c_0)$
. Then, 
$G^{-1}$
 is a subgallery of 
$H^{-1}$
 because of the types. However, then H crosses the wall 
$\partial \alpha $
 at least twice. This is a contradiction of the fact that H is minimal. We conclude 
$n=n'$
 and the claim follows.
In the next definition, we define subsets 
$M(n, r, L)_{\alpha , \beta }^G \subseteq (\alpha , \beta )$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
, where 
$n \in \mathbb {N}$
 with 
$n \geq 3$
, 
$r\in S$
 and 
$L \subseteq \{2, \ldots , n-1 \}$
. To have an intuition in mind, we describe these symbols here: n and r mean that there exists a minimal gallery of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
; the subset L roughly indicates which elements of 
$(\alpha , \beta )$
 are contained in the set 
$M(n, r, L)_{\alpha , \beta }^G$
.
Definition 4.19.
- 
(a) Let
$r\in S$
, let 
$n \in \mathbb {N}$
 with 
$n\geq 3$
, let 
$L \subseteq \{ 2, \ldots , n-1 \}$
 and let 
$(G, \alpha , \beta ) \in \mathcal {I}$
. If 
$o(r_{\alpha } r_{\beta }) < \infty $
, then we define Now, we consider the case
$$ \begin{align*} M(n, r, L)_{\alpha, \beta}^G := \begin{cases} (\alpha, \beta) & \text{if }\vert (\alpha, \beta) \vert = 2; \\ \emptyset & \text{otherwise}. \end{cases} \end{align*} $$
$o(r_{\alpha } r_{\beta }) = \infty $
. If there exists no minimal gallery of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
, we define 
$M(n, r, L)_{\alpha , \beta }^G := \emptyset $
. Now, suppose that there exists a minimal gallery 
$H = (c_0, \ldots , c_k)$
 of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
. Let 
$(\alpha _1 = \alpha , \ldots , \alpha _k = \beta )$
 be the sequence of roots crossed by H. For each 
$1 \leq i \leq n$
, we define 
$\omega _i := \alpha _{k_i +2}$
 and 
$\omega _i' := \alpha _{k_i +3}$
, where 
$k_i = \ell ( ur(r_{\{s, t\}}r)^{i-1} )$
. We define 
$$ \begin{align*} M(n, r, L)_{\alpha, \beta}^G := \{ \omega_i, \omega_i' \mid i \in L \}. \end{align*} $$
 - 
(b) Let
$K \subseteq \mathbb {N}_{\geq 3}$
 be nonempty, let 
$\mathcal {J} = (J_k)_{k\in K}$
 be a family of nonempty subsets 
$J_k \subseteq S$
 and let 
$\mathcal {L} = (L_k^j)_{k \in K, j \in J_k}$
 be a family of subsets 
$L_k^j \subseteq \{ 2, \ldots , k-1 \}$
. For 
${(G, \alpha , \beta ) \in \mathcal {I}}$
, we define Moreover, we let
$$ \begin{align*} M(K, \mathcal{J}, \mathcal{L})_{\alpha, \beta}^G := \bigcup\limits_{k\in K, j \in J_k} M( k, j, L_k^j )_{\alpha, \beta}^G. \end{align*} $$
$\mathcal {M}(K, \mathcal {J}, \mathcal {L}) := ( M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G )_{(G, \alpha , \beta ) \in \mathcal {I}}$
.
 
Convention 4.20. For the rest of this section, we let 
$K \subseteq \mathbb {N}_{\geq 3}$
 be nonempty, 
${\mathcal {J} = (J_k)_{k\in K}}$
 be a family of nonempty subsets 
$J_k \subseteq S$
 and 
$\mathcal {L} = ( L_k^j )_{k \in K, j \in J_k}$
 be a family of subsets 
$L_k^j \subseteq \{ 2, \ldots , k-1 \}$
.
Remark 4.21.
- 
(a) Let H be a gallery of type
$(n, r)$
 for some 
$n \in K$
 and 
$r\in J_n$
. We note that for 
$i>1$
, the roots 
$\omega _i, \omega _i'$
 are the nonsimple roots of 
$R_{\{s, t\}}(c_{k_i})$
. Suppose that H is between 
$\alpha $
 and 
$\beta $
. Using Lemma 2.18, we deduce 
$\alpha \subsetneq \omega _1, \omega _1' \subsetneq \cdots \subsetneq \omega _n, \omega _n' \subsetneq \beta $
 and hence, 
$M(n, r, L)_{\alpha , \beta }^G \subseteq (\alpha , \beta )$
. We should remark that if 
$\alpha , \beta \in \Phi _+$
, then not all of the roots crossed by H are necessarily positive roots. However, the roots 
$\omega _i, \omega _i'$
 are. Consider, for example, the case 
$c_0 = trt$
 and H is of type 
$(r, r_{\{s, t\}}, r, \ldots , r_{\{s, t\}}, r)$
. - 
(b) We note that Lemma 4.18 implies that if
$M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G \neq \emptyset $
, then there exist 
$k\in K$
 and 
$j \in J_k$
 with 
$M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G = M( k, j, L_k^j )_{\alpha , \beta }^G$
. 
Lemma 4.22. 
$\mathcal {M}(K, \mathcal {J}, \mathcal {L})$
 is a pre-commutator blueprint of type 
$(4, 4, 4)$
.
Proof. We abbreviate 
$M_{\alpha , \beta }^G := M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
. We first note that the sets 
$M_{\alpha , \beta }^G$
 do not depend on G: in the case 
$o(r_{\alpha } r_{\beta }) < \infty $
, the set 
$M_{\alpha , \beta }^G$
 only depends on 
$\vert (\alpha , \beta ) \vert $
; in the case 
$o(r_{\alpha } r_{\beta }) = \infty $
, the set 
$M_{\alpha , \beta }^G$
 only depends on the existence of a suitable minimal gallery between 
$\alpha $
 and 
$\beta $
. However, the order 
$\leq _G$
 on the set 
$M_{\alpha , \beta }^G$
 depends on G. Note that 
$\omega _i, \omega _i' \subsetneq \omega _{i+1}, \omega _{i+1}'$
 and hence 
$\omega _i, \omega _i' \leq _G \omega _{i+1}, \omega _{i+1}'$
, but the order on 
$\{ \omega _i, \omega _i' \}$
 depends on G.
 Clearly, Axioms (CB
$1$
) and (CB
$2$
) hold. To show that Axiom (PCB) holds, we let 
${w\in W}$
 and 
$G \in \mathrm {Min}(w)$
. Then, we have a homomorphism 
$U_G \to U_w$
 and it suffices to show that we have a homomorphism 
$U_w \to U_G$
 extending 
$u_{\alpha } \mapsto u_{\alpha }$
. Let 
$F \in \mathrm {Min}(w)$
 and let 
$(F, \alpha , \beta ) \in \mathcal {I}$
. We first assume 
$o(r_{\alpha } r_{\beta }) < \infty $
. If 
$\alpha \leq _G \beta $
, then 
$M_{\alpha , \beta }^F = M_{\alpha , \beta }^G$
 by definition and we are done. Thus, we can assume 
$\beta \leq _G \alpha $
. If 
$\vert (\alpha , \beta ) \vert <2$
, then 
${M_{\alpha , \beta }^F = \emptyset = M_{\beta , \alpha }^G}$
 and we are done. Thus, we assume 
$(\alpha , \beta ) = \{ \gamma , \delta \}$
 and 
$\gamma \leq _F \delta $
. Then, 
$\delta \leq _G \gamma $
 and we have the following relation in 
$U_G$
: 
Thus, we can consider the case 
$o(r_{\alpha } r_{\beta }) = \infty $
. Then, we have 
$\alpha \leq _G \beta $
. If there is no gallery H of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
 for all 
$n\in K$
 and 
$r\in J_n$
, then 
$M_{\alpha , \beta }^F = \emptyset = M_{\alpha , \beta }^G$
. Suppose that there exists a gallery H of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
 for some 
$n\in K$
 and 
$r\in J_n$
. Then, 
$M_{\alpha , \beta }^F = \{ \omega _i, \omega _i' \mid i \in L_n^r \} = M_{\alpha , \beta }^G$
 as sets. Note that 
$\omega _i, \omega _i' \leq _G \omega _{i+1}, \omega _{i+1}' \geq _F \omega _i, \omega _i'$
. As 
$M_{\omega _i, \omega _i'}^G = \emptyset $
, we deduce that 
$[u_{\alpha }, u_{\beta }] = \prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma } = \prod \nolimits _{\gamma \in M_{\alpha , \beta }^F} u_{\gamma }$
 is a relation in 
$U_G$
. Thus, we obtain a homomorphism 
$U_w \to U_G$
 and 
$\mathcal {M}(K, \mathcal {J}, \mathcal {L})$
 is a pre-commutator blueprint.
Lemma 4.23. Let 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$o(r_{\alpha } r_{\beta }) < \infty $
 and suppose that 
$M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G = \{ \gamma , \delta \}$
. Then, the following hold for all 
$\varepsilon \in \Phi (G)$
. 
- 
(i) If
$\varepsilon \subsetneq \gamma $
 and 
$\varepsilon \subsetneq \delta $
, then we have 
$M(K, \mathcal {J}, \mathcal {L})_{\varepsilon , \gamma }^G = M(K, \mathcal {J}, \mathcal {L})_{\varepsilon , \delta }^G$
. - 
(ii) If
$\gamma \subsetneq \varepsilon $
 and 
$\delta \subsetneq \varepsilon $
, then we have 
$M(K, \mathcal {J}, \mathcal {L})_{\gamma , \varepsilon }^G = M(K, \mathcal {J}, \mathcal {L})_{\delta , \varepsilon }^G$
. 
Proof. We abbreviate 
$M_{\alpha , \beta }^G := M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
. Let R be the unique residue of rank 
$2$
 contained in 
$\partial ^2 \alpha \cap \partial ^2 \beta $
 (see Lemma 2.7(b)) and let 
$(\alpha , \beta ) = \{ \gamma , \delta \}$
. Suppose first 
$\varepsilon \subsetneq \gamma $
 and 
$\varepsilon \subsetneq \delta $
. If 
$M_{\varepsilon , \gamma }^G = \emptyset = M_{\varepsilon , \delta }^G$
, we are done. Thus, we can assume 
$M_{\varepsilon , \gamma }^G \neq \emptyset $
. Then, there exists a minimal gallery 
$H = (d_0, \ldots , d_k)$
 of type 
$(n, r)$
 between the roots 
$\varepsilon $
 and 
$\gamma $
 for some 
$n\in K$
 and 
$r\in J_n$
. In particular, the type of H is given by 
$(u, r, r_{\{s, t\}}, r, \ldots , r_{\{s, t\}}, r, v)$
, where 
$u, v \in \{1_W, s, t\}$
 and 
$r_{\{s, t\}}$
 appears n times. Using Lemma 4.17(a), we can extend 
$(d_6, \ldots , d_k)$
 to a gallery 
$\Gamma \in \mathrm {Min}$
. Using Lemma 2.14 and induction, 
$\gamma $
 is a nonsimple root of the residue of rank 
$2$
 containing 
$d_{k-2}, d_{k-1}$
 and 
$d_k$
. We distinguish the following cases. 
- 
(i)
$v=1$
. Then, we have 
$P_{\gamma } = \{ d_{k-1}, d_k \}$
 (see Lemma 2.22) and 
$P_{\gamma } \subseteq R$
. There exists 
$x\in \{s, t\}$
 such that the minimal gallery H extended by an x-adjacent chamber is still of type 
$(n, r)$
 and between the roots 
$\varepsilon $
 and 
$\delta $
. We deduce 
$M_{\varepsilon , \gamma }^G = M_{\varepsilon , \delta }^G$
. - 
(ii)
$v\neq 1$
. Using Lemmas 2.17 and 2.14, we deduce that R is the only residue such that 
$\gamma $
 is a nonsimple root of R. Then, the minimal gallery 
$K := (d_0, \ldots , d_{k-1})$
 is still of type 
$(n, r)$
 and between the roots 
$\varepsilon $
 and 
$\delta $
. We deduce 
$M_{\varepsilon , \gamma }^G = M_{\varepsilon , \delta }^G$
. 
 Now, we assume 
$\gamma \subsetneq \varepsilon $
 and 
$\delta \subsetneq \varepsilon $
. If 
$M_{\gamma , \varepsilon }^G = \emptyset = M_{\delta , \varepsilon }^G$
, we are done. Thus, we can assume 
$M_{\gamma , \varepsilon }^G \neq \emptyset $
. Then, there exists a minimal gallery 
$H = (d_0, \ldots , d_k)$
 of type 
$(n, r)$
 between 
$\gamma $
 and 
$\varepsilon $
 for some 
$n\in K$
 and 
$r \in J_n$
. In particular, the type of H is given by 
$(u, r, r_{\{s, t\}}, r, \ldots , r_{\{s, t\}}, r, v)$
, where 
$u, v \in \{ 1_W, s, t \}$
 and 
$r_{\{s, t\}}$
 appears n times. Clearly, 
$\gamma $
 is a nonsimple root of R. Note that 
$\alpha , \beta , \varepsilon \in \Phi (G)$
 and hence 
$\{ \alpha , \varepsilon \}, \{ \beta , \varepsilon \} \in \mathcal {P}$
. Then, Lemma 4.17(b) yields 
$\{ d_0, d_1 \} \subseteq R$
. We distinguish the following two cases.
- 
(i)
$u=1_W$
. Assume that 
$\ell ( {\mathrm {proj}}_R 1_W, d_0) = 1$
. Then, Lemma 2.18 would imply that one of 
$-\alpha , -\beta $
 is contained in one nonsimple root of the 
$\{s, t\}$
-residue containing 
$d_1$
 (that is, 
$\omega _1$
 or 
$\omega _1'$
) and hence, one of 
$-\alpha , -\beta $
 is contained in 
$\varepsilon $
. As this is a contradiction, we deduce 
$\ell ( {\mathrm {proj}}_R 1_W, d_0) = 2$
. Let d be the chamber in R adjacent to both 
$ {\mathrm {proj}}_R 1_W$
 and 
$d_0$
. Then, the gallery 
$(d, d_0, \ldots , d_k)$
 is of type 
$(n, r)$
 and between the roots 
$\delta $
 and 
$\varepsilon $
. We deduce 
$M_{\gamma , \varepsilon }^G = M_{\delta , \varepsilon }^G$
. - 
(ii)
$u\neq 1_W$
. Assume 
$\ell ( {\mathrm {proj}}_R 1_W, d_0) = 2$
. In both cases (
$d_2 \in R$
 and 
$d_2 \notin R$
), Lemma 2.18 would imply that one of 
$-\alpha , -\beta $
 is contained in 
$\omega _2, \omega _2'$
 and hence in 
$\varepsilon $
, which is a contradiction. Thus, 
$\ell ( {\mathrm {proj}}_R 1_W, d_0) = 1$
. Again, if 
$d_2 \notin R$
, then Lemma 2.18 would imply that one of 
$-\alpha , -\beta $
 is contained in 
$\omega _1, \omega _1'$
, which is a contradiction. Thus, we can assume 
$d_2 \in R$
. As 
$(d_1, \ldots , d_k)$
 is still a gallery of type 
$(n, r)$
 between the roots 
$\delta $
 and 
$\varepsilon $
, we deduce 
$M_{\gamma , \varepsilon }^G = M_{\delta , \varepsilon }^G$
 and the claim follows. 
Lemma 4.24. 
$\mathcal {M}(K, \mathcal {J}, \mathcal {L})$
 is a Weyl-invariant commutator blueprint and the groups 
$U_w$
 are nilpotent of class at most 
$2$
.
Proof. We abbreviate 
$M_{\alpha , \beta }^G := M(K, \mathcal {J}, \mathcal {L})_{\alpha , \beta }^G$
 for all 
$(G, \alpha , \beta ) \in \mathcal {I}$
. We apply Proposition 4.15. Suppose 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$o(r_{\alpha } r_{\beta }) < \infty $
. Then, we have 
$$ \begin{align*} M_{\alpha, \beta}^G = \begin{cases} (\alpha, \beta) & \text{if } \vert (\alpha, \beta) \vert = 2, \\ \emptyset & \text{if } \vert (\alpha, \beta) \vert < 2, \end{cases} \end{align*} $$
by definition. Let 
$G = (c_0, \ldots , c_k) \in \mathrm {Min}$
, let 
$(\alpha _1, \ldots , \alpha _k)$
 be the sequence of roots crossed by G, let 
$1 \leq j \leq k-1$
 and let 
$\alpha := \alpha _j, \beta := \alpha _k$
. Then, condition (a) of Proposition 4.15 follows from Lemma 4.23. Now, we show that condition (b) holds. For that, we suppose 
$o(r_{\alpha } r_{\beta }) = \infty $
. If 
$M_{\alpha , \beta }^G = \emptyset $
, we are done. Thus, we can assume 
$M_{\alpha , \beta }^G \neq \emptyset $
. Then, there exists a minimal gallery of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
 for some 
$n \in K$
 and 
$r\in J_n$
. In particular, we have 
$M_{\alpha , \beta }^G = \{ \omega _i, \omega _i' \mid i \in L_n^r \}$
. Note that 
$\{ \omega _i, \omega _i' \} = M_{\gamma _i, \gamma _i'}^G$
 for some 
$\gamma _i \leq _G \gamma _i' \in \Phi (G)$
 with 
$\alpha \subseteq \gamma _i \leq _G \gamma _i' \subseteq \beta $
, as 
$L_n^r \subseteq \{ 2, \ldots , n-1 \}$
. We remark that we really need 
$1, n \notin L_n^r$
.
 We first show that 
$u_{\omega _i} u_{\omega _i'} \in Z(U_{(c_0, \ldots , c_{k-1})})$
 for all 
$i \in L_n^r$
. This implies that 
$\prod \nolimits _{\gamma \in M_{\alpha , \beta }^G} u_{\gamma } = \prod \nolimits _{i \in L_n^r} u_{\omega _i} u_{\omega _i'}$
 is contained in 
$Z(U_{(c_0, \ldots , c_{k-1})})$
 and, moreover, we deduce 
$$ \begin{align*} \bigg( \prod\limits_{\gamma \in M_{\alpha, \beta}^G} u_{\gamma} \bigg)^2 = \bigg( \prod\limits_{i \in L_n^r} u_{\omega_i} u_{\omega_i'} \bigg)^2 = \prod\limits_{i\in L_n^r} (u_{\omega_i} u_{\omega_i'})^2 = 1.\end{align*} $$
Note that the order 
$\leq _G$
 on 
$\{ \omega _i, \omega _i' \}$
 depends on G. Let 
$\varepsilon \in \Phi (G) \backslash \{ \beta \}$
. Then, we have to show that 
$u_{\omega _i} u_{\omega _i'}$
 and 
$u_{\varepsilon }$
 commute in 
$U_{(c_0, \ldots , c_{k-1})}$
. However, this group is nilpotent of class at most 
$2$
 by induction and 
$u_{\omega _i} u_{\omega _i'} \in [U_{(c_0, \ldots , c_{k-1})}, U_{(c_0, \ldots , c_{k-1})}] \leq Z(U_{(c_0, \ldots , c_{k-1})})$
.
 Now, it is left to show that item (
$2$
-n
$3$
) of Theorem 3.8
ii is satisfied. Let 
${1 \leq i < j \leq k}$
. Note that by construction of the sets 
$M_{\alpha , \beta }^G$
, it suffices to show the claim for the case 
$o(r_{\alpha _i} r_{\alpha _j}) < \infty $
 and 
$M_{\alpha _i, \alpha _j}^G \neq \emptyset $
. Suppose that 
$M_{\alpha _i, \alpha _j}^G = \{ \gamma , \delta \}$
 with 
$\gamma \leq _G \delta $
. We distinguish the following cases.
 (a) 
$o(r_{\gamma } r_{\alpha _k}) < \infty $
. Assume that 
$\alpha _i \subseteq \alpha _k$
 and 
$\alpha _j \subseteq \alpha _k$
. Then, 
$(-\alpha _k) \subseteq (-\alpha _i) \cap (-\alpha _j) \subseteq (-\gamma )$
 would yield a contradiction. We deduce 
$\alpha _i \not \subseteq \alpha _k$
 or 
$\alpha _j \not \subseteq \alpha _k$
. Suppose 
${\varepsilon \in \{ \alpha _i, \alpha _j \}}$
 with 
$o(r_{\varepsilon } r_{\alpha _k}) < \infty $
. If 
$\varepsilon = \alpha _j = \alpha _k$
, then the claim follows. Thus, we can assume 
$\alpha _j \neq \alpha _k$
. It follows that 
$\partial ^2 \varepsilon \cap \partial ^2 \gamma \cap \partial ^2 \alpha _k = \partial ^2 \alpha _i \cap \partial ^2 \alpha _j \cap \partial ^2 \alpha _k = \emptyset $
 from Lemma 2.9 and hence 
$\{ r_{\varepsilon }, r_{\gamma }, r_{\alpha _k} \}$
 is a reflection triangle. By Remark 2.11, there exist 
${\beta _{\varepsilon } \in \{ \varepsilon , -\varepsilon \}, \beta _{\gamma } \in \{ \gamma , -\gamma \}}$
 and 
$\beta _k \in \{ \alpha _k, -\alpha _k \}$
 such that 
$\{ \beta _{\varepsilon }, \beta _{\gamma }, \beta _k \}$
 is a triangle.
 Let 
$\varepsilon ' \in \{ \alpha _i, \alpha _j \} \backslash \{\varepsilon \}$
. Then, we know by Lemmas 2.9 and 2.13(a) that 
$o(r_{\delta } r_{\alpha _k}) = \infty = o(r_{\varepsilon '} r_{\alpha _k})$
. Lemma 2.8(a) together with the fact 
$\{ \delta , \alpha _k \}, \{ \varepsilon ', \alpha _k \} \in \mathcal {P}$
 imply that both pairs are nested. As 
$\delta \leq _G \alpha _k$
 and 
$\varepsilon ' \leq _G \alpha _k$
, we deduce 
$\delta \subseteq \alpha _k$
 and 
$\varepsilon ' \subseteq \alpha _k$
. Let 
$R \in \partial ^2 \varepsilon \cap \partial ^2 \gamma = \partial ^2 \alpha _i \cap \partial ^2 \alpha _j \cap \partial ^2 \delta $
. Then, 
$\emptyset \neq R \cap \delta \subseteq \alpha _k$
 and (as 
$R \notin \partial ^2 \alpha _k$
) we deduce 
$R \subseteq \alpha _k$
. This implies 
$\beta _k = \alpha _k$
.
 Note that there exist 
$\beta _{\delta } \in \{ \delta , -\delta \}$
 and 
$\beta _{\varepsilon '} \in \{ \varepsilon ', -\varepsilon ' \}$
 with 
$\beta _{\delta }, \beta _{\varepsilon '} \in (\beta _{\gamma }, \beta _{\varepsilon })$
 by Lemmas 2.9 and 2.12. Using Lemma 2.13(a), we obtain 
$(-\alpha _k) \subseteq \beta _{\delta }$
 and 
$(-\alpha _k) \subseteq \beta _{\varepsilon '}$
, and hence 
$(-\delta ) = \beta _{\delta }, (-\varepsilon ') = \beta _{\varepsilon '} \in (\beta _{\gamma }, \beta _{\varepsilon })$
. By Lemma 2.10, we have 
$(-\varepsilon ') \in (\varepsilon , -\gamma )$
 and hence 
$\beta _{\gamma } = -\gamma , \beta _{\varepsilon } = \varepsilon $
. Lemma 2.13(b) implies 
$(\delta , \alpha _k) = -(-\delta , -\alpha _k) = \emptyset $
. Moreover, Lemma 2.12 yields 
$(\gamma , \alpha _k) = (-\beta _{\gamma }, \beta _k) = \emptyset $
 and hence 
$M_{\gamma , \alpha _k}^G = \emptyset = M_{\delta , \alpha _k}^G$
. We conclude 
$$ \begin{align*} \prod\limits_{\sigma \in M_{\alpha_i, \alpha_j}^G} \bigg( u_{\sigma} \prod\limits_{\rho \in M_{\sigma, \alpha_k}^G} u_{\rho} \bigg) &= \bigg( u_{\gamma} \prod\limits_{\rho \in M_{\gamma, \alpha_k}^G} u_{\rho} \bigg) \bigg( u_{\delta} \prod\limits_{\rho \in M_{\delta, \alpha_k}^G} u_{\rho} \bigg) \\ &= u_{\gamma} u_{\delta} \\ &= \prod\limits_{\sigma \in M_{\alpha_i, \alpha_j}^G} u_{\sigma}. \end{align*} $$
 (b) 
$o(r_{\gamma } r_{\alpha _k}) = \infty = o(r_{\delta } r_{\alpha _k})$
. It follows from Lemma 4.23 that 
$M_{\gamma , \alpha _k}^G = M_{\delta , \alpha _k}^G$
. We have already shown that condition (b) of Proposition 4.15 holds. Thus, we know that 
$\prod \nolimits _{\varepsilon \in M_{\gamma , \alpha _k}^G} u_{\varepsilon } \in Z(U_{(c_0, \ldots , c_{k-1})})$
 as well as 
$( \prod \nolimits _{\varepsilon \in M_{\gamma , \alpha _k}^G} u_{\varepsilon } )^2 = 1$
 in the group 
$U_{(c_0, \ldots , c_{k-1})}$
. We deduce the following: 
$$ \begin{align*} \bigg( u_{\gamma} \prod\limits_{\rho \in M_{\gamma, \alpha_k}^G} u_{\rho} \bigg) \bigg( u_{\delta} \prod\limits_{\rho \in M_{\delta, \alpha_k}^G} u_{\rho} \bigg) &= \bigg( u_{\gamma} \prod\limits_{\rho \in M_{\gamma, \alpha_k}^G} u_{\rho} \bigg) \bigg( u_{\delta} \prod\limits_{\rho \in M_{\gamma, \alpha_k}^G} u_{\rho} \bigg) \\ &= u_{\gamma} u_{\delta} \bigg( \prod\limits_{\rho \in M_{\gamma, \alpha_k}^G} u_{\rho} \bigg)^2 \\ &= u_{\gamma} u_{\delta}. \end{align*} $$
 It is left to show that 
$\mathcal {M}(K, \mathcal {J}, \mathcal {L})$
 is Weyl-invariant. Let 
$w\in W, s\in S, G \in \mathrm {Min}_s(w)$
 and 
$(G, \alpha , \beta ) \in \mathcal {I}$
 with 
$\alpha \neq \alpha _s \neq \beta $
. If 
$o(r_{\alpha } r_{\beta }) < \infty $
, then 
$o(r_{s\alpha } r_{s\beta }) < \infty $
 and, as 
$(s\alpha , s\beta ) = \{ s\gamma \mid \gamma \in (\alpha , \beta ) \}$
, we infer 
$M_{s\alpha , s\beta }^{sG} = sM_{\alpha , \beta }^G$
. Thus, we can assume 
$o(r_{\alpha } r_{\beta }) = \infty $
. Suppose that there exists a gallery 
$H = (c_0, \ldots , c_k)$
 of type 
$(n, r)$
 between 
$\alpha $
 and 
$\beta $
 for some 
$n\in K, r\in J_n$
. Then, 
$(sc_0, \ldots , sc_k)$
 is a gallery of type 
$(n, r)$
 between the roots 
$s\alpha , s\beta $
. This implies that a gallery of type 
$(n, r)$
 exists between the roots 
$\alpha $
 and 
$\beta $
 if and only if a gallery of type 
$(n, r)$
 exists between the roots 
$s\alpha $
 and 
$s\beta $
. This finishes the proof of the claim.
Acknowledgements
I am very grateful to Timothée Marquis and Bernhard Mühlherr for many helpful discussions on the topic. I also thank the referee for useful comments.
 




