Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-09-15T11:59:20.294Z Has data issue: false hasContentIssue false

THE WEAK EXTENSION PRINCIPLE

Part of: Set theory

Published online by Cambridge University Press:  26 August 2025

ALESSANDRO VIGNATI*
Affiliation:
INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE (IMJ-PRG) https://ror.org/03fk87k11 UNIVERSITÉ PARIS CITÉ INSTITUT UNIVERSITAIRE DE FRANCE BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS 75013 PARIS FRANCE URL: http://www.automorph.net/avignati
DENIZ YILMAZ
Affiliation:
INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE (IRIF), https://ror.org/02krdtz55 UNIVERSITÉ PARIS CITÉ BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS PARIS 75013 FRANCE E-mail: deniz.yilmaz@irif.fr URL: https://denizyilmaz.fr

Abstract

We prove a rigidity result for maps between Čech–Stone remainders under fairly mild forcing axioms.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Blackadar, B., Operator Algebras, Encyclopaedia of Mathematical Sciences, 122, Springer-Verlag, Berlin, 2006, Theory of $\mathrm {C^*}$ -algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.Google Scholar
Dow, A., A non-trivial copy of $\beta \mathbb{N}\setminus \mathbb{N}$ . Proceedings of the American Mathematical Society, vol. 142 (2014), no. 8, pp. 29072913.Google Scholar
Dow, A., Non-trivial copies of  ${\mathbb{N}}^{\ast }$ . Topology and its Applications, vol. 355 (2024), Article no. 109008, 18 pp.Google Scholar
Dow, A., Autohomeomorphisms of pre-images of  ${\mathbb{N}}^{\ast }$ . Topology and its Applications, vol. 368 (2025), Article no. 109348, 14pp.Google Scholar
Dow, A. and Hart, K. P. ${\omega}^{\ast }$ has (almost) no continuous images . Israel Journal of Mathematics, vol. 109 (1999), pp. 2939.Google Scholar
Farah, I., Analytic quotients: theory of liftings for quotients over analytic ideals on the integers . Memoirs of the American Mathematical Society, vol. 148 (2000), no. 702, xvi+177.Google Scholar
Farah, I., Dimension phenomena associated with $\beta \mathbb{N}$ -spaces . Topology and its Applications, vol. 125 (2002), pp. 279297.Google Scholar
Farah, I., Powers of ${\mathbb{N}}^{\ast }$ . Proceedings of the American Mathematical Society, vol. 130 (2002), pp. 12431246.Google Scholar
Farah, I., The fourth head of $\beta \mathbb{N}$ , Open Problems in Topology II (Pearl, E., editor), Elsevier, Amsterdam, 2007, pp. 135142.Google Scholar
Farah, I., All automorphisms of the Calkin algebra are inner . Annals of Mathematics (2), vol. 173 (2011), pp. 619661.Google Scholar
Farah, I., Combinatorial Set Theory and  $\mathbf {C^*}$ -Algebras, Springer Monographs in Mathematics, Springer, Cham (Switzerland), 2019.Google Scholar
Farah, I., Ghasemi, S., Vaccaro, A., and Vignati, A., Corona rigidity, The Bulletin of Symbolic Logic. Published online 2025:188. doi: 10.1017/bsl.2025.10084.Google Scholar
Farah, I. and McKenney, P., Homeomorphisms of Čech–Stone remainders: the zero-dimensional case . Proceedings of the American Mathematical Society, vol. 146 (2018), no. 5, pp. 22532262.Google Scholar
Gillman, L. and Jerison, M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer-Verlag, New York, 1976, Reprint of the 1960 edition.Google Scholar
Just, W., The space ${\left({\omega}^{\ast}\right)}^{n+1}$ is not always a continuous image of ${\left({\omega}^{\ast}\right)}^n$ . Fundamenta Mathematicae, vol. 132 (1989), pp. 5972.Google Scholar
Just, W., A weak version of AT from OCA . MSRI Publications, vol. 26 (1992), pp. 281291.Google Scholar
McKenney, P. and Vignati, A., Forcing axioms and coronas of ${C}^{\ast }$ -algebras . Journal of Mathematical Logic, vol. 21 (2021), no. 2, Article no. 2150006, 73 pp.Google Scholar
Munkres, J. R., Topology, second ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2000.Google Scholar
Parovičenko, I. I., A universal bicompact of weight $\mathrm{\aleph}$ . Soviet Mathematics Doklady, vol. 4 (1963), pp. 592592.Google Scholar
Rudin, W., Homogeneity problems in the theory of Čech compactifications . Duke Mathematics Journal, vol. 23 (1956), pp. 409419.Google Scholar
Sěmrl, P., Nonlinear perturbations of homomorphisms on $C(X)$ . The Quarterly Journal of Mathematics Oxford Second Series (2), vol. 50 (1999), no. 197, pp. 87109.Google Scholar
van Douwen, E. K., Prime Mappings, Number of Factors and Binary Operations, Dissertationes Math. (Rozprawy Mat.) , Polska Akademia Nauk. Instytut Matematyczny. DissertationesMathematicae. Rozprawy Matematyczne 199, 1981, p. 35.Google Scholar
van Mill, J., An introduction to $\beta \omega$ , Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, editors), North-Holland, Amsterdam, 1984, pp. 503567.Google Scholar
Vignati, A., Rigidity conjectures for continuous quotients . Annales Scientifiques de l’École Normale Supérieure (4), vol. 55 (2022), no. 6, pp. 16871738.Google Scholar