INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE (IMJ-PRG) https://ror.org/03fk87k11 UNIVERSITÉ PARIS CITÉ INSTITUT UNIVERSITAIRE DE FRANCE BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS 75013 PARIS FRANCE URL: http://www.automorph.net/avignati
DENIZ YILMAZ
Affiliation:
INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE (IRIF), https://ror.org/02krdtz55 UNIVERSITÉ PARIS CITÉ BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS PARIS 75013 FRANCE E-mail: deniz.yilmaz@irif.fr URL: https://denizyilmaz.fr
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
REFERENCES
[1]
Blackadar, B., Operator Algebras, Encyclopaedia of Mathematical Sciences, 122, Springer-Verlag, Berlin, 2006, Theory of
$\mathrm {C^*}$
-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.Google Scholar
[2]
Dow, A., A non-trivial copy of
$\beta \mathbb{N}\setminus \mathbb{N}$
. Proceedings of the American Mathematical Society, vol. 142 (2014), no. 8, pp. 2907–2913.Google Scholar
[3]
Dow, A., Non-trivial copies of
${\mathbb{N}}^{\ast }$
. Topology and its Applications, vol. 355 (2024), Article no. 109008, 18 pp.Google Scholar
[4]
Dow, A., Autohomeomorphisms of pre-images of
${\mathbb{N}}^{\ast }$
. Topology and its Applications, vol. 368 (2025), Article no. 109348, 14pp.Google Scholar
[5]
Dow, A. and Hart, K. P.,
${\omega}^{\ast }$
has (almost) no continuous images. Israel Journal of Mathematics, vol. 109 (1999), pp. 29–39.Google Scholar
[6]
Farah, I., Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Memoirs of the American Mathematical Society, vol. 148 (2000), no. 702, xvi+177.Google Scholar
[7]
Farah, I., Dimension phenomena associated with
$\beta \mathbb{N}$
-spaces. Topology and its Applications, vol. 125 (2002), pp. 279–297.Google Scholar
[8]
Farah, I., Powers of
${\mathbb{N}}^{\ast }$
. Proceedings of the American Mathematical Society, vol. 130 (2002), pp. 1243–1246.Google Scholar
[9]
Farah, I., The fourth head of
$\beta \mathbb{N}$
, Open Problems in Topology II (Pearl, E., editor), Elsevier, Amsterdam, 2007, pp. 135–142.Google Scholar
[10]
Farah, I., All automorphisms of the Calkin algebra are inner. Annals of Mathematics (2), vol. 173 (2011), pp. 619–661.Google Scholar
[11]
Farah, I., Combinatorial Set Theory and
$\mathbf {C^*}$
-Algebras, Springer Monographs in Mathematics, Springer, Cham (Switzerland), 2019.Google Scholar
[12]
Farah, I., Ghasemi, S., Vaccaro, A., and Vignati, A., Corona rigidity, The Bulletin of Symbolic Logic. Published online 2025:1–88. doi: 10.1017/bsl.2025.10084.Google Scholar
[13]
Farah, I. and McKenney, P., Homeomorphisms of Čech–Stone remainders: the zero-dimensional case. Proceedings of the American Mathematical Society, vol. 146 (2018), no. 5, pp. 2253–2262.Google Scholar
[14]
Gillman, L. and Jerison, M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer-Verlag, New York, 1976, Reprint of the 1960 edition.Google Scholar
[15]
Just, W., The space
${\left({\omega}^{\ast}\right)}^{n+1}$
is not always a continuous image of
${\left({\omega}^{\ast}\right)}^n$
. Fundamenta Mathematicae, vol. 132 (1989), pp. 59–72.Google Scholar
[16]
Just, W., A weak version of AT from OCA. MSRI Publications, vol. 26 (1992), pp. 281–291.Google Scholar
[17]
McKenney, P. and Vignati, A., Forcing axioms and coronas of
${C}^{\ast }$
-algebras. Journal of Mathematical Logic, vol. 21 (2021), no. 2, Article no. 2150006, 73 pp.Google Scholar
[18]
Munkres, J. R., Topology, second ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2000.Google Scholar
[19]
Parovičenko, I. I., A universal bicompact of weight
$\mathrm{\aleph}$
. Soviet Mathematics Doklady, vol. 4 (1963), pp. 592–592.Google Scholar
[20]
Rudin, W., Homogeneity problems in the theory of Čech compactifications. Duke Mathematics Journal, vol. 23 (1956), pp. 409–419.Google Scholar
[21]
Sěmrl, P., Nonlinear perturbations of homomorphisms on
$C(X)$
. The Quarterly Journal of Mathematics Oxford Second Series (2), vol. 50 (1999), no. 197, pp. 87–109.Google Scholar
[22]
van Douwen, E. K., Prime Mappings, Number of Factors and Binary Operations, Dissertationes Math. (Rozprawy Mat.), Polska Akademia Nauk. Instytut Matematyczny. DissertationesMathematicae. Rozprawy Matematyczne 199, 1981, p. 35.Google Scholar
[23]
van Mill, J., An introduction to
$\beta \omega$
, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, editors), North-Holland, Amsterdam, 1984, pp. 503–567.Google Scholar
[24]
Vignati, A., Rigidity conjectures for continuous quotients. Annales Scientifiques de l’École Normale Supérieure (4), vol. 55 (2022), no. 6, pp. 1687–1738.Google Scholar