Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-08-30T16:56:58.273Z Has data issue: false hasContentIssue false

UNIVERSALITY PROPERTIES OF FORCING

Published online by Cambridge University Press:  06 March 2025

FRANCESCO PARENTE
Affiliation:
GRADUATE SCHOOL OF SYSTEM INFORMATICS KOBE UNIVERSITY 1-1 ROKKODAI-CHO NADA-KU, KOBE 657-8501 JAPAN E-mail: francesco.parente@people.kobe-u.ac.jp
MATTEO VIALE*
Affiliation:
DIPARTIMENTO DI MATEMATICA “GIUSEPPE PEANO” UNIVERSITÀ DI TORINO VIA CARLO ALBERTO 10, 10123 TURIN ITALY

Abstract

The purpose of this paper is to investigate forcing as a tool to construct universal models. In particular, we look at theories of initial segments of the universe and show that any model of a sufficiently rich fragment of those theories can be embedded into a model constructed by forcing. Our results rely on the model-theoretic properties of good ultrafilters, for which we provide a new existence proof on non-necessarily complete Boolean algebras.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Asperó, D. and Viale, M., Incompatible bounded category forcing axioms . Journal of Mathematical Logic , vol. 22 (2022), no. 2, p. 2250006.Google Scholar
Audrito, G. and Viale, M., Absoluteness via resurrection . Journal of Mathematical Logic , vol. 17 (2017), no. 2, p. 1750005.Google Scholar
Balcar, B. and Franek, F., Independent families in complete Boolean algebras . Transactions of the American Mathematical Society , vol. 274 (1982), no. 2, pp. 607618.Google Scholar
Balcar, B. and Vojtáš, P., Refining systems on Boolean algebras , Set Theory and Hierarchy Theory V (Lachlan, A., Srebrny, M., and Zarach, A., editors.), Lecture Notes in Mathematics, 619, Springer-Verlag, Berlin, 1977, pp. 4558.Google Scholar
Baumgartner, J. E. and Taylor, A. D., Saturation properties of ideals in generic extensions. II . Transactions of the American Mathematical Society , vol. 271 (1982), no. 2, pp. 587609.Google Scholar
Burke, D. R., Precipitous towers of normal filters . The Journal of Symbolic Logic , vol. 62 (1997), no. 3, pp. 741754.Google Scholar
Foreman, M., Ideals and generic elementary embeddings , Handbook of Set Theory , vol. 2 , (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 8851147.Google Scholar
Jech, T. J., Some combinatorial problems concerning uncountable cardinals . Annals of Mathematical Logic , vol. 5 (1973), no. 3, pp. 165198.Google Scholar
Kanamori, A., The Higher Infinite , second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.Google Scholar
Keisler, H. J., Good ideals in fields of sets . Annals of Mathematics , vol. 79 (1964), no. 2, pp. 338359.Google Scholar
Jerome Keisler, H., Some applications of infinitely long formulas . The Journal of Symbolic Logic , vol. 30 (1965), no. 3, pp. 339349.Google Scholar
Koppelberg, S., General theory of Boolean algebras , Handbook of Boolean Algebras , vol. 1 , (Monk, J. D. and Bonnet, R., editors), North-Holland, Amsterdam, 1989.Google Scholar
Kueker, D. W., Countable approximations and Löwenheim-Skolem theorems . Annals of Mathematical Logic , vol. 11 (1977), no. 1, pp. 57103.Google Scholar
Kunen, K., Saturated ideals . The Journal of Symbolic Logic , vol. 43 (1978), no. 1, pp. 6576.Google Scholar
Larson, P. B., The Stationary Tower: Notes on a Course by W. Hugh Woodin , University Lecture Series, 32, American Mathematical Society, Providence, 2004.Google Scholar
MacNeille, H. M., Partially ordered sets . Transactions of the American Mathematical Society , vol. 42 (1937), no. 3, pp. 416460.Google Scholar
Mansfield, R., The theory of Boolean ultrapowers . Annals of Mathematical Logic , vol. 2 (1971), no. 3, pp. 297323.Google Scholar
Marinov, T., The universality of forcing , Ph.D. thesis, Università di Torino, 2023.Google Scholar
Matsubara, Y., Menas’ conjecture and generic ultrapowers . Annals of Pure and Applied Logic , vol. 36 (1987), pp. 225234.Google Scholar
Menas, T. K., On strong compactness and supercompactness . Annals of Mathematical Logic , vol. 7 (1974), no. 4, pp. 327359.Google Scholar
Morley, M. and Vaught, R., Homogeneous universal models . Mathematica Scandinavica , vol. 11 (1962), pp. 3757.Google Scholar
Parente, F., Keisler’s order via Boolean ultrapowers . Archive for Mathematical Logic , vol. 60 (2021), nos. 3–4, pp. 425439.Google Scholar
Rasiowa, H. and Sikorski, R., Algebraic treatment of the notion of satisfiability . Fundamenta Mathematicae , vol. 40 (1953), pp. 6295.Google Scholar
Venturi, G. and Viale, M., Second order arithmetic as the model companion of set theory . Archive for Mathematical Logic , vol. 62 (2023), nos. 1–2, 2953.Google Scholar
Venturi, G. and Viale, M., What model companionship can say about the continuum problem . The Review of Symbolic Logic , vol. 17 (2024), no. 2, pp. 546585.Google Scholar
Viale, M., Category forcings, ${\mathsf{MM}}^{+++}$ , and generic absoluteness for the theory of strong forcing axioms . Journal of the American Mathematical Society , vol. 29 (2016), no. 3, pp. 675728.Google Scholar
Viale, M., Martin’s maximum revisited . Archive for Mathematical Logic , vol. 55 (2016), nos. 1–2, pp. 295317.Google Scholar
Viale, M., Absolute model companionship, forcibility, and the continuum problem, Preprint, 2021. arXiv: 2109.02285 [math.LO].Google Scholar
Viale, M., Strong forcing axioms and the continuum problem [after ASPERÓ’s and SCHINDLER’s proof that ${\mathbf{MM}}^{++}$ implies WOODIN’s axiom $\left(\ast \right)$ ] . Astérisque , vol. 446 (2023), Exposé Bourbaki no. 1207, pp. 383416.Google Scholar
Viale, M., The Forcing Method in Set Theory: An Introduction via Boolean Valued Logic , UNITEXT, 168, Springer Nature, Switzerland AG, Cham, 2024.Google Scholar
Woodin, W. H., Supercompact cardinals, sets of reals, and weakly homogeneous trees . Proceedings of the National Academy of Sciences of the United States of America , vol. 85 (1988), no. 18, pp. 65876591.Google Scholar