Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-09-24T06:53:51.565Z Has data issue: false hasContentIssue false

RAMSEY-LIKE THEOREMS FOR THE SCHREIER BARRIER

Published online by Cambridge University Press:  17 July 2025

LORENZO CARLUCCI
Affiliation:
DEPARTMENT OF MATHEMATICS ‘GUIDO CASTELNUOVO’ https://ror.org/02be6w209 SAPIENZA UNIVERSITY ROME ITALY E-mail: lorenzo.carlucci@uniroma1.it
ORIOLA GJETAJ
Affiliation:
DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS https://ror.org/00cv9y106 GHENT UNIVERSITY GHENT BELGIUM E-mail: oriola.gjetaj@ugent.be
QUENTIN LE HOUÉROU
Affiliation:
LABORATOIRE D’ALGORITHMIQUE COMPLEXITÉ ET LOGIQUE https://ror.org/05ggc9x40 UNIVERSITÉ PARIS-EST-CRÉTEIL-VAL-DE-MARNE CRÉTEIL FRANCE E-mail: quentin.le-houerou@computability.fr
LUDOVIC LEVY PATEY*
Affiliation:
CNRS, ÉQUIPE DE LOGIQUE https://ror.org/03fk87k11 INSTITUT DE MATHÉMATIQUES DE JUSSIEU-PARIS RIVE GAUCHE UNIVERSITÉ PARIS CITÉ - CAMPUS DES GRANDS MOULINS PARIS, FRANCE

Abstract

The family of finite subsets s of the natural numbers such that $|s|=1+\min s$ is known as the Schreier barrier in combinatorics and Banach Space theory, and as the family of exactly $\omega $-large sets in Logic. We formulate and prove the generalizations of Friedman’s Free Set and Thin Set theorems and of Rainbow Ramsey’s theorem to colorings of the Schreier barrier. We analyze the strength of these theorems from the point of view of Computability Theory and Reverse Mathematics. Surprisingly, the exactly $\omega $-large counterparts of the Thin Set and Free Set theorems can code $\emptyset ^{(\omega )}$, while the exactly $\omega $-large Rainbow Ramsey theorem does not code the halting set.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Assous, M., Caractérisation du type d’ordre des barrières de Nash-Williams . Publications du Département de Mathématiques (Lyon), vol. 11 (1974), no. 4, pp. 89106.Google Scholar
Carlucci, L., Mainardi, L., and Zdanowski, K., Reductions of well-ordering principles to combinatorial theorems, preprint, 2024, arXiv:2401.04451.Google Scholar
Carlucci, L. and Zdanowski, K., The strength of Ramsey’s theorem for coloring relatively large sets . The Journal of Symbolic Logic, vol. 79 (2014), no. 1, pp. 89102.Google Scholar
Cholak, P. and Patey, L., Thin set theorems and cone avoidance . Transactions of the American Mathematical Society, vol. 373 (2020), no. 4, pp. 27432773.Google Scholar
Cholak, P. A., Giusto, M., Hirst, J. L., and Jockusch, C. G. Jr., Free sets and reverse mathematics , Reverse Mathematics 2001 (S. G. Simpson, editor), Lecture Notes in Logic, 21, Association for Symbolic Logic, La Jolla, 2005, pp. 104119.Google Scholar
Clote, P., Arecursion theoretic analysis of the clopen Ramsey theorem . The Journal of Symbolic Logic, vol. 49 (1984), no. 2, pp. 376400.Google Scholar
Clote, P., Ageneralization of the limit lemma and clopen games . The Journal of Symbolic Logic, vol. 51 (1986), no. 2, pp. 273291.Google Scholar
Csima, B. F. and Mileti, J. R., The strength of the rainbow Ramsey theorem . The Journal of Symbolic Logic, vol. 74 (2009), no. 4, pp. 13101324.Google Scholar
Dorais, F. G., Dzhafarov, D. D., Hirst, J. L., Mileti, J. R., and Shafer, P., On uniform relationships between combinatorial problems . Transactions of the American Mathematical Society, vol. 368 (2016), no. 2, pp. 13211359.Google Scholar
Dzhafarov, D. D., Strong reductions between combinatorial principles . The Journal of Symbolic Logic, vol. 81 (2016), no. 4, pp. 14051431.Google Scholar
Dzhafarov, D. D. and Mummert, C., Reverse Mathematics—Problems, Reductions, and Proofs, Theory and Applications of Computability, Springer, Cham, 2022.Google Scholar
Farmaki, V. and Negrepontis, S., Schreier sets in Ramsey theory . Transactions of the American Mathematical Society, vol. 360 (2008), no. 2, pp. 849880.Google Scholar
Friedman, H. and Simpson, S. G., Issues and problems in reverse mathematics , Computability Theory and its Applications (Boulder, CO, 1999) (P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore, editors), Contemporary Mathematics, 257, American Mathematical Society, Providence, 2000, pp. 127144.Google Scholar
Galvin, F. and Prikry, K., Borel sets and Ramsey’s theorem . The Journal of Symbolic Logic, vol. 38 (1973), pp. 193198.Google Scholar
Gentzen, G., Die Widerspruchsfreiheit Der Reinen Zahlentheorie, Libelli, Band 185, Wissenschaftliche Buchgesellschaft, Darmstadt, 1967.Google Scholar
Hájek, P. and Pudlák, P., Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998, Second printing.Google Scholar
Hirschfeldt, D. R., Slicing the Truth (Chong, C., Feng, Q., Slaman, T. A., Woodin, W. H. and Yang, Y., editors), Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, 28, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2015, On the computable and reverse mathematics of combinatorial principlesGoogle Scholar
Jockusch, C. G., Ramsey’s theorem and recursion theory . The Journal of Symbolic Logic, vol. 37 (1972), no. 2, pp. 268280.Google Scholar
Kuratowski, C., Sur une caractérisation des alephs . Fundamenta Mathematicae, vol. 38 (1951), pp. 1417.Google Scholar
Liu, J., RT22 does not imply WKL0 . The Journal of Symbolic Logic, vol. 77 (2012), no. 2, pp. 609620.Google Scholar
Liu, L., Cone avoiding closed sets . Transactions of the American Mathematical Society, vol. 367 (2015), no. 3, pp. 16091630.Google Scholar
Liu, L. and Patey, L., The reverse mathematics of the thin set and Erdős-Moser theorems . The Journal of Symbolic Logic, vol. 87 (2022), no. 1, pp. 313346.Google Scholar
Marcone, A., Wqo and bqo theory in subsystems of second order arithmetic , Reverse Mathematics 2001, (S. G. Simpson, editor), Lecture Notes in Logic, 21, Association for Symbolic Logic, La Jolla, 2005, pp. 303330.Google Scholar
Montalbán, A., Open questions in reverse mathematics . The Bulletin of Symbolic Logic, vol. 17 (2011), no. 03, pp. 431454.Google Scholar
Nash-Williams, C. St. J. A. On better-quasi-ordering transfinite sequences . Mathematical Proceedings of the Cambridge Philosophical Society, vol. 64 (1968), pp. 273290.Google Scholar
Paris, J. and Harrington, L., A mathematical incompleteness in Peano arithmetic , Handbook of Mathematical Logic (Barwise, J., editor), North-Holland,Amsterdam, 1977, pp. 901133.Google Scholar
Patey, L., Somewhere over the rainbow Ramsey theorem for pairs, preprint, 2015, arXiv:1501.07424.Google Scholar
Patey, L., The weakness of being cohesive, thin or free in reverse mathematics . Israel Journal of Mathematics, vol. 216 (2016), no. 2, pp. 905955.Google Scholar
Patey, L., Iterative forcing and hyperimmunity in reverse mathematics . Computability, vol. 6 (2017), no. 3, pp. 209221.Google Scholar
Pouzet, M., Sur les prémeilleurordres . Annales de l’institut Fourier, vol. 22 (1972), no. 2, pp. 119.Google Scholar
Pudlák, P. and Rödl, V., Partition theorems for systems of finite subsets of integers , Discrete Mathematics, vol. 39 (1982), no. 1, pp. 6773.Google Scholar
Seetapun, D. and Slaman, T. A., On the strength of ramsey’s theorem . Notre Dame Journal of Formal Logic, vol. 36 (1995), no. 4, pp. 570582.Google Scholar
Simpson, S. G., Subsystems of Second Order Arithmetic, second ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, 2009.Google Scholar
Todorcevic, S., Introduction to Ramsey Spaces, Princeton University Press, Princeton, 2010.Google Scholar
Wang, W., Some logically weak Ramseyan theorems . Advances in Mathematics, vol. 261 (2014), pp. 125.Google Scholar