Hostname: page-component-cb9f654ff-r5d9c Total loading time: 0 Render date: 2025-08-30T09:32:28.116Z Has data issue: false hasContentIssue false

ON WINNING STRATEGIES FOR $F_\sigma $ GAMES

Part of: Set theory

Published online by Cambridge University Press:  26 August 2025

JUAN P. AGUILERA
Affiliation:
KURT GÖDEL RESEARCH CENTER INSTITUTE OF MATHEMATICS UNIVERSITY OF VIENNA KOLINGASSE 14, 1090 VIENNA AUSTRIA AND INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY VIENNA UNIVERSITY OF TECHNOLOGY WIEDNER HAUPTSTRASSE 8–10, 1040 VIENNA AUSTRIA AND DEPARTMENT OF MATHEMATICS UNIVERSITY OF GHENT KRIJGSLAAN 281-S8, B9000 GHENT BELGIUM E-mail: aguilera@logic.at
ROBERT LUBARSKY*
Affiliation:
DEPARTMENT OF MATHEMATICAL SCIENCES FLORIDA ATLANTIC UNIVERSITY 777 GLADES ROAD, BOCA RATON, FL 33431 USA
*

Abstract

We prove that every $\Sigma ^0_2$ Gale-Stewart game can be won via a winning strategy $\tau $ which is $\Delta _1$-definable over $L_{\delta }$, the $\delta $th stage of Gödel’s constructible universe, where $\delta = \delta _{\sigma ^1_1}$, strengthening a theorem of Solovay from the 1970s. Moreover, the bound is sharp in the sense that there is a $\Sigma ^0_2$ game with no strategy $\tau $ which is witnessed to be winning by an element of $L_{\delta }$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aczel, P. and Richter, W., Inductive definitions and reflecting properties of admissible ordinals , Generalized Recursion Theory (Fenstad, J. E. and Hinman, P. G., editors), North-Holland/American Elsevier (Amsterdam, London, New York), 1974, pp. 301381.10.1016/S0049-237X(08)70592-5CrossRefGoogle Scholar
Aguilera, J. P., The order of reflection . Journal of Symbolic Logic , vol. 86 (2021), pp. 15551583.10.1017/jsl.2021.3CrossRefGoogle Scholar
Aguilera, J. P. and Lubarsky, R., Feedback hyperjump . Journal of Logic and Computation , vol. 31 (2021), pp. 2039.10.1093/logcom/exaa085CrossRefGoogle Scholar
Aguilera, J. P. and Müller, S., Projective games on the reals . Notre Dame Journal of Formal Logic , vol. 64 (2020), pp. 573589.Google Scholar
Barwise, J., Admissible Sets and Structures , Perspectives in Mathematical Logic, Springer-Verlag, Berlin, Heidelberg, New York, 1975.10.1007/978-3-662-11035-5CrossRefGoogle Scholar
Barwise, K. J., Gandy, R., and Moschovakis, Y. N., The next admissible set . Journal of Symbolic Logic , vol. 36 (1971), pp. 108120.10.2307/2271519CrossRefGoogle Scholar
Blass, A., Complexity of winning strategies . Discrete Mathematics , vol. 3 (1972), pp. 295300.10.1016/0012-365X(72)90086-6CrossRefGoogle Scholar
Friedman, H. M., Determinateness in the low projective hierarchy . Fundamenta Mathematicae , vol. 72 (1971), no.1, pp. 7995.10.4064/fm-72-1-79-95CrossRefGoogle Scholar
Friedman, H. M., Higher set theory and mathematical practice . Annals of Mathematical Logic , vol. 2 (1971), no. 3, pp. 325357.10.1016/0003-4843(71)90018-0CrossRefGoogle Scholar
Gale, D. and Stewart, F. M., Infinite games with perfect information , Contributions to the Theory of Games , vol. 2 (Kuhn, H. W. and Tucker, A. W., editors), Princeton University Press, Princeton, Oxford, Beijing, 1953, pp. 245266.Google Scholar
Gostanian, R., The next admissible ordinal . Annals of Mathematical Logic , vol. 17 (1979), pp. 171203.10.1016/0003-4843(79)90025-1CrossRefGoogle Scholar
Hachtman, S., Calibrating determinacy strength in levels of the Borel hierarchy . Journal of Symbolic Logic , vol. 82 (2017), pp. 510548.10.1017/jsl.2017.15CrossRefGoogle Scholar
Harrington, L., Analytic determinacy and ${0}^{\#}$ . Journal of Symbolic Logic , vol. 43 (1978), pp. 685693.10.2307/2273508CrossRefGoogle Scholar
Kechris, A. S., On spector classes , Ordinal Definability and Recursion Theory, The Cabal Seminar, Volume III (Kechris, A. S., Löwe, B., and Steel, J. R., editors), Cambridge University Press, Cambridge, 2016.10.1017/CBO9781139519694CrossRefGoogle Scholar
Martin, D. A., Measurable cardinals and analytic games . Fundamenta Mathematicae , vol. 66 (1970), pp. 287291.Google Scholar
Martin, D. A. and Steel, J. R., The extent of scales in $L\left(\mathbb{R}\right)$ . Games, Scales, and Suslin Cardinals: The Cabal Seminar, Volume I (Kechris, A. S., Löwe, B., and Steel, J. R.., editors), The Association of Symbolic Logic, Cambridge, 2008, pp. 110120.10.1017/CBO9780511546488.008CrossRefGoogle Scholar
Moschovakis, Y. N., Elementary Induction on Abstract Structures , Studies in Logic and the Foundations of Mathematics, Elsevier, New York, 1974.Google Scholar
Moschovakis, Y. N., Descriptive Set Theory , secondedition, volume 155 of Mathematical Surveys and Monographs, AMS, Providence, 2009.10.1090/surv/155CrossRefGoogle Scholar
Müller, S., Schindler, R., and Woodin, W. H., Mice with finitely many Woodin cardinals from optimal determinacy hypotheses . Journal of Mathematical Logic , vol. 20 (2020). DOI: 10.48550/arXiv.1902.05890 10.1142/S0219061319500132CrossRefGoogle Scholar
Sacks, G. E., Higher Recursion Theory , Lecture Notes in Logic, Springer-Verlag, Berlin, 1990.10.1007/978-3-662-12013-2CrossRefGoogle Scholar
Tanaka, K., Weak axioms of determinacy and subsystems of analysis, II . Annals of Pure and Applied Logic , vol. 52 (1991), pp. 181193.10.1016/0168-0072(91)90045-NCrossRefGoogle Scholar
van de Wiele, J., Recursive dilators and generalized recursion , Proceedings of the Herbrand Symposium. Logic Colloquium ’81 (Stern, J., editor), North-Holland, 1982, pp. 325332.10.1016/S0049-237X(08)71893-7CrossRefGoogle Scholar
Welch, P. D., Weak systems of determinacy and arithmetical quasi-inductive definitions . Journal of Symbolic Logic , vol. 76 (2011), pp. 418436.10.2178/jsl/1305810756CrossRefGoogle Scholar
Welch, P. D., ${\mathrm{G}}_{\unicode{x3b4} \unicode{x3c3}}$ -games. Isaac Newton Institute Pre-Print Series No. NI12050-SAS, Jul. 2012. Available at https://people.maths.bris.ac.uk/emapdw/ Google Scholar
Wolfe, P., The strict determinateness of certain infinite games . Pacific Journal of Mathematics , vol. 5 (1955), pp. 841847.10.2140/pjm.1955.5.841CrossRefGoogle Scholar