No CrossRef data available.
Published online by Cambridge University Press: 08 October 2025
The paper discusses the stochastic dynamics of the vortex shedding process in the presence of external harmonic excitation and coloured multiplicative noise. The situation is encountered in a turbulent practical combustor experiencing combustion instability. Acoustic feedback and turbulent flow are imitated by the harmonic and stochastic excitations, respectively. The Ornstein–Uhlenbeck process is used to generate the noise. A low-order model for vortex shedding is used. The Fokker–Planck framework is used to obtain the evolution of the probability density function of the shedding time period. Stochastic lock-in and resonance characteristics are studied for various parameters associated with the harmonic (amplitude, frequency) and noise (amplitude, correlation time, multiplicative noise factor) excitations. We observed that: (i) the stochastic lock-in (s-lock-in) boundary strongly depends on the noise correlation time; (ii) the parameter sites for s-lock-in can be approximately identified from the noise-induced shedding statistics; and (iii) stochastic resonance is significant for some intermediate correlation times. The effects of the above-mentioned observations are discussed in the context of combustion instability.