Hostname: page-component-65b85459fc-ht497 Total loading time: 0 Render date: 2025-10-17T06:13:46.281Z Has data issue: false hasContentIssue false

Size distribution of large air bubbles entrained by strong free-surface turbulence

Published online by Cambridge University Press:  07 October 2025

Declan B. Gaylo
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Dick K.P. Yue*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Corresponding author: Dick K.P. Yue, yue@mit.edu

Abstract

In air-entraining flows, there is often strong turbulence beneath the free surface. We consider the entrainment of bubbles at the free surface by this strong free-surface turbulence (FST). Our interest is the entrainment size distribution (per unit free surface area) $I(a)/A_{\textit{FS}}$, for bubbles with radius $a$ greater than the capillary scale ($\approx 1.3\ \mathrm{mm}$ for air–water on Earth), where gravity dominates surface tension. We develop a mechanistic model based on entrained bubble size being proportional to the minimum radius of curvature of the initial surface deformation. Using direct numerical simulation of a flow that isolates entrainment by FST, we show that, consistent with our mechanism, $I(a)/A_{\textit{FS}} = C_I \, g^{-3} \varepsilon ^{7/3} (2 a)^{-14/3}$, where $g$ is gravity, and $\varepsilon$ is the turbulence dissipation rate. In the limit of negligible surface tension, $C_I\approx 3.62$, and we describe how $C_I$ decreases with increasing surface tension. This scaling holds for sufficiently strong FST such that near-surface turbulence is nearly isotropic, which we show is true for turbulent Froude number ${\textit{Fr}}^2_T = \varepsilon /u_{\textit{rms}} g \gt 0.1$. While we study FST entrainment in isolation, our model corroborates previous numerical results from shear-driven flow, and experimental results from open-channel flow, showing that the FST entrainment mechanism that we elucidate can be important in broad classes of air-entraining flows.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bertola, N., Wang, H. & Chanson, H. 2018 A physical study of air–water flow in planar plunging water jet with large inflow distance. Intl J. Multiphase Flow 100, 155171.10.1016/j.ijmultiphaseflow.2017.12.015CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.10.1016/0021-9991(92)90240-YCrossRefGoogle Scholar
Brocchini, M. & Peregrine, D.H. 2001 The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 449, 225254.10.1017/S0022112001006012CrossRefGoogle Scholar
Campbell, B. 2014 A mechanistic investigation of nonlinear interfacial instabilities leading to slug formation in multiphase flows. PhD thesis, MIT.Google Scholar
Chan, W.H.R., Dodd, M.S., Johnson, P.L. & Moin, P. 2021 a Identifying and tracking bubbles and drops in simulations: a toolbox for obtaining sizes, lineages, and breakup and coalescence statistics. J. Comput. Phys. 432, 110156.10.1016/j.jcp.2021.110156CrossRefGoogle Scholar
Chan, W.H.R., Johnson, P.L., Moin, P. & Urzay, J. 2021 b The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves. J. Fluid Mech. 912, A43.10.1017/jfm.2020.1084CrossRefGoogle Scholar
Chanson, H. 1996 Air Bubble Entrainment in Free-Surface Turbulent Shear Flows. Academic Press.Google Scholar
Chanson, H. & Toombes, L. 2003 Strong interactions between free-surface aeration and turbulence in an open channel flow. Expl Therm. Fluid Sci. 27 (5), 525535.10.1016/S0894-1777(02)00266-2CrossRefGoogle Scholar
Deane, G.B., Preisig, J.C. & Lavery, A.C. 2013 The suspension of large bubbles near the sea surface by turbulence and their role in absorbing forward-scattered sound. IEEE J. Ocean. Engng 38 (4), 632641.10.1109/JOE.2013.2257573CrossRefGoogle Scholar
Deane, G.B. & Stokes, M.D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.10.1038/nature00967CrossRefGoogle ScholarPubMed
Deike, L. 2022 Mass transfer at the ocean–atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu. Rev. Fluid Mech. 54 (1), 191224.10.1146/annurev-fluid-030121-014132CrossRefGoogle Scholar
Deike, L., Melville, W.K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.10.1017/jfm.2016.372CrossRefGoogle Scholar
Dimas, A.A. & Triantafyllou, G.S. 1994 Nonlinear interaction of shear flow with a free surface. J. Fluid Mech. 260, 211246.10.1017/S0022112094003496CrossRefGoogle Scholar
Falvey, H.T. & Ervine, D.A. 1988 Aeration in jets and high velocity flows. In Model-Prototype Correlation of Hydraulic Structures (ed. P.H. Burgi), pp. 2555. ASCE.Google Scholar
Farmer, D.M., McNeil, C.L. & Johnson, B.D. 1993 Evidence for the importance of bubbles in increasing air–sea gas flux. Nature 361 (6413), 620623.10.1038/361620a0CrossRefGoogle Scholar
Gao, Q., Deane, G.B., Liu, H. & Shen, L. 2021 a A robust and accurate technique for Lagrangian tracking of bubbles and detecting fragmentation and coalescence. Intl J. Multiphase Flow 135, 103523.10.1016/j.ijmultiphaseflow.2020.103523CrossRefGoogle Scholar
Gao, Q., Deane, G.B. & Shen, L. 2021 b Bubble production by air filament and cavity breakup in plunging breaking wave crests. J. Fluid Mech. 929, A44.10.1017/jfm.2021.890CrossRefGoogle Scholar
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 21632171.10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Gaylo, D.B., Hendrickson, K. & Yue, D.K.P. 2022 An Eulerian label advection method for conservative volume-based tracking of bubbles/droplets. J. Comput. Phys. 470, 111560.10.1016/j.jcp.2022.111560CrossRefGoogle Scholar
Gaylo, D.B., Hendrickson, K. & Yue, D.K.P. 2024 Effect of degassing on bubble populations in air-entraining free-surface turbulent flows. J. Fluid Mech. 995, A12.10.1017/jfm.2024.780CrossRefGoogle Scholar
George, W.K., Beuther, P.D. & Arndt, R.E.A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.10.1017/S0022112084002299CrossRefGoogle Scholar
Gulliver, J.S. & Rindels, A.J. 1993 Measurement of air–water oxygen transfer at hydraulic structures. J. Hydraul. Engng 119 (3), 327349.10.1061/(ASCE)0733-9429(1993)119:3(327)CrossRefGoogle Scholar
Guo, X. & Shen, L. 2009 On the generation and maintenance of waves and turbulence in simulations of free-surface turbulence. Comput. Fluids 228 (19), 73137332.Google Scholar
Hendrickson, K., Weymouth, G.D., Yu, X. & Yue, D.K.P. 2019 Wake behind a three-dimensional dry transom stern. Part 1. Flow structure and large-scale air entrainment. J. Fluid Mech. 875, 854883.10.1017/jfm.2019.505CrossRefGoogle Scholar
Hendrickson, K., Weymouth, G.D. & Yue, D.K.P. 2020 Informed component label algorithm for robust identification of connected components with volume-of-fluid method. Comput. Fluids 197, 104373.10.1016/j.compfluid.2019.104373CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289295.10.1002/aic.690010303CrossRefGoogle Scholar
Hunt, J.C.R. & Graham, J.M.R. 1978 Free-stream turbulence near plane boundaries. J. Fluid Mech. 84 (2), 209235.10.1017/S0022112078000130CrossRefGoogle Scholar
Keller, R.J., Lai, K.K. & Wood, I.R. 1974 Developing region in self-aerated flows. J. Hydraul. Div. 100 (4), 553568.10.1061/JYCEAJ.0003932CrossRefGoogle Scholar
Kiger, K.T. & Duncan, J.H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44 (1), 563596.10.1146/annurev-fluid-122109-160724CrossRefGoogle Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.10.1063/1.1762301CrossRefGoogle Scholar
Lamarre, E. & Melville, W.K. 1991 Air entrainment and dissipation in breaking waves. Nature 351 (6326), 469472.10.1038/351469a0CrossRefGoogle Scholar
Martínez-Bazán, C., Montañés, J.L. & Lasheras, J.C. 1999 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.10.1017/S0022112099006680CrossRefGoogle Scholar
Medwin, H. & Beaky, M.M. 1989 Bubble sources of the Knudsen sea noise spectra. J. Acoust. Soc. Am. 86 (3), 11241130.10.1121/1.398104CrossRefGoogle Scholar
Melville, W.K. 1996 The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 28 (1), 279321.10.1146/annurev.fl.28.010196.001431CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.10.1016/j.jcp.2009.04.042CrossRefGoogle Scholar
Rein, M. 1998 Turbulent open-channel flows: drop-generation and self-aeration. J. Hydraul. Engng 124 (1), 98102.10.1061/(ASCE)0733-9429(1998)124:1(98)CrossRefGoogle Scholar
Rosales, C. & Meneveau, C. Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106.10.1063/1.2047568CrossRefGoogle Scholar
Shen, L., Zhang, X., Yue, D.K.P. & Triantafyllou, G.S. 1999 The surface layer for free-surface turbulent flows. J. Fluid Mech. 386, 167212.10.1017/S0022112099004590CrossRefGoogle Scholar
Thorpe, S.A. 1982 On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. Phil. Trans. R. Soc. Lond. A 304, 155210.Google Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47 (1), 507538.10.1146/annurev-fluid-010814-014651CrossRefGoogle Scholar
Wallace, D.W.R. & Wirick, C.D. 1992 Large air–sea gas fluxes associated with breaking waves. Nature 356 (6371), 694696.10.1038/356694a0CrossRefGoogle Scholar
Wei, W., Xu, W., Deng, J., Tian, Z. & Zhang, F. 2019 Bubble formation and scale dependence in free-surface air entrainment. Sci. Rep. 9 (1), 11008.10.1038/s41598-019-46883-5CrossRefGoogle ScholarPubMed
Weymouth, G.D. & Yue, D.K.P. 2010 Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids. J. Comput. Phys. 229 (8), 28532865.10.1016/j.jcp.2009.12.018CrossRefGoogle Scholar
Wilhelms, S.C. & Gulliver, J.S. 2005 Bubbles and waves description of self-aerated spillway flow. J. Hydraul. Res. 43 (5), 522531.10.1080/00221680509500150CrossRefGoogle Scholar
Yu, X., Hendrickson, K., Campbell, B.K. & Yue, D.K.P. 2019 Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers. J. Fluid Mech. 880, 209238.10.1017/jfm.2019.695CrossRefGoogle Scholar
Yu, X., Hendrickson, K. & Yue, D.K.P. 2020 Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence. J. Fluid Mech. 885, R2.10.1017/jfm.2019.986CrossRefGoogle Scholar