Hostname: page-component-cb9f654ff-k7rjm Total loading time: 0 Render date: 2025-08-30T22:03:08.476Z Has data issue: false hasContentIssue false

Single-mode Rayleigh–Taylor instability in time-dependent rarefaction-driven flows

Published online by Cambridge University Press:  30 July 2025

Yue Li
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xing Gao
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xu Guo*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Zhigang Zhai*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding authors: Zhigang Zhai, sanjing@ustc.edu.cn; Xu Guo, clguoxu@ustc.edu.cn
Corresponding authors: Zhigang Zhai, sanjing@ustc.edu.cn; Xu Guo, clguoxu@ustc.edu.cn

Abstract

Rayleigh–Taylor instability (RTI) caused by rarefaction waves not only features variable acceleration but also incorporates time-dependent density, which introduces great challenges in predicting the finger growth behaviours. In this work, we propose a model for predicting the single-mode finger behaviours by extending the Layzer potential-flow framework to account for time-dependent acceleration and density. Relative to the previous models, the present model can evaluate the effect of time-dependent density on finger growth, and can describe the growth behaviours of both bubbles and spikes in rarefaction-driven RTI flows. In addition, the time-dependent curvature of the finger tip as it evolves from its initial value to the quasi-steady value is quantified. To validate the model, rarefaction-tube experiments and numerical simulations are conducted across a wide range of initial conditions. The results show that the present model can accurately capture the amplitude growth and curvature evolution of bubbles and spikes across various density ratios. Moreover, both the present model and experiments demonstrate that the continuous density reduction in rarefaction-driven flows causes larger asymptotic velocities of bubbles and spikes, leading to higher Froude numbers relative to those under constant or time-dependent acceleration.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abarzhi, S.I. 2003 Rayleigh–Taylor and Richtmyer–Meshkov instabilities for fluids with a finite density ratio. Phys. Lett. A 317 (5–6), 470476.10.1016/j.physleta.2003.09.013CrossRefGoogle Scholar
Abgrall, R. & Karni, S. 2001 Computations of compressible multifluids. J. Comput. Phys. 169 (2), 594623.10.1006/jcph.2000.6685CrossRefGoogle Scholar
Aglitskiy, Y. et al. 2010 Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions. Phil. Trans. R. Soc. A 368 (1916), 17391768.10.1098/rsta.2009.0131CrossRefGoogle ScholarPubMed
Akula, B., Suchandra, P., Mikhaeil, M. & Ranjan, D. 2017 Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability. J. Fluid Mech. 816, 619660.10.1017/jfm.2017.95CrossRefGoogle Scholar
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts. Phys. Rev. Lett. 74 (4), 534537.10.1103/PhysRevLett.74.534CrossRefGoogle ScholarPubMed
Andrews, M.J. & Dalziel, S.B. 2010 Small Atwood number Rayleigh–Taylor experiments. Phil. Trans. R. Soc. A 368 (1916), 16631679.10.1098/rsta.2010.0007CrossRefGoogle ScholarPubMed
Aslangil, D., Lawrie, A.G.W. & Banerjee, A. 2022 Effects of variable deceleration periods on Rayleigh–Taylor instability with acceleration reversals. Phys. Rev. E. 105 (6), 065103.10.1103/PhysRevE.105.065103CrossRefGoogle ScholarPubMed
Banerjee, A. & Andrews, M.J. 2006 Statistically steady measurements of Rayleigh–Taylor mixing in a gas channel. Phys. Fluids 18 (3), 035107.10.1063/1.2185687CrossRefGoogle Scholar
Banerjee, A., Kraft, W.N. & Andrews, M.J. 2010 Detailed measurements of a Rayleigh–Taylor mixing layer from small to intermediate Atwood numbers. J. Fluid Mech. 659, 127190.10.1017/S0022112010002351CrossRefGoogle Scholar
Bian, X., Aluie, H., Zhao, D., Zhang, H. & Livescu, D. 2020 Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity. Physica D 403, 132250.10.1016/j.physd.2019.132250CrossRefGoogle Scholar
Brouillette, M. & Sturtevant, B. 1989 Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D 37 (1–3), 248263.10.1016/0167-2789(89)90133-4CrossRefGoogle Scholar
Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech. 263, 271292.10.1017/S0022112094004118CrossRefGoogle Scholar
Cabot, W.H. & Cook, A.W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2 (8), 562568.10.1038/nphys361CrossRefGoogle Scholar
Dimonte, G. et al. 1996 A linear electric motor to study turbulent hydrodynamics. Rev. Sci. Instrum. 67 (1), 302306.10.1063/1.1146585CrossRefGoogle Scholar
Dimonte, G. & Schneider, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12 (2), 304321.10.1063/1.870309CrossRefGoogle Scholar
Dimonte, G. et al. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16 (5), 16681693.10.1063/1.1688328CrossRefGoogle Scholar
Duff, R.E., Harlow, F.H. & Hirt, C.W. 1962 Effects of diffusion on interface instability between gases. Phys. Fluids 5 (4), 417425.10.1063/1.1706634CrossRefGoogle Scholar
Fu, C., Zhao, Z., Wang, P., Liu, N., Wan, Z. & Lu, X. 2023 Bubble re-acceleration behaviours in compressible Rayleigh–Taylor instability with isothermal stratification. J. Fluid Mech. 954, A16.10.1017/jfm.2022.1003CrossRefGoogle Scholar
Gao, X., Guo, X., Zhai, Z. & Luo, X. 2024 Interfacial instabilities driven by co-directional rarefaction and shock waves. J. Fluid Mech. 980, A20.10.1017/jfm.2024.24CrossRefGoogle Scholar
Goncharov, V.N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.10.1103/PhysRevLett.88.134502CrossRefGoogle ScholarPubMed
Goncharov, V.N. & Li, D. 2005 Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh–Taylor instability. Phys. Rev. E. 71 (4), 046306.10.1103/PhysRevE.71.046306CrossRefGoogle ScholarPubMed
Goncharov, V.N., Skupsky, S., Boehly, T.R., Knauer, J.P., McKenty, P., Smalyuk, V.A., Town, R.P.J., Gotchev, O.V., Betti, R. & Meyerhofer, D.D. 2000 A model of laser imprinting. Phys. Plasmas 7 (5), 20622068.10.1063/1.874028CrossRefGoogle Scholar
Guo, W. & Zhang, Q. 2020 Universality and scaling laws among fingers at Rayleigh–Taylor and Richtmyer–Meshkov unstable interfaces in different dimensions. Physica D 403, 132304.10.1016/j.physd.2019.132304CrossRefGoogle Scholar
Guo, X., Cong, Z., Si, T. & Luo, X. 2022 a Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech. 941, A65.10.1017/jfm.2022.357CrossRefGoogle Scholar
Guo, X., Si, T., Zhai, Z. & Luo, X. 2022 b Large-amplitude effects on interface perturbation growth in Richtmyer–Meshkov flows with reshock. Phys. Fluids 34 (8), 082118.10.1063/5.0105926CrossRefGoogle Scholar
Han, Z. & Yin, X. 1993 Shock Dynamics. Kluwer Academic Publishers and Science Press.10.1007/978-94-017-2995-6CrossRefGoogle Scholar
Hecht, J., Alon, U. & Shvarts, D. 1994 Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts. Phys. Fluids 6 (12), 40194030.10.1063/1.868391CrossRefGoogle Scholar
Huang, Z., De Luca, A., Atherton, T.J., Bird, M., Rosenblatt, C. & Carles, P. 2007 Rayleigh–Taylor instability experiments with precise and arbitrary control of the initial interface shape. Phys. Rev. Lett. 99 (20), 204502.10.1103/PhysRevLett.99.204502CrossRefGoogle ScholarPubMed
Jacobs, J.W. & Dalziel, S.B. 2005 Rayleigh–Taylor instability in complex stratifications. J. Fluid Mech. 542, 251279.10.1017/S0022112005006336CrossRefGoogle Scholar
Jourdan, G. & Houas, L. 2005 High-amplitude single-mode perturbation evolution at the Richtmyer–Meshkov instability. Phys. Rev. Lett. 95 (20), 204502.10.1103/PhysRevLett.95.204502CrossRefGoogle ScholarPubMed
Kucherenko, Y.A., Balabin, S.I., Ardashova, R.I., Kozelkov, O.E., Dulov, A.V. & Romanov, I.A. 2003 Experimental study of the influence of the stabilizing properties of transitional layers on the turbulent mixing evolution. Laser Particle Beams 21 (3), 369373.10.1017/S0263034603213124CrossRefGoogle Scholar
Kucherenko, Y.A., Balabin, S.I., Cherret, R. & Haas, J.F. 1997 Experimental investigation into inertial properties of Rayleigh–Taylor turbulence. Laser Particle Beams 15 (1), 2531.10.1017/S0263034600010715CrossRefGoogle Scholar
Lawrie, A.G.W. & Dalziel, S.B. 2011 Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech. 688, 507527.10.1017/jfm.2011.398CrossRefGoogle Scholar
Layzer, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 112.10.1086/146048CrossRefGoogle Scholar
Lewis, D.J. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proc. R. Soc. Lond. A 202 (1068), 8196.Google Scholar
Li, C. & Book, D.L. 1991 Instability generated by acceleration due to rarefaction waves. Phys. Rev. A 43 (6), 31533156.10.1103/PhysRevA.43.3153CrossRefGoogle ScholarPubMed
Li, C., Kailasanath, K. & Book, D.L. 1991 Mixing enhancement by expansion waves in supersonic flows of different densities. Phys. Fluids 3 (5), 13691373.10.1063/1.858066CrossRefGoogle Scholar
Li, J., Cao, Q., Wang, H., Zhai, Z. & Luo, X. 2023 New interface formation method for shock–interface interaction studies. Exp. Fluids 64 (11), 170.10.1007/s00348-023-03710-yCrossRefGoogle Scholar
Li, J., Chen, C., Zhai, Z. & Luo, X. 2024 Effects of compressibility on Richtmyer–Meshkov instability of heavy/light interface. Phys. Fluids 36 (5), 056104.10.1063/5.0207779CrossRefGoogle Scholar
Liang, Y., Alkindi, A., Alzeyoudi, K., Liu, L., Ali, M. & Masmoudi, N. 2024 Experimental investigation of three-dimensional Rayleigh–Taylor instability of a gaseous interface. J. Fluid Mech. 994, A7.10.1017/jfm.2024.754CrossRefGoogle Scholar
Liang, Y., Zhai, Z., Luo, X. & Wen, C. 2020 Interfacial instability at a heavy/light interface induced by rarefaction waves. J. Fluid Mech. 885, A42.10.1017/jfm.2019.1025CrossRefGoogle Scholar
Linden, P.F., Redondo, J.M. & Youngs, D.L. 1994 Molecular mixing in Rayleigh–Taylor instability. J. Fluid Mech. 265, 97124.10.1017/S0022112094000777CrossRefGoogle Scholar
Liu, C., Wu-Wang, H., Zhang, Y. & Xiao, Z. 2023 a A decoupled mechanism of interface growth in single-mode hydrodynamic instabilities. J. Fluid Mech. 964, A37.10.1017/jfm.2023.393CrossRefGoogle Scholar
Liu, C., Zhang, Y. & Xiao, Z. 2023 b A unified theoretical model for spatiotemporal development of Rayleigh–Taylor and Richtmyer–Meshkov fingers. J. Fluid Mech. 954, A13.10.1017/jfm.2022.1000CrossRefGoogle Scholar
Mikaelian, K.O. 1998 Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80 (3), 508511.10.1103/PhysRevLett.80.508CrossRefGoogle Scholar
Mikaelian, K.O. 2008 Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys. Rev. E. 78 (1), 015303.10.1103/PhysRevE.78.015303CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2009 Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities. Phys. Fluids 21 (2), 024103.10.1063/1.3073746CrossRefGoogle Scholar
Mikaelian, K.O. 2014 Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E. 89 (5), 053009.10.1103/PhysRevE.89.053009CrossRefGoogle Scholar
Morgan, R.V., Cabot, W.H., Greenough, J.A. & Jacobs, J.W. 2018 Rarefaction-driven Rayleigh–Taylor instability. Part 2. Experiments and simulations in the nonlinear regime. J. Fluid Mech. 838, 320355.10.1017/jfm.2017.893CrossRefGoogle Scholar
Morgan, R.V. & Jacobs, J.W. 2020 Experiments and simulations on the turbulent, rarefaction wave driven Rayleigh–Taylor instability. J. Fluids Engng 142 (12), 121101.10.1115/1.4048345CrossRefGoogle Scholar
Morgan, R.V., Likhachev, O.A. & Jacobs, J.W. 2016 Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory. J. Fluid Mech. 791, 3460.10.1017/jfm.2016.46CrossRefGoogle Scholar
Motl, B., Oakley, J., Ranjan, D., Weber, C., Anderson, M. & Bonazza, R. 2009 Experimental validation of a Richtmyer–Meshkov scaling law over large density ratio and shock strength ranges. Phys. Fluids 21 (12), 126102.10.1063/1.3280364CrossRefGoogle Scholar
Pacitto, G., Flament, C., Bacri, J.C. & Widom, M. 2000 Rayleigh–Taylor instability with magnetic fluids: experiment and theory. Phys. Rev. E. 62 (6), 79417948.10.1103/PhysRevE.62.7941CrossRefGoogle ScholarPubMed
Pak, N., Theriot, E., Aslangil, D., Lawrie, A. & Banerjee, A. 2025 Recovery towards self-similarity in Rayleigh–Taylor instability under stepwise and sinusoidal acceleration reversals. Phys. Rev. E. 111 (2), 025107.10.1103/PhysRevE.111.025107CrossRefGoogle ScholarPubMed
Qiao, X. & Lan, K. 2021 Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett. 126 (18), 185001.10.1103/PhysRevLett.126.185001CrossRefGoogle ScholarPubMed
Ramaprabhu, P. & Dimonte, G. 2005 Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys. Rev. E. 71 (3), 036314.10.1103/PhysRevE.71.036314CrossRefGoogle ScholarPubMed
Ramaprabhu, P., Dimonte, G. & Andrews, M.J. 2005 A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.10.1017/S002211200500488XCrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., Young, Y., Calder, A.C. & Fryxell, B. 2006 Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem. Phys. Rev. E. 74 (6), 066308.10.1103/PhysRevE.74.066308CrossRefGoogle Scholar
Ramaprabhu, P., Karkhanis, V., Banerjee, R., Varshochi, H., Khan, M. & Lawrie, A.G.W. 2016 Evolution of the single-mode Rayleigh–Taylor instability under the influence of time-dependent accelerations. Phys. Rev. E. 93 (1), 013118.10.1103/PhysRevE.93.013118CrossRefGoogle ScholarPubMed
Ranjan, D., Niederhaus, J.H.J., Oakley, J., Anderson, M.H. & Bonazza, R. 2009 Experimental investigation of shock-induced distortion of a light spherical gas inhomogeneity. In Shock Waves. pp. 11751180, Springer.10.1007/978-3-540-85181-3_61CrossRefGoogle Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Read, K.I. 1984 Experimental investigation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12 (1–3), 4558.10.1016/0167-2789(84)90513-XCrossRefGoogle Scholar
Snider, D.M. & Andrews, M.J. 1994 Rayleigh–Taylor and shear driven mixing with an unstable thermal stratification. Phys. Fluids 6 (10), 33243334.10.1063/1.868065CrossRefGoogle Scholar
Sohn, S.I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E. 67 (2), 026301.10.1103/PhysRevE.67.026301CrossRefGoogle ScholarPubMed
Sohn, S.I. 2004 Vortex model and simulations for Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E. 69 (3), 036703.10.1103/PhysRevE.69.036703CrossRefGoogle ScholarPubMed
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A. Math. Phys. Sci. 201 (1065), 192196.Google Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.10.1146/annurev-fluid-122316-045217CrossRefGoogle Scholar
Waddell, J.T., Niederhaus, C.E. & Jacobs, J.W. 2001 Experimental study of Rayleigh–Taylor instability: low Atwood number liquid systems with single-mode initial perturbations. Phys. Fluids 13 (5), 12631273.10.1063/1.1359762CrossRefGoogle Scholar
Wang, R., Song, Y., Ma, Z., Ma, D., Wang, L. & Wang, P. 2022 a The transition to turbulence in rarefaction-driven Rayleigh–Taylor mixing: effects of diffuse interface. Phys. Fluids 34 (1), 015125.10.1063/5.0078203CrossRefGoogle Scholar
Wang, R., Song, Y., Ma, Z., Zhang, C., Shi, X., Wang, L. & Wang, P. 2022 b Transitional model for rarefaction-driven Rayleigh−Taylor mixing on the diffuse interface. Phys. Fluids 34 (7), 075136.10.1063/5.0097248CrossRefGoogle Scholar
Wei, T. & Livescu, D. 2012 Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E. 86 (4), 046405.10.1103/PhysRevE.86.046405CrossRefGoogle ScholarPubMed
White, J., Oakley, J., Anderson, M. & Bonazza, R. 2010 Experimental measurements of the nonlinear Rayleigh–Taylor instability using a magnetorheological fluid. Phys. Rev. E. 81 (2), 026303.10.1103/PhysRevE.81.026303CrossRefGoogle ScholarPubMed
Wilkinson, J.P. & Jacobs, J.W. 2007 Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability. Phys. Fluids 19 (12), 124102.10.1063/1.2813548CrossRefGoogle Scholar
Youngs, D.L. 1989 Modeling turbulent mixing by Rayleigh–Taylor instability. Physica D 37 (1–3), 270287.10.1016/0167-2789(89)90135-8CrossRefGoogle Scholar
Youngs, D.L. 2013 The density ratio dependence of self-similar Rayleigh–Taylor mixing. Phil. Trans. R. Soc. A 371 (2003), 20120173.10.1098/rsta.2012.0173CrossRefGoogle ScholarPubMed
Zhai, Z., Dong, P., Si, T. & Luo, X. 2016 The Richtmyer–Meshkov instability of a ‘V’ shaped air/helium interface subjected to a weak shock. Phys. Fluids 28 (8), 082104.10.1063/1.4961038CrossRefGoogle Scholar
Zhang, Q. 1998 Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81 (16), 33913394.10.1103/PhysRevLett.81.3391CrossRefGoogle Scholar
Zhang, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.10.1017/jfm.2015.641CrossRefGoogle Scholar
Zhang, Q. & Guo, W. 2022 Quantitative theory for spikes and bubbles in the Richtmyer–Meshkov instability at arbitrary density ratios. Phys. Rev. Fluids 7 (9), 093904.10.1103/PhysRevFluids.7.093904CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Glendinning, S.G., Skinner, M.A., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (8), 080901.10.1063/1.5088745CrossRefGoogle Scholar
Zhou, Y., Sadler, J.D. & Hurricane, O.A. 2025 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57 (1), 197225.10.1146/annurev-fluid-022824-110008CrossRefGoogle Scholar
Zhou, Y. et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.10.1016/j.physd.2020.132838CrossRefGoogle Scholar
Zhou, Z., Ding, J. & Cheng, W. 2024 Mixing and inter-scale energy transfer in Richtmyer–Meshkov turbulence. J. Fluid Mech. 984, A56.10.1017/jfm.2024.240CrossRefGoogle Scholar
Zhou, Z., Ding, J., Cheng, W. & Luo, X. 2023 a Scaling law of structure function of Richtmyer–Meshkov turbulence. J. Fluid Mech. 972, A18.10.1017/jfm.2023.707CrossRefGoogle Scholar
Zhou, Z., Ding, J., Huang, S. & Luo, X. 2023 b A new type of weighted compact nonlinear scheme with minimum dispersion and adaptive dissipation for compressible flows. Comput. Fluids 262, 105934.10.1016/j.compfluid.2023.105934CrossRefGoogle Scholar
Zhou, Z., Zhang, Y. & Tian, B. 2018 Dynamic evolution of Rayleigh–Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Phys. Rev. E. 97 (3), 033108.10.1103/PhysRevE.97.033108CrossRefGoogle ScholarPubMed