Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-30T05:15:48.079Z Has data issue: false hasContentIssue false

Reynolds number effect on the flow statistics and turbulent–non-turbulent interface of a planar jet

Published online by Cambridge University Press:  04 August 2025

Giovanni Soligo*
Affiliation:
Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna 904-0495, Okinawa, Japan
Alessandro Chiarini*
Affiliation:
Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna 904-0495, Okinawa, Japan Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
Marco Edoardo Rosti*
Affiliation:
Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna 904-0495, Okinawa, Japan
*
Corresponding authors: Marco Edoardo Rosti, marco.rosti@oist.jp; Giovanni Soligo, soligo.giovanni@oist.jp; Alessandro Chiarini, alessandro.chiarini@polimi.it
Corresponding authors: Marco Edoardo Rosti, marco.rosti@oist.jp; Giovanni Soligo, soligo.giovanni@oist.jp; Alessandro Chiarini, alessandro.chiarini@polimi.it
Corresponding authors: Marco Edoardo Rosti, marco.rosti@oist.jp; Giovanni Soligo, soligo.giovanni@oist.jp; Alessandro Chiarini, alessandro.chiarini@polimi.it

Abstract

We investigate the influence of the Reynolds number on the spatial development of an incompressible planar jet. The study relies on direct numerical simulations (DNS) at inlet Reynolds numbers between $500 \leqslant Re \leqslant 13\,500$, being the widest range and the largest values considered so far in DNS. At the lowest $Re$, the flow is transitional and characterised by large quasi-two-dimensional vortices; at the largest $Re$, the flow reaches a fully turbulent regime with a well-developed self-similar region. We provide a complete description of the flow, from the instabilities in the laminar near-inlet region, to the self-similar regime in the turbulent far field. At the inlet, the leading destabilisation mode is sinusoidal/asymmetric at low Reynolds number and varicose/symmetric at large Reynolds number, with both modes coexisting at intermediate $Re$. In the far field, the mean and fluctuating statistics converge to self-similar profiles only for $Re\geqslant 4500$; the flow anisotropy, the budget of the Reynolds stresses and the energy spectra are addressed. The spreading of the jet is quantified via the turbulent–non-turbulent interface (TNTI). We find that the thickness of the turbulent region, and the shape and fractal dimension of the TNTI become $Re$-independent for $Re \geqslant 4500$. Comparisons with previous numerical and experimental works are provided whenever available.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Antonia, R.A., Browne, L.W.B., Rajagopalan, S. & Chambers, A.J. 1983 On the organized motion of a turbulent plane jet. J. Fluid Mech. 134, 4966.10.1017/S0022112083003213CrossRefGoogle Scholar
Beavers, G.S. & Wilson, T.A. 1970 Vortex growth in jets. J. Fluid Mech. 44 (1), 97112.10.1017/S0022112070001714CrossRefGoogle Scholar
Bell, J.H. & Mehta, R.D. 1990 Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28 (12), 20342042.10.2514/3.10519CrossRefGoogle Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.10.1017/S0022112001006759CrossRefGoogle Scholar
Bradbury, L.J.S. 1965 The structure of a self-preserving turbulent plane jet. J. Fluid Mech. 23 (1), 3164.10.1017/S0022112065001222CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.10.1017/S002211207400190XCrossRefGoogle Scholar
Browne, L.W.B., Antonia, R.A. & Chambers, A.J. 1984 The interaction region of a turbulent plane jet. J. Fluid Mech. 149, 355373.10.1017/S002211208400269XCrossRefGoogle Scholar
Cafiero, G. & Vassilicos, J.C. 2019 Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets. Proc. R. Soc. Lond. A 475 (2225), 20190038.Google ScholarPubMed
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows, Tech. Rep. 1244. NACA.Google Scholar
Da Silva, C.B. & Métais, O. 2002 On the influence of coherent structures upon interscale interactions in turbulent plane jets. J. Fluid Mech. 473, 103145.10.1017/S0022112002002458CrossRefGoogle Scholar
Dahm, W.J.A. & Dimotakis, P.E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25 (9), 12161223.10.2514/3.9770CrossRefGoogle Scholar
Deo, R.C., Mi, J. & Nathan, G.J. 2008 The influence of Reynolds number on a plane jet. Phys. Fluids 20 (7), 075108.10.1063/1.2959171CrossRefGoogle Scholar
Er, S., Laval, J.-P. & Vassilicos, J.C. 2023 Length scales and the turbulent/non-turbulent interface of a temporally developing turbulent jet. J. Fluid Mech. 970, A33.10.1017/jfm.2023.654CrossRefGoogle Scholar
Guimarães, M.C., Pimentel, N., Pinho, F.T. & da Silva, C.B. 2020 Direct numerical simulations of turbulent viscoelastic jets. J. Fluid Mech. 899, A11.10.1017/jfm.2020.402CrossRefGoogle Scholar
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (3), 465495.10.1017/S0022112076001468CrossRefGoogle Scholar
Heskestad, G. 1965 Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 32 (4), 721734.10.1115/1.3627309CrossRefGoogle Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.10.1103/PhysRevLett.106.134503CrossRefGoogle ScholarPubMed
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.10.1017/S002211209400323XCrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Ko, N.W.M. & Davies, P.O.A.L. 1971 The near field within the potential cone of subsonic cold jets. J. Fluid Mech. 50 (1), 4978.10.1017/S0022112071002453CrossRefGoogle Scholar
Krug, D., Chung, D., Philip, J. & Marusic, I. 2017 Global and local aspects of entrainment in temporal plumes. J. Fluid Mech. 812, 222250.10.1017/jfm.2016.786CrossRefGoogle Scholar
Lee, Y.-A., Huisman, S.G. & Lohse, D. 2023 Mixing and solvent exchange near the turbulent/non-turbulent interface in a quasi-2D jet. Intl J. Multiphase Flow 169, 104608.10.1016/j.ijmultiphaseflow.2023.104608CrossRefGoogle Scholar
Lee, Y.-A., Sun, C., Huisman, S.G. & Lohse, D. 2022 Micro-droplet nucleation through solvent exchange in a turbulent buoyant jet. J. Fluid Mech. 943, A11.10.1017/jfm.2022.422CrossRefGoogle Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.10.1017/S0022112092000612CrossRefGoogle Scholar
List, E.J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14 (1), 189212.10.1146/annurev.fl.14.010182.001201CrossRefGoogle Scholar
Mandelbrot, B.B. 1974 Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 (2), 331358.10.1017/S0022112074000711CrossRefGoogle Scholar
Mandelbrot, B.B. 1975 On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72 (3), 401416.10.1017/S0022112075003047CrossRefGoogle Scholar
Mandelbrot, B.B. 1982 The Fractal Geometry of Nature, vol. 1. WH Freeman.Google Scholar
Mathew, J. & Basu, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.10.1063/1.1480831CrossRefGoogle Scholar
Mei, C.C. 2001 Notes on advanced environmental fluid mechanics. MIT. Google Scholar
Mistry, D., Dawson, J.R. & Kerstein, A.R. 2018 The multi-scale geometry of the near field in an axisymmetric jet. J. Fluid Mech. 838, 501515.10.1017/jfm.2017.899CrossRefGoogle Scholar
Mistry, D., Philip, J., Dawson, J.R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.10.1017/jfm.2016.474CrossRefGoogle Scholar
Namer, I. & Ötügen, M.V. 1988 Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers. Exp. Fluids 6 (6), 387399.10.1007/BF00196484CrossRefGoogle Scholar
Nguyen, C.T. & Oberlack, M. 2024 Analysis of a turbulent round jet based on direct numerical simulation data at large box and high Reynolds number. Phys. Rev. Fluids 9 (7), 074608.10.1103/PhysRevFluids.9.074608CrossRefGoogle Scholar
Oosthuizen, P.H. & Lemieux, G.P. 1985 Experimental study of the behavior of plane turbulent jets at low Reynolds numbers. AIAA J. 23 (12), 18451846.Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.10.1016/0021-9991(76)90023-1CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ramaprian, B.R. & Chandrasekhara, M.S. 1985 LDA measurements in plane turbulent jets. J. Fluids Engng 107 (2), 264271.10.1115/1.3242472CrossRefGoogle Scholar
Sato, H. 1960 The stability and transition of a two-dimensional jet. J. Fluid Mech. 7 (1), 5380.10.1017/S0022112060000049CrossRefGoogle Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.10.1063/1.2912513CrossRefGoogle Scholar
Spencer, B.W. & Jones, B.G. 1971 Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer. In 4th Fluid and Plasma Dynamics Conference, pp. 71613. https://doi.org/10.2514/6.1971-613 CrossRefGoogle Scholar
Sreenivasan, K.R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23 (1), 539604.10.1146/annurev.fl.23.010191.002543CrossRefGoogle Scholar
Sreenivasan, K.R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.10.1017/S0022112086001209CrossRefGoogle Scholar
Sreenivasan, K.R., Ramshankar, R. & Meneveau, C.H. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A: Math. Phys. Sci. 421, 79108.Google Scholar
Stanley, S.A., Sarkar, S. & Mellado, J.P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.10.1017/S0022112001006644CrossRefGoogle Scholar
Suresh, P.R., Srinivasan, K., Sundararajan, T. & Das, S.K. 2008 Reynolds number dependence of plane jet development in the transitional regime. Phys. Fluids 20 (4), 044105.10.1063/1.2904994CrossRefGoogle Scholar
Taveira, R.R., Diogo, J.S., Lopes, D.C. & da Silva, C.B. 2013 Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.10.1103/PhysRevE.88.043001CrossRefGoogle Scholar
Thomas, F.O. & Chu, H.C. 1989 An experimental investigation of the transition of a planar jet: subharmonic suppression and upstream feedback. Phys. Fluids A: Fluid Dyn. 1 (9), 15661587.10.1063/1.857333CrossRefGoogle Scholar
Thomas, F.O. & Goldschmidt, V.W. 1986 Structural characteristics of a developing turbulent planar jet. J. Fluid Mech. 163, 227256.10.1017/S0022112086002288CrossRefGoogle Scholar
Thomas, F.O. & Prakash, K.M.K. 1991 An experimental investigation of the natural transition of an untuned planar jet. Phys. Fluids A: Fluid Dyn. 3 (1), 90105.10.1063/1.857867CrossRefGoogle Scholar
Townsend, A.A.R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.10.1103/PhysRevLett.95.174501CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.10.1017/S0022112009006600CrossRefGoogle Scholar
Westerweel, J., Hofmann, T., Fukushima, C. & Hunt, J. 2002 The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33 (6), 873878.10.1007/s00348-002-0489-5CrossRefGoogle Scholar
Wolf, M., Holzner, M., Lüthi, B., Krug, D., Kinzelbach, W. & Tsinober, A. 2013 Effects of mean shear on the local turbulent entrainment process. J. Fluid Mech. 731, 95116.10.1017/jfm.2013.365CrossRefGoogle Scholar
Wu, N., Sakai, Y., Nagata, K., Ito, Y., Terashima, O. & Hayase, T. 2014 Influence of Reynolds number on coherent structure, flow transition, and evolution of the plane jet. J. Fluid Sci. Technol. 9 (2), JFST0013.10.1299/jfst.2014jfst0013CrossRefGoogle Scholar
Wygnanski, I. & Gutmark, E. 1971 Lateral motion of the two-dimensional jet boundaries. Phys. Fluids 14 (7), 13091311.10.1063/1.1693606CrossRefGoogle Scholar
Zubair, F.R. & Catrakis, H.J. 2009 On separated shear layers and the fractal geometry of turbulent scalar interfaces at large Reynolds numbers. J. Fluid Mech. 624, 389411.10.1017/S0022112008005612CrossRefGoogle Scholar