Hostname: page-component-65b85459fc-bczq6 Total loading time: 0 Render date: 2025-10-17T19:19:06.806Z Has data issue: false hasContentIssue false

Phenomenology of decaying turbulence beneath surface waves

Published online by Cambridge University Press:  08 October 2025

Gregory LeClaire Wagner*
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA
Navid C. Constantinou
Affiliation:
University of Melbourne, Parkville, VIC, Australia Australian Research Council Centre of Excellence for the Weather of the 21st Century, Australia
*
Corresponding author: Gregory LeClaire Wagner, glwagner@mit.edu

Abstract

This paper explores decaying turbulence beneath surface waves that is initially isotropic and shear free. We start by presenting phenomenology revealed by wave-averaged numerical simulations: an accumulation of angular momentum in coherent vortices perpendicular to the direction of wave propagation, suppression of kinetic energy dissipation and the development of depth-alternating jets. We interpret these features through an analogy with rotating turbulence (Holm 1996 Physica D. 98, 415–441), wherein the curl of the Stokes drift, ${\boldsymbol{\nabla}} \times {\boldsymbol{u^{S}}}$, takes on the role of the background vorticity (for example, $(f_0 + \beta y) {\boldsymbol{\hat{z}}}$ on the beta plane). We pursue this thread further by showing that a two-equation model proposed by Bardina et al. (1985 J. Fluid Mech. 154, 321–336) for rotating turbulence reproduces the simulated evolution of volume-integrated kinetic energy. This success of the two-equation model – which explicitly parametrises wave-driven suppression of kinetic energy dissipation – carries implications for modelling turbulent mixing in the ocean surface boundary layer. We conclude with a discussion about a wave-averaged analogue of the Rossby number appearing in the two-equation model, which we term the ‘pseudovorticity number’ after the pseudovorticity ${\boldsymbol{\nabla }} \times {\boldsymbol{u}}^S$. The pseudovorticity number is related to the Langmuir number in an integral sense.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrews, D.G. & McIntyre, M.E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89 (4), 609646.CrossRefGoogle Scholar
Axell, L.B. 2002 Wind-driven internal waves and langmuir circulations in a numerical ocean model of the southern Baltic Sea. J. Geophys. Res.: Oceans 107 (C11), 25–21.Google Scholar
Bardina, J., Ferziger, J.H. & Rogallo, R.S. 1985 Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321336.CrossRefGoogle Scholar
Batchelor, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
van den Bremer, T.S. & Breivik, Ø. 2018 Stokes drift. Phil. Trans. R. Soc. A 376 (2111), 20170104.CrossRefGoogle ScholarPubMed
Constantinou, N.C. 2015 Formation of large-scale structures by turbulence in rotating planets. PhD thesis, National and Kapodistrian University of Athens, Athens, Greece.Google Scholar
Constantinou, N.C., Farrell, B.F. & Ioannou, P.J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71 (5), 18181842.10.1175/JAS-D-13-076.1CrossRefGoogle Scholar
Craik, A.D.D. & Leibovich, S. 1976 A rational model for langmuir circulations. J. Fluid Mech. 73 (3), 401426.10.1017/S0022112076001420CrossRefGoogle Scholar
Fan, Y., Yu, Z., Savelyev, I., Sullivan, P.P., Liang, J.-H., Haack, T., Terrill, E., de Paolo, T. & Shearman, K. 2020 The effect of Langmuir turbulence under complex real oceanic and meteorological forcing. Ocean Model. 149, 101601.10.1016/j.ocemod.2020.101601CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2019 Statistical state dynamics: a new perspective on turbulence in shear flow. In Zonal Jets: Phenomenology, Genesis, and Physics, (eds Galperin, B. & Read, P.L.), pp. 380400. Cambridge University Press.CrossRefGoogle Scholar
Harcourt, R.R. 2015 An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr. 45 (1), 84103.CrossRefGoogle Scholar
Harcourt, R.R. & D’Asaro, E.A. 2008 Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr. 38 (7), 15421562.CrossRefGoogle Scholar
Holm, D.D. 1996 The ideal Craik–Leibovich equations. Physica D 98 (2-4), 415441.10.1016/0167-2789(96)00105-4CrossRefGoogle Scholar
Huang, H.-P. & Robinson, W.A. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55 (4), 611632.2.0.CO;2>CrossRefGoogle Scholar
Large, W.G., Patton, E.G., DuVivier, A.K., Sullivan, P.P. & Romero, L. 2019 Similarity theory in the surface layer of large-eddy simulations of the wind-, wave-, and buoyancy-forced southern ocean. J. Phys. Oceanogr. 49 (8), 21652187.10.1175/JPO-D-18-0066.1CrossRefGoogle Scholar
Leibovich, S. 1980 On wave-current interaction theories of Langmuir circulations. J. Fluid Mech. 99 (4), 715724.CrossRefGoogle Scholar
Marston, J.B. & Tobias, S.M. 2023 Recent developments in theories of inhomogeneous and anisotropic turbulence. Annu. Rev. Fluid Mech. 55, 351375.10.1146/annurev-fluid-120720-031006CrossRefGoogle Scholar
McIntyre, M.E. 1981 On the ‘wave momentum’ myth. J. Fluid Mech. 106, 331347.CrossRefGoogle Scholar
McWilliams, J.C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.CrossRefGoogle Scholar
McWilliams, J.C., Sullivan, P.P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.10.1017/S0022112096004375CrossRefGoogle Scholar
Orszag, S.A. & Patterson, G.S. 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.CrossRefGoogle Scholar
Polton, J.A., Lewis, D.M. & Belcher, S.E. 2005 The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr. 35 (4), 444457.10.1175/JPO2701.1CrossRefGoogle Scholar
Pressel, K.G., Mishra, S., Schneider, T., Kaul, C.M. & Tan, Z. 2017 Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds. J. Adv. Model. Earth Syst. 9 (2), 13421365.CrossRefGoogle ScholarPubMed
Ramadhan, A., Wagner, G.L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R. & Marshall, J. 2020 Oceananigans.jl: fast and friendly geophysical fluid dynamics on GPUs. J. Open Source Softw. 5 (53), 2018.CrossRefGoogle Scholar
Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (3), 417443.10.1017/S0022112075001504CrossRefGoogle Scholar
Saffman, P.G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27 (3), 581593.CrossRefGoogle Scholar
Shu, C.-W. 2020 Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701762.10.1017/S0962492920000057CrossRefGoogle Scholar
Silvestri, S., Wagner, G.L., Campin, J.-M., Constantinou, N.C., Hill, C.N., Souza, A. & Ferrari, R. 2024 A new WENO-based momentum advection scheme for simulations of ocean mesoscale turbulence. J. Adv. Model. Earth Syst. 16 (7), e2023MS004130.CrossRefGoogle Scholar
Srinivasan, K. & Young, W.R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.10.1175/JAS-D-11-0200.1CrossRefGoogle Scholar
Sullivan, P.P. & McWilliams, J.C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42 (1), 1942.CrossRefGoogle Scholar
Suzuki, N. & Fox-Kemper, B. 2016 Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res.: Oceans 121 (5), 35793596.10.1002/2015JC011566CrossRefGoogle Scholar
Thomas, J. 2023 Turbulent wave-balance exchanges in the ocean. Proc. R. Soc. Lond. A 479 (2276), 20220565.Google Scholar
Van Roekel, L.P., Fox-Kemper, B., Sullivan, P.P., Hamlington, P.E. & Haney, S.R. 2012 The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res. Oceans 117 (C5), C05001.10.1029/2011JC007516CrossRefGoogle Scholar
Vanneste, J. & Young, W.R. 2022 Stokes drift and its discontents. Phil. Trans. R. Soc. A 380 (2225), 20210032.CrossRefGoogle ScholarPubMed
Wagner, G.L. et al. 2025 High-level, high-resolution ocean modeling at all scales with Oceananigans. arXiv:2502.14148 CrossRefGoogle Scholar
Wagner, G.L., Chini, G.P., Ramadhan, A., Gallet, B. & Ferrari, R. 2021 Near-inertial waves and turbulence driven by the growth of swell. J. Phys. Oceanogr. 51 (5), 13371351.10.1175/JPO-D-20-0178.1CrossRefGoogle Scholar