Hostname: page-component-65b85459fc-9zwhw Total loading time: 0 Render date: 2025-10-16T02:47:03.596Z Has data issue: false hasContentIssue false

On the receptivity of first and cross-flow modes in hypersonic sharp wing flows

Published online by Cambridge University Press:  15 October 2025

Jiachen Lu
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
Ken Chun Kit Uy
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
Rui Zhao*
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
Chihyung Wen
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
*
Corresponding author: Rui Zhao, zr@bit.edu.cn

Abstract

A long-standing conceptual debate regarding the identification and independence of first Mack and cross-flow instabilities is clarified over a Mach 5.9 sharp wing at zero angle of attack and varying sweep angles. Their receptivity of the boundary layers to three-dimensional slow acoustic and vorticity waves is investigated using linear stability theory, direct numerical simulation and momentum potential theory (MPT). Linear stability theory demonstrates that the targeted slow mode appears as the oblique first mode at small sweep angles ($0^\circ$ and $15^\circ$) and transitions to the cross-flow mode at larger sweep angles ($30^\circ$ and $45^\circ$). Direct numerical simulation indicates that both the oblique first mode and cross-flow mode share identical receptivity pathways: for slow acoustic waves, the pathway comprises ‘leading-edge damping–enhanced exponential growth–linear growth’ stages. For vorticity waves, it consists of ‘leading-edge damping–non-modal growth–linear growth’ stages. Momentum potential theory decomposes the fluctuation momentum density into vortical, acoustic and thermal components, revealing unified receptivity mechanisms: for slow acoustic waves, the leading-edge damping is caused by strong acoustic components generated through synchronization. The enhanced exponential growth stage is dominated by steadily growing vortical components, with acoustic and thermal components remaining at small amplitudes. For vorticity waves, leading-edge disturbances primarily consist of vortical components, indicating a distinct mechanism from slow acoustic waves. Non-modal stages originate from adjustments among MPT components. Vortical components dominate the linear growth stage for both instabilities. These uniform behaviours between first Mack and cross-flow modes highlight their consistency.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balakumar, P. 2015 Receptivity of hypersonic boundary layers to acoustic and vortical disturbances (invited), In 45th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Balakumar, P. & Kegerise, M.A. 2015 Receptivity of hypersonic boundary layers over straight and flared cones. AIAA J. 53 (8), 20972109.10.2514/1.J053432CrossRefGoogle Scholar
Balakumar, P. & King, R. 2011 Receptivity to roughness, acoustics, and vortical disturbances in supersonic boundary layers over swept wings, In 41st AIAA Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics.Google Scholar
Balakumar, P. & King, R.A. 2012 Receptivity and stability of supersonic swept flows. AIAA J. 50 (7), 14761489.10.2514/1.J051064CrossRefGoogle Scholar
Chen, J., Dong, S., Chen, X., Yuan, X. & Xu, G. 2021 a Stationary cross-flow breakdown in a high-speed swept-wing boundary layer. Phys. Fluids 33 (2), 024108.10.1063/5.0039901CrossRefGoogle Scholar
Chen, J., Yi, S., Li, X., Han, G., Zhang, Y., Yang, Q. & Yuan, X. 2021 b Theoretical, numerical and experimental study of hypersonic boundary llayer transition: blunt circular cone. Appl. Therm. Engng. 194, 116931.10.1016/j.applthermaleng.2021.116931CrossRefGoogle Scholar
Chen, Y., Tu, G., Wan, B., Su, C., Yuan, X. & Chen, J. 2021 c Receptivity of a hypersonic flow over a blunt wedge to a slow acoustic wave. Phys. Fluids 33 (8), 084114.10.1063/5.0062557CrossRefGoogle Scholar
Chen, X., Dong, S., Tu, G., Yuan, X. & Chen, J. 2022 Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body. J. Fluid Mech. 938, A8.10.1017/jfm.2021.1125CrossRefGoogle Scholar
Chen, X., Zhu, Y. & Lee, C. 2017 Interactions between second mode and low-frequency waves in a hypersonic boundary layer. J. Fluid Mech. 820, 693735.10.1017/jfm.2017.233CrossRefGoogle Scholar
Craig, S.A. & Saric, W.S. 2016 Crossflow instability in a hypersonic boundary layer. J. Fluid Mech. 808, 224244.CrossRefGoogle Scholar
Deyhle, H. & Bippes, H. 1996 Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J. Fluid Mech. 316, 73113.10.1017/S0022112096000456CrossRefGoogle Scholar
Doak, P.E. 1989 Momentum potential theory of energy flux carried by momentum fluctuations. J. Sound Vib. 131 (1), 6790.10.1016/0022-460X(89)90824-9CrossRefGoogle Scholar
Doak, P.E. 1998 Fluctuating total enthalpy as the basic generalized acoustic field. Theor. Comput. Fluid Dyn. 10 (1–4), 115133.10.1007/s001620050054CrossRefGoogle Scholar
Fedorov, A. 2002 Receptivity of high speed boundary layer to acoustic disturbances (invited), In 32nd AIAA Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics.Google Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43 (2011), 7995.10.1146/annurev-fluid-122109-160750CrossRefGoogle Scholar
Fedorov, A. & Khokhlov, A. 2001 Prehistory of instability in a hypersonic boundary layer. Theor. Comput. Fluid Dyn. 14, 359375.10.1007/s001620100038CrossRefGoogle Scholar
Fedorov, A. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49 (8), 16471657.10.2514/1.J050835CrossRefGoogle Scholar
Fezer, A. & Kloker, M. 2003 DNS of transition mechanisms at mach 6.8 – flat plate versus sharp cone. In West East High Speed Flow Fields, 2002 (ed. Zeitoun, D. E., Periaux, J., Desideri, J. A. & Marini, M.), pp. 434441. CIMNE.Google Scholar
Guo, P., Hao, J. & Wen, C. 2025 Transition reversal over a blunt plate at Mach 5. J. Fluid Mech. 1005, A5.CrossRefGoogle Scholar
Guo, P., Hao, J. & Wen, C.-Y. 2023 Interaction and breakdown induced by multiple optimal disturbances in hypersonic boundary layer. J. Fluid Mech. 974, A50.10.1017/jfm.2023.814CrossRefGoogle Scholar
Hao, J., Fan, J., Cao, S. & Wen, C. 2022 Three-dimensionality of hypersonic laminar flow over a double cone. J. Fluid Mech. 935, A8.10.1017/jfm.2021.1137CrossRefGoogle Scholar
Hao, J. & Wen, C.-Y. 2021 Stabilization of a two-dimensional hypersonic boundary layer using a shallow cavity. AIAA J. 59 (2), 430438.10.2514/1.J059023CrossRefGoogle Scholar
Huang, C., Cao, S., Hao, J., Guo, P. & Wen, C. 2025 Laminar-turbulent transition in a hypersonic compression ramp flow. Phys. Fluids 37 (3), 034110.10.1063/5.0256584CrossRefGoogle Scholar
van Ingen, J. 2008 The en method for transition prediction. historical review of work at tu delft, In 38th Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics.Google Scholar
Kara, K., Balakumar, P. & Kandil, O.A. 2011 Effects of nose bluntness on hypersonic boundary-layer receptivity and stability over cones. AIAA J. 49 (12), 25932606.10.2514/1.J050032CrossRefGoogle Scholar
Lekoudis, S.G. 1980 Stability of the boundary layer on a swept wing with wall cooling. AIAA J. 18 (9), 10291035.CrossRefGoogle Scholar
Li, F., Choudhari, M., Chang, C.-L. & White, J. 2010 Analysis of instabilities in non-axisymmetric hypersonic boundary layers over cones, In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Liu, X., Dong, Y., Long, T., Zhao, R. & Wen, C.-Y. 2023 Stabilization mechanisms of various acoustic metasurfaces on the second mode in hypersonic boundary-layer flows. Phys. Fluids 35 (10), 104102.10.1063/5.0165938CrossRefGoogle Scholar
Liu, Y., Dong, M. & Wu, X. 2020 Generation of first mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness. J. Fluid Mech. 888, A10.10.1017/jfm.2020.38CrossRefGoogle Scholar
Liu, Z. 2022 Cross-flow linear instability in compressible boundary layers over a flat plate. Phys. Fluids 34 (9), 094110.CrossRefGoogle Scholar
Liu, Z. 2023 On the identification of cross-flow mode in three-dimensional boundary layers. AIP Adv. 13 (1), 015203.10.1063/5.0135008CrossRefGoogle Scholar
Long, T., Dong, Y., Zhao, R. & Wen, C.-Y. 2021 Mechanism of stabilization of porous coatings on unstable supersonic mode in hypersonic boundary layers. Phys. Fluids 33 (5), 054105.10.1063/5.0048313CrossRefGoogle Scholar
Lu, J., Uy, K.C.K., Zhao, R. & Wen, C.-Y. 2025 Stabilization mechanisms of traveling crossflow mode in hypersonic swept wing flows. AIAA J. 63 (3), 11761190.10.2514/1.J064463CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2003 a Receptivity of a supersonic boundary layer over a flat plate. part 1. wave structures and interactions. J. Fluid Mech. 488, 3178.10.1017/S0022112003004786CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2003 b Receptivity of a supersonic boundary layer over a flat plate. part 2. receptivity to free-stream sound. J. Fluid Mech. 488, 79121.CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2005 Receptivity of a supersonic boundary layer over a flat plate. part 3. effects of different types of free-stream disturbances. J. Fluid Mech. 532, 63109.10.1017/S0022112005003836CrossRefGoogle Scholar
Mack, L.M. 1975 Linear stability theory and the problem of supersonic boundary- layer transition. AIAA J. 13 (3), 278289.10.2514/3.49693CrossRefGoogle Scholar
Mack, L.M. 1984 Boundary-Layer Linear Stability Theory. AGARD Report No. 709Google Scholar
Malik, M.R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.10.1016/0021-9991(90)90106-BCrossRefGoogle Scholar
Malmuth, N., Fedorov, A., Shalaev, V., Cole, J., Hites, M., Williams, D. & Khokhlov, A. 1998 Problems in high speed flow prediction relevant to control, In 2nd AIAA, Theoretical Fluid Mechanics MeetingCrossRefGoogle Scholar
Masad, J.A. & Zurigat, Y.H. 1994 Effect of pressure gradient on first mode of instability in compressible boundary layers. Phys. Fluids 6 (12), 39453953.10.1063/1.868384CrossRefGoogle Scholar
Morkovin, M.V., Reshotko, E. & Herbert, T. 1994 Transition in open flow systems: a reassessment. Bull. Am. Phys. Soc. 39 (9), 131.Google Scholar
Moyes, A., Paredes, P., Kocian, T.S. & Reed, H.L. 2016 Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone, In 54th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics.Google Scholar
Niu, H., Yi, S., Huo, J., Zheng, W. & Liu, X. 2021 Experimental study on hypersonic crossflow instability over a swept flat plate by flow visualization. Acta Mech. Sinica 37, 13951403.10.1007/s10409-021-01109-8CrossRefGoogle Scholar
Niu, H., Yi, S., Liu, X. & Fu, J. 2024 Experimental study of the early evolution of traveling crossflow instability on a 75 $^\circ$ swept flat plate at Mach 6. Phys. Fluids 36 (12), 124133.10.1063/5.0242618CrossRefGoogle Scholar
Niu, H., Yi, S., Liu, X., Huo, J. & Jin, L. 2020 Experimental investigation of nose-tip bluntness effects on the hypersonic crossflow instability over a cone. Int. J. Heat Fluid Flow 86, 108746.10.1016/j.ijheatfluidflow.2020.108746CrossRefGoogle Scholar
Niu, H., Yi, S., Liu, X., Lu, X. & He, L. 2019 Experimental study of crossflow instability over a delta flat plate at Mach 6. AIAA J. 57 (12), 55665574.10.2514/1.J058576CrossRefGoogle Scholar
Niu, M. & Su, C. 2023 Receptivity and its influence on transition prediction of a hypersonic boundary layer over a small bluntness cone. Phys. Fluids 35 (3), 034109.10.1063/5.0141000CrossRefGoogle Scholar
Owens, L.R., Beeler, G.B., Balakumar, P. & McGuire, P. 2014 Flow disturbance and surface roughness effects on cross-flow boundary-layer transition in supersonic flowsCrossRefGoogle Scholar
Peck, M.M., Groot, K.J. & Reed, H.L. 2024 Boundary-layer instability on a highly swept fin on a cone at Mach 6. J. Fluid Mech. 987, A13.10.1017/jfm.2024.299CrossRefGoogle Scholar
Qiu, H., Shi, M., Zhu, Y. & Lee, C. 2024 Boundary layer transition of hypersonic flow over a delta wing. J. Fluid Mech. 980, A57.10.1017/jfm.2024.42CrossRefGoogle Scholar
Quintanilha, H., Paredes, P., Hanifi, A. & Theofilis, V. 2022 Transient growth analysis of hypersonic flow over an elliptic cone. J. Fluid Mech. 935, A40.10.1017/jfm.2022.46CrossRefGoogle Scholar
Reed, H.L. & Saric, W.S. 1989 Stability of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 21 (1989), 235284.10.1146/annurev.fl.21.010189.001315CrossRefGoogle Scholar
Reed, H.L., Saric, W.S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28 (1996), 389428.CrossRefGoogle Scholar
Ren, J. & Fu, S. 2013 Nonlinear development of the multiple gortler modes in hypersonic boundary layer flows, In 43rd Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Saric, W.S. & Reed, H.L. 2003 Crossflow instabilities–theory & technology, In 41st Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics.Google Scholar
Saric, W.S., Reed, H.L. & Kerschen, E.J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.CrossRefGoogle Scholar
Saric, W.S., Reed, H.L. & White, E.B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35 (2003), 413440.CrossRefGoogle Scholar
Song, R. & Dong, M. 2023 Linear instability of a supersonic boundary layer over a rotating cone. J. Fluid Mech. 955, A31.10.1017/jfm.2022.1087CrossRefGoogle Scholar
Song, R., Zhao, L. & Huang, Z. 2020 Secondary instability of stationary görtler vortices originating from first/second mack mode. Phys. Fluids 32 (3), 034109.10.1063/1.5140222CrossRefGoogle Scholar
Stetson, K. 1983 Nosetip bluntness effects on cone frustum boundary layer transition in hypersonic flow, In 16th Fluid and Plasmadynamics Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Su, C. & Geng, J. 2017 Interaction of weak free-stream disturbance with an oblique shock: validation of the shock-capturing method. Appl. Math. Mechan. 38, 16011612.10.1007/s10483-017-2279-9CrossRefGoogle Scholar
Su, C., Li, G. & Han, Y. 2024 Breakdown mechanisms induced by stationary crossflow vortices in hypersonic three-dimensional boundary layers. Phys. Fluids 36 (7), 074118.10.1063/5.0219271CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2019 Interactions between vortical, acoustic and thermal components during hypersonic transition. J. Fluid Mech. 868, 611647.10.1017/jfm.2019.176CrossRefGoogle Scholar
Uy, K.C.K., Hao, J. & Wen, C.-Y. 2023 a Coexistence of stationary görtler and crossflow instabilities in boundary layers. Phys. Fluids 35 (9), 094115.10.1063/5.0160098CrossRefGoogle Scholar
Uy, K.C.K., Hao, J. & Wen, C.-Y. 2023 b Global and local analyses of the görtler instability in hypersonic flow. Phys. Fluids 35 (6), 064111.Google Scholar
Wan, B., Chen, J., Yuan, X., Hu, W. & Tu, G. 2022 Three-dimensional receptivity of a blunt-cone boundary layer to incident slow acoustic waves. AIAA J. 60 (8), 45234531.CrossRefGoogle Scholar
Wan, B., Tu, G., Yuan, X., Chen, J. & Zhang, Y. 2021 Identification of traveling crossflow waves under real hypersonic flight conditions. Phys. Fluids 33 (4), 044110.10.1063/5.0046954CrossRefGoogle Scholar
Wassermann, P. & Kloker, M. 2005 Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover. J. Fluid Mech. 530, 265293.CrossRefGoogle Scholar
Wheaton, B.M., Berridge, D.C., Wolf, T.D., Araya, D.B., Stevens, R.T., McGrath, B.E., Kemp, B.L. & Adamczak, D.W. 2021 Final design of the boundary layer transition (bolt) flight experiment. J. Spacecr. Rockets 58 (1), 617.10.2514/1.A34809CrossRefGoogle Scholar
Xu, G., Chen, J., Liu, G., Dong, S. & Fu, S. 2019 The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow. J. Fluid Mech. 873, 914941.CrossRefGoogle Scholar
Xu, G., Liu, G., Chen, J. & Fu, S. 2018 Role of freestream slow acoustic waves in a hypersonic three-dimensional boundary layer. AIAA J. 56 (9), 35703584.10.2514/1.J056492CrossRefGoogle Scholar
Zhao, R., Wen, C.-Y., Long, T.H., Tian, X.D., Zhou, L. & Wu, Y. 2019 Spatial direct numerical simulation of the hypersonic boundary-layer stabilization using porous coatings. AIAA J. 57 (11), 50615065.10.2514/1.J058467CrossRefGoogle Scholar
Zhao, R., Wen, C.-Y., Tian, X.D., Long, T.H. & Yuan, W. 2018 Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer. Int. J. Heat Mass Tran. 121, 986998.10.1016/j.ijheatmasstransfer.2018.01.054CrossRefGoogle Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44, 527561.10.1146/annurev-fluid-120710-101208CrossRefGoogle Scholar
Zhu, W. & Lee, C. 2022 Perturbation decomposition over a flared cone with a wavy wall. In AIAA AVIATION 2022 Forum. American Institute of Aeronautics and Astronautics.Google Scholar
Zhu, Y., Zhu, W., Gu, D., Lee, C. & Smith, C.R. 2021 Characteristics of transition to turbulence over a Mach 6 flared cone. Phys. Fluids 33 (10), 101708.10.1063/5.0068153CrossRefGoogle Scholar
Zurigat, Y.H., Nayfeh, A.H. & Masad, J.A. 1992 Effect of pressure gradient on the stability of compressible boundary layers. AIAA J. 30 (9), 22042211.10.2514/3.11206CrossRefGoogle Scholar