Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-09-17T05:23:16.940Z Has data issue: false hasContentIssue false

On the asymmetry of over-expansion flows in planar nozzles

Published online by Cambridge University Press:  06 August 2025

Siyu Wu
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Longsheng Xue*
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Zhangyu Ma
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Weijun Li
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Puchen Hou
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Yun Jiao
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Keming Cheng
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
Chengpeng Wang*
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, PR China
*
Corresponding authors: Longsheng Xue, xuels@nuaa.edu.cn; Chengpeng Wang, wangcp@nuaa.edu.cn
Corresponding authors: Longsheng Xue, xuels@nuaa.edu.cn; Chengpeng Wang, wangcp@nuaa.edu.cn

Abstract

Over-expansion flow can generate asymmetric shock wave interactions, which lead to significant lateral forces on a nozzle. However, there is still a lack of a suitable theory to explain the phenomenon of asymmetry. The current work carefully investigates the configurations of shock wave interactions in a planar nozzle, and proposes a theoretical method to analyse the asymmetry of over-expansion flows. First, various possible flow patterns of over-expansion flows are discussed, including regular and Mach reflections. Second, the free interaction theory and the minimum entropy production principle are used to analyse the boundary layer flow and main shock wave interactions, establish the relationship between the separation shock strength and separation position, and predict asymmetric configurations. Finally, experiments are conducted to validate the theoretical method, and similar experiments from other studies are discussed to demonstrate the effectiveness of the proposed method. Results demonstrate that the direction of asymmetric over-expansion flow is random, and the separated flow strives to adopt a pattern with minimal total pressure loss. Asymmetric interaction is a mechanism through which the flow can achieve a more efficient thermodynamic balance by minimising entropy production.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aghababaie, A. & Taylor, N. 2011 Modelling side loads in separated rocket nozzles. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 5687. AIAA.Google Scholar
Aghababaie, A.A. & Theunissen, R. 2015 Modeling free shock separation induced side loads in overexpanded rocket nozzles. AIAA J. 53 (1), 93103.10.2514/1.J053014CrossRefGoogle Scholar
Babinsky, H. & Harvey, J.K. 2011 Shock Wave–Boundary-Layer Interactions. Cambridge University Press.10.1017/CBO9780511842757CrossRefGoogle Scholar
Bai, C.-Y. & Wu, Z.-N. 2017 Size and shape of shock waves and slipline for Mach reflection in steady flow. J. Fluid Mech. 818, 116140.10.1017/jfm.2017.139CrossRefGoogle Scholar
Bakulu, F., Lehnasch, G., Jaunet, V., Goncalves da Silva, E. & Girard, S. 2021 Jet resonance in truncated ideally contoured nozzles. J. Fluid Mech. 919, A32.10.1017/jfm.2021.351CrossRefGoogle Scholar
Bourgoing, A. & Reijasse, P. 2005 Experimental analysis of unsteady separated flows in a supersonic planar nozzle. Shock Waves 14 (4), 251258.10.1007/s00193-005-0269-2CrossRefGoogle Scholar
Chaudhuri, A. & Hadjadj, A. 2016 Numerical investigations of transient nozzle flow separation. Aerosp. Sci. Technol. 53, 1021.10.1016/j.ast.2016.03.006CrossRefGoogle Scholar
Chpoun, A., Passerel, D., Li, H. & Ben-Dor, G. 1995 Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation. J. Fluid Mech. 301, 1935.10.1017/S0022112095003776CrossRefGoogle Scholar
Erdos, J. & Pallone, A. 1962 Shock–boundary layer interaction and flow separation. In Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute, vol. 15, pp. 239254. Stanford University Press.Google Scholar
Frey, M. & Hagemann, G. 1999 Flow separation and side-loads in rocket nozzles. In 35th Joint Propulsion Conference and Exhibit, pp. 2815. AIAA.Google Scholar
Giepman, R.H.M., Schrijer, F.F.J. & van Oudheusden, B.W. 2018 A parametric study of laminar and transitional oblique shock wave reflections. J. Fluid Mech. 844, 187215.10.1017/jfm.2018.165CrossRefGoogle Scholar
Grossman, I.J. & Bruce, P.J.K. 2018 Confinement effects on regular–irregular transition in shock-wave–boundary-layer interactions. J. Fluid Mech. 853, 171204.10.1017/jfm.2018.537CrossRefGoogle Scholar
Hadjadj, A., Kudryavtsev, A.N. & Ivanov, M.S. 2004 Numerical investigation of shock–reflection phenomena in overexpanded supersonic jets. AIAA J. 42 (3), 570577.10.2514/1.989CrossRefGoogle Scholar
Hadjadj, A., Perrot, Y. & Verma, S. 2015 Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. Aerosp. Sci. Technol. 42, 158168.10.1016/j.ast.2015.01.010CrossRefGoogle Scholar
Hakkinen, R.J., Greber, I., Trilling, L. & Abarbanel, S.S. 1959 The interaction of an oblique shock wave with a laminar boundary layer. Tech. Rep.. NASA Memo 2-18-59W.Google Scholar
Hunter, C. 1998 Experimental, theoretical, and computational investigation of separated nozzle flows. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, pp. 3107. AIAA.Google Scholar
Jaunet, V. & Lehnasch, G. 2025 Linear dynamics of over-expanded annular supersonic jets. J. Fluid Mech. 1009, A32.10.1017/jfm.2025.156CrossRefGoogle Scholar
Kuz‘Min, V.A. & Khazhuev, V .N. 1993 Measurement of liquid or gas flow (flow velocity) using convergent channels with a witoszynski profile. Meas. Tech. 36 (3), 288296.10.1007/BF01003662CrossRefGoogle Scholar
Lawrence, R.A. & Weynand, E.E. 1968 Factors affecting flow separation in contoured supersonic nozzles. AIAA J. 6 (6), 11591160.10.2514/3.4693CrossRefGoogle Scholar
Li, H. & Ben-Dor, G. 1996 a Application of the principle of minimum entropy production to shock wave reflections. I. Steady flows. J. Appl. Phys. 80 (4), 20272037.10.1063/1.363096CrossRefGoogle Scholar
Li, H. & Ben-Dor, G. 1996 b Application of the principle of minimum entropy production to shock wave reflections. II. Pseudosteady flows. J. Appl. Phys. 80 (4), 20382048.10.1063/1.363097CrossRefGoogle Scholar
Li, H. & Ben-Dor, G. 1997 A parametric study of Mach reflection in steady flows. J. Fluid Mech. 341, 101125.10.1017/S0022112097005375CrossRefGoogle Scholar
Li, H., Chpoun, A. & Ben-Dor, G. 1999 Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows. J. Fluid Mech. 390, 2543.10.1017/S0022112099005169CrossRefGoogle Scholar
Martelli, E., Saccoccio, L., Ciottoli, P.P., Tinney, C.E., Baars, W.J. & Bernardini, M. 2020 Flow dynamics and wall-pressure signatures in a high-Reynolds-number overexpanded nozzle with free shock separation. J. Fluid Mech. 895, A29.10.1017/jfm.2020.280CrossRefGoogle Scholar
Matheis, J. & Hickel, S. 2015 On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech. 776, 200234.10.1017/jfm.2015.319CrossRefGoogle Scholar
Morisco, C.T., Robinet, J.-C., Herpe, J. & Saucereau, D. 2023 Impinging shear layer instability in over-expanded nozzle dynamics. Phys. Fluids. 35 (11), 116118.10.1063/5.0176041CrossRefGoogle Scholar
Mouton, C.A. & Hornung, H.G. 2007 Mach stem height and growth rate predictions. AIAA J. 45 (8), 19771987.10.2514/1.27460CrossRefGoogle Scholar
Nasuti, F., Onofri, M. & Pietropaoli, E. 2005 The influence of nozzle shape on the shock structure in separated flows. In Fifth European Symposium on Aerothermodynamics for Space Vehicles, vol. 563, pp. 353. European Space Agency Publications Division.Google Scholar
von Neumann, J. 1943 Oblique reflection of shocks. Tech. Rep. 12. Navy Department, Bureau of Ordnance, Washington DC.Google Scholar
von Neumann, J. 1945 Refraction, intersection and reflection of shock waves. Tech. Rep. 203. Navy Department, Bureau of Ordnance, Washington DC.Google Scholar
Olson, B.J. & Lele, S.K. 2013 A mechanism for unsteady separation in over-expanded nozzle flow. Phys. Fluids 25 (11), 110809.10.1063/1.4819349CrossRefGoogle Scholar
Östlund, J., Damgaard, T. & Frey, M. 2004 Side-load phenomena in highly overexpanded rocket nozzles. J. Propul. Power 20 (4), 695704.10.2514/1.3059CrossRefGoogle Scholar
Östlund, J. & Muhammad-Klingmann, B. 2005 Supersonic flow separation with application to rocket engine nozzles. Appl. Mech. Rev. 58 (3), 143177.10.1115/1.1894402CrossRefGoogle Scholar
Papamoschou, D., Zill, A. & Johnson, A. 2009 Supersonic flow separation in planar nozzles. Shock Waves 19 (3), 171183.10.1007/s00193-008-0160-zCrossRefGoogle Scholar
Paramanantham, V., Janakiram, S. & Gopalapillai, R. 2022 Prediction of Mach stem height in compressible open jets. Part 1. Overexpanded jets. J. Fluid Mech. 942, A48.10.1017/jfm.2022.374CrossRefGoogle Scholar
Reijasse, P. & Birkemeyer, J. 2002 Semi-empirical flow separation model for subscale nozzles. In Fourth Symposium on Aerothermodynamics for Space Vehicles, vol. 487, pp. 407. European Space Agency Publications Division.Google Scholar
Shimshi, E., Ben-Dor, G. & Levy, A. 2009 Viscous simulation of shock-reflection hysteresis in overexpanded planar nozzles. J. Fluid Mech. 635, 189206.10.1017/S002211200900771XCrossRefGoogle Scholar
Stark, R. & Wagner, B. 2009 Experimental study of boundary layer separation in truncated ideal contour nozzles. Shock Waves 19 (3), 185191.10.1007/s00193-008-0174-6CrossRefGoogle Scholar
Summerfield, M., Foster, C.R. & Swan, W.C. 1954 Flow separation in overexpanded supersonic exhaust nozzles. Jet Propul. 24 (5), 319321.Google Scholar
Sun, L., Sugiyama, H., Mizobata, K., Minato, R. & Tojo, A. 2004 Numerical and experimental investigations on Mach 2 and 4 pseudo-shock waves in a square duct. Trans. Japan Soc. Aeronaut. Space Sci. 47 (156), 124130.Google Scholar
Tao, Y., Fan, X.Q. & Zhao, Y.L. 2014 Viscous effects of shock reflection hysteresis in steady supersonic flows. J. Fluid Mech. 759, 134148.10.1017/jfm.2014.574CrossRefGoogle Scholar
Verma, S.B. & Manisankar, C. 2014 Origin of flow asymmetry in planar nozzles with separation. Shock Waves 24 (2), 191209.10.1007/s00193-013-0492-1CrossRefGoogle Scholar
Wang, C., Xue, L. & Cheng, K. 2018 Application of the minimum entropy production principle to shock reflection induced by separation. J. Fluid Mech. 857, 784805.10.1017/jfm.2018.762CrossRefGoogle Scholar
Xiao, Q., Tsai, H.M. & Papamoschou, D. 2007 Numerical investigation of supersonic nozzle flow separation. AIAA J. 45 (3), 532541.10.2514/1.20073CrossRefGoogle Scholar
Xue, L., Jiao, Y., Wang, C. & Cheng, K. 2023 Pressure plateau of separation induced by shock impingement in a Mach 5 flow. J. Fluid Mech. 972, R1.10.1017/jfm.2023.725CrossRefGoogle Scholar
Xue, L.S., Schrijer, F.F.J., van Oudheusden, B.W., Wang, C.P., Shi, Z.W. & Cheng, K.M. 2020 Theoretical study on regular reflection of shock wave–boundary layer interactions. J. Fluid Mech. 899, A30.10.1017/jfm.2020.455CrossRefGoogle Scholar
Xue, L.S., Wang, C.P. & Cheng, K.M. 2021 A study on the RR-to-MR transition of shock wave reflections near the leading edge in hypersonic flows. J. Fluid Mech. 919, A40.10.1017/jfm.2021.421CrossRefGoogle Scholar
Zill, A. 2006 Flow separation in rectangular over-expanded supersonic nozzles. In 44th AIAA Aerospace Sciences Meeting and Exhibit, pp. 17. AIAA.Google Scholar