Hostname: page-component-7857688df4-q9hl9 Total loading time: 0 Render date: 2025-11-17T19:47:37.612Z Has data issue: false hasContentIssue false

Long-time asymptotics of passive scalar transport in periodically modulated channels

Published online by Cambridge University Press:  17 November 2025

Lingyun Ding*
Affiliation:
Department of Mathematics, University of California, Los Angeles , Los Angeles, CA 90095, USA
*
Corresponding author: Lingyun Ding, dingly@g.ucla.edu

Abstract

This work investigates the long-time asymptotic behaviour of a diffusing passive scalar advected by fluid flow in a straight channel with a periodically varying cross-section. The goal is to derive an asymptotic expansion for the scalar field and estimate the time scale over which this expansion remains valid, thereby generalising Taylor dispersion theory to periodically modulated channels. By reformulating the eigenvalue problem for the advection–diffusion operator on a unit cell using a Floquet–Bloch-type eigenfunction expansion, we extend the classical Fourier integral of the flat channel problem to a periodic setting, yielding an integral representation of the scalar field. This representation reveals a slow manifold that governs the algebraically decaying dynamics, while the difference between the scalar field and the slow manifold decays exponentially in time. Building on this, we derive a long-time asymptotic expansion of the scalar field. We show that the validity time scale of the expansion is determined by the real part of the eigenvalues of a modified advection–diffusion operator, which depends solely on the flow and geometry within a single unit cell. This framework offers a rigorous and systematic method for estimating mixing time scales in channels with complex geometries. We show that non-flat channel boundaries tend to increase the time scale, while transverse velocity components tend to decrease it. The approach developed here is broadly applicable and can be extended to derive long-time asymptotics for other systems with periodic coefficients or periodic microstructures.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ablowitz, M.J., Fokas, A.S. & Fokas, A.S. 2003 Complex Variables: Introduction and Applications. Cambridge University Press.10.1017/CBO9780511791246CrossRefGoogle Scholar
Alexandre, A., Guérin, T. & Dean, D.S. 2025 Effective description of Taylor dispersion in strongly corrugated channels. Phys. Rev. E 111 (6), 064124.10.1103/l1tm-n98sCrossRefGoogle Scholar
Allaire, G., Briane, M. & Vanninathan, M. 2016 A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SEMA J. 73 (3), 237259.10.1007/s40324-016-0067-zCrossRefGoogle Scholar
Amaral Souto, H.P. & Moyne, C. 1997 Dispersion in two-dimensional periodic porous media. Part II. Dispersion tensor. Phys. Fluids 9 (8), 22532263.10.1063/1.869347CrossRefGoogle Scholar
Aminian, M., Bernardi, F., Camassa, R., Harris, D.M. & McLaughlin, R.M. 2016 How boundaries shape chemical delivery in microfluidics. Science 354 (6317), 12521256.CrossRefGoogle ScholarPubMed
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 235 (1200), 6777.Google Scholar
Auton, L.C., Dalwadi, M.P. & Griffiths, I.M. 2025 A homogenized model for dispersive transport and sorption in a heterogeneous porous medium. SIAM J. Appl. Maths 85 (5), 20262054.CrossRefGoogle Scholar
Barton, N.G. 1983 On the method of moments for solute dispersion. J. Fluid Mech. 126, 205218.10.1017/S0022112083000117CrossRefGoogle Scholar
Bender, C.M., Orszag, S. & Orszag, S.A. 1999 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, vol. 1. Springer Science & Business Media.10.1007/978-1-4757-3069-2CrossRefGoogle Scholar
Bloch, F. 1929 Über die quantenmechanik der elektronen in kristallgittern. Z. Phys. 52 (7), 555600.10.1007/BF01339455CrossRefGoogle Scholar
Bouquain, J., Méheust, Y., Bolster, D. & Davy, P. 2012 The impact of inertial effects on solute dispersion in a channel with periodically varying aperture. Phys. Fluids 24 (8), 083602-1–083602-17.CrossRefGoogle Scholar
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A Math. Phys. Sci. 297 (1430), 81133.Google Scholar
Bronski, J.C. & McLaughlin, R.M. 1997 Scalar intermittency and the ground state of periodic Schrödinger equations. Phys. Fluids 9 (1), 181190.10.1063/1.869161CrossRefGoogle Scholar
Camassa, R., Ding, L., Kilic, Z. & McLaughlin, R.M. 2021 Persisting asymmetry in the probability distribution function for a random advection–diffusion equation in impermeable channels. Physica D: Nonlinear Phenom. 425, 132930.CrossRefGoogle Scholar
Camassa, R., Lin, Z. & McLaughlin, R.M. 2010 a The exact evolution of the scalar variance in pipe and channel flow. Commun. Math. Sci. 8 (2), 601626.10.4310/CMS.2010.v8.n2.a13CrossRefGoogle Scholar
Camassa, R., McLaughlin, R.M. & Viotti, C. 2010 b Analysis of passive scalar advection in parallel shear flows: sorting of modes at intermediate time scales. Phys. Fluids 22 (11), 117103.CrossRefGoogle Scholar
Chang, R. & Santiago, J.G. 2023 Taylor dispersion in arbitrarily shaped axisymmetric channels. J. Fluid Mech. 976, A30.10.1017/jfm.2023.504CrossRefGoogle Scholar
Chatwin, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43 (2), 321352.10.1017/S0022112070002409CrossRefGoogle Scholar
David, C.S., Hester, E.W., Xu, Y. & Aurnou, J.M. 2024 Magneto-Stokes flow in a shallow free-surface annulus. J. Fluid Mech. 996, A33.CrossRefGoogle Scholar
DeGroot, C.T. & Straatman, A.G. 2011 Closure of non-equilibrium volume-averaged energy equations in high-conductivity porous media. Intl J. Heat Mass Transfer 54 (23–24), 50395048.10.1016/j.ijheatmasstransfer.2011.07.018CrossRefGoogle Scholar
Ding, L. 2023 Shear dispersion of multispecies electrolyte solutions in the channel domain. J. Fluid Mech. 970, A27.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2022 a Determinism and invariant measures for diffusing passive scalars advected by unsteady random shear flows. Phys. Rev. Fluids 7 (7), 074502.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2022 b Ergodicity and invariant measures for a diffusing passive scalar advected by a random channel shear flow and the connection between the Kraichnan–Majda model and Taylor–Aris dispersion. Physica D: Nonlinear Phenom. 432, 133118.10.1016/j.physd.2021.133118CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2023 Dispersion induced by unsteady diffusion-driven flow in a parallel-plate channel. Phys. Rev. Fluids 8, 084501.10.1103/PhysRevFluids.8.084501CrossRefGoogle Scholar
Dussi, S. & Rycroft, C.H. 2022 Less can be more: insights on the role of electrode microstructure in redox flow batteries from two-dimensional direct numerical simulations. Phys. Fluids 34 (4), 043111-1–043111-12.10.1063/5.0084066CrossRefGoogle Scholar
Feppon, F. 2025 Asymptotic expansions of Stokes flows in finite periodic channels. Multiscale Model. Simul. 23 (1), 218254.10.1137/24M1642469CrossRefGoogle Scholar
Guan, M. & Chen, G. 2024 Streamwise dispersion of soluble matter in solvent flowing through a tube. J. Fluid Mech. 980, A33.10.1017/jfm.2024.34CrossRefGoogle Scholar
Haugerud, I.S., Linga, G. & Flekkøy, E.G. 2022 Solute dispersion in channels with periodic square boundary roughness. J. Fluid Mech. 944, A53.10.1017/jfm.2022.522CrossRefGoogle Scholar
Hecht, F. 2012 New development in freefem++. J. Numer. Maths 20 (3–4), 251266.Google Scholar
Hoagland, D.A. & Prud’Homme, R.K. 1985 Taylor–Aris dispersion arising from flow in a sinusoidal tube. AIChE J. 31 (2), 236244.10.1002/aic.690310210CrossRefGoogle Scholar
Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R.J., Aref, H.Beebe, D.J. 2000 Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9 (2), 190197.10.1109/84.846699CrossRefGoogle Scholar
Liu, Y., Xiao, H., Aquino, T., Dentz, M. & Wang, M. 2024 Scaling laws and mechanisms of hydrodynamic dispersion in porous media. J. Fluid Mech. 1001, R2.CrossRefGoogle Scholar
McLaughlin, R.M. 1994 Turbulent transport. PhD thesis, Princeton University, Princeton, USA.Google Scholar
Mercer, G.N. & Roberts, A.J. 1990 A centre manifold description of contaminant dispersion in channels with varying flow properties. SIAM J. Appl. Maths 50 (6), 15471565.10.1137/0150091CrossRefGoogle Scholar
Municchi, F. & Icardi, M. 2020 Macroscopic models for filtration and heterogeneous reactions in porous media. Adv. Water Resour. 141, 103605.10.1016/j.advwatres.2020.103605CrossRefGoogle Scholar
Oevreeide, I.H., Zoellner, A., Mielnik, M.M. & Stokke, B.T. 2020 Curved passive mixing structures: a robust design to obtain efficient mixing and mass transfer in microfluidic channels. J. Micromech. Microengng 31 (1), 015006.10.1088/1361-6439/abc820CrossRefGoogle Scholar
Phillips, C.G. & Kaye, S.R. 1996 A uniformly asymptotic approximation for the development of shear dispersion. J. Fluid Mech. 329, 413443.10.1017/S002211209600897XCrossRefGoogle Scholar
Pollock, S., Rebholz, L.G. & Xiao, M. 2019 Anderson-accelerated convergence of picard iterations for incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 57 (2), 615637.10.1137/18M1206151CrossRefGoogle Scholar
Richmond, M.C., Perkins, W.A., Scheibe, T.D., Lambert, A. & Wood, B.D. 2013 Flow and axial dispersion in a sinusoidal-walled tube: effects of inertial and unsteady flows. Adv. Water Resour. 62, 215226.10.1016/j.advwatres.2013.06.014CrossRefGoogle Scholar
Roberts, A.J. 2015 Macroscale, slowly varying, models emerge from the microscale dynamics. IMA J. Appl. Maths 80 (5), 14921518.10.1093/imamat/hxv004CrossRefGoogle Scholar
Roberts, A.J. 2014 Model Emergent Dynamics in Complex Systems, vol. 20. SIAM.10.1137/1.9781611973563CrossRefGoogle Scholar
Roggeveen, J.V., Stone, H.A. & Kurzthaler, C. 2023 Transport of a passive scalar in wide channels with surface topography: an asymptotic theory. J. Phys.: Condens. Matter 35 (27), 274003.Google ScholarPubMed
Rosencrans, S. 1997 Taylor dispersion in curved channels. SIAM J. Appl. Maths 57 (5), 12161241.10.1137/S003613999426990XCrossRefGoogle Scholar
Stokes, A.N. & Barton, N.G. 1990 The concentration distribution produced by shear dispersion of solute in Poiseuille flow. J. Fluid Mech. 210, 201221.10.1017/S0022112090001264CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A. & Whitesides, G.M. 2002 Chaotic mixer for microchannels. Science 295 (5555), 647651.CrossRefGoogle ScholarPubMed
Taghizadeh, E., Valdés-Parada, F.J. & Wood, B.D. 2020 Preasymptotic Taylor dispersion: evolution from the initial condition. J. Fluid Mech. 889, A5.10.1017/jfm.2020.56CrossRefGoogle Scholar
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219 (1137), 186203.Google Scholar
Teng, J., Rallabandi, B. & Ault, J.T. 2023 Diffusioosmotic dispersion of solute in a long narrow channel. J. Fluid Mech. 977, A5.CrossRefGoogle Scholar
Vedel, S. & Bruus, H. 2012 Transient Taylor–Aris dispersion for time-dependent flows in straight channels. J. Fluid Mech. 691, 95122.CrossRefGoogle Scholar
Vedel, S., Hovad, E. & Bruus, H. 2014 Time-dependent Taylor–Aris dispersion of an initial point concentration. J. Fluid Mech. 752, 107122.CrossRefGoogle Scholar
Watt, S.D. & Roberts, A.J. 1995 The accurate dynamic modelling of contaminant dispersion in channels. SIAM J. Appl. Maths 55 (4), 10161038.10.1137/S0036139993257971CrossRefGoogle Scholar
Wu, Z. & Chen, G.Q. 2014 Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 740, 196213.10.1017/jfm.2013.648CrossRefGoogle Scholar
Young, W.R. & Jones, S. 1991 Shear dispersion. Phys. Fluids A: Fluid Dyn. 3 (5), 10871101.10.1063/1.858090CrossRefGoogle Scholar
Zhang, W., Stone, H.A. & Sherwood, J.D. 1996 Mass transfer at a microelectrode in channel flow. J. Phys. Chem. 100 (22), 94629464.10.1021/jp960027yCrossRefGoogle Scholar
Zwanzig, R. 1983 Effective diffusion coefficient for a Brownian particle in a two-dimensional periodic channel. Physica A: Stat. Mech. Applics. 117 (1), 277280.CrossRefGoogle Scholar